Nothing Special   »   [go: up one dir, main page]

TW201510519A - System and method for measuring properties of thermoelectric module - Google Patents

System and method for measuring properties of thermoelectric module Download PDF

Info

Publication number
TW201510519A
TW201510519A TW102131726A TW102131726A TW201510519A TW 201510519 A TW201510519 A TW 201510519A TW 102131726 A TW102131726 A TW 102131726A TW 102131726 A TW102131726 A TW 102131726A TW 201510519 A TW201510519 A TW 201510519A
Authority
TW
Taiwan
Prior art keywords
module
thermoelectric module
measuring
heating
temperature
Prior art date
Application number
TW102131726A
Other languages
Chinese (zh)
Other versions
TWI495868B (en
Inventor
Jing-Yi Huang
Hueylin Hsieh
Heng-Chieh Chien
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW102131726A priority Critical patent/TWI495868B/en
Publication of TW201510519A publication Critical patent/TW201510519A/en
Application granted granted Critical
Publication of TWI495868B publication Critical patent/TWI495868B/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A system and a method for measuring properties of a thermoelectric module are provided. The system includes an adiabatic apparatus, a heating apparatus, a cooling module and three temperature measuring units. In the method for measuring properties of the thermoelectric module, at first, a top surface and a bottom surface of the thermoelectric module are respectively heated and cooled by the heating apparatus and the cooling apparatus, and then a temperature of a thermal conductivity material surface, a temperature of the cooling module surface, an output voltage of the thermoelectric module and a temperature of the adiabatic apparatus are measured for calculating the generation efficiency, performance of an internal electrical resistor and performance of a thermal resistance.

Description

熱電模組性質測量系統及其測量方法 Thermoelectric module property measuring system and measuring method thereof

本發明是有關於一種測量系統及測量方法,且特別是有關於一種熱電模組性質測量系統、發電效率、內電阻性能、及熱阻性能測量方法。 The invention relates to a measuring system and a measuring method, and in particular to a measuring method of a thermoelectric module property, a power generation efficiency, an internal resistance performance, and a thermal resistance performance measuring method.

【先前技術】請參閱第1圖,第1圖係繪示第一種傳統熱電模組測量系統之剖面圖。第一種傳統熱電模組測量系統中,加熱片110經加熱後產生熱量,接著透過包覆絕熱材料112的熱傳導塊111將熱量傳導到熱電模組130的上表面,另外,冷卻模組120則透過包覆絕熱材料112的熱傳導塊121從熱電模組130的下表面吸收熱量。其中,在熱傳導塊111、121中設有複數個熱電偶140,用來量測熱傳導塊111、121不同位置的溫度,藉此,此傳統熱電模組測量系統可量測熱電模組130的席貝克(seebeck)係數、熱阻值(thermal resistance)、內電阻值(internal electrical resistance)、發電功率(power generation)及發電效率(generation efficiency)。然而,此傳統熱電模組測量系統在測量不同上 表面或下表面的面積的熱電模組130時,需要更換相對應面積大小的熱傳導塊111、121,始能測量準確的熱電模組130性質,因此若是有不同面積大小的熱電模組130需測量其性質時,就需要更換熱傳導塊111、121以對應熱電模組130的面積,因此不甚方便。 [Prior Art] Please refer to Fig. 1. Fig. 1 is a cross-sectional view showing the first conventional thermoelectric module measuring system. In the first conventional thermoelectric module measuring system, the heating sheet 110 generates heat after being heated, and then conducts heat to the upper surface of the thermoelectric module 130 through the heat conducting block 111 covering the heat insulating material 112. In addition, the cooling module 120 Heat is absorbed from the lower surface of the thermoelectric module 130 through the heat conducting block 121 covering the heat insulating material 112. Wherein, a plurality of thermocouples 140 are disposed in the heat conducting blocks 111, 121 for measuring temperatures of different positions of the heat conducting blocks 111, 121, whereby the conventional thermoelectric module measuring system can measure the seats of the thermoelectric module 130 Seebeck coefficient, thermal resistance, internal electrical resistance, power generation, and generation efficiency. However, this traditional thermoelectric module measurement system is different in measurement. When the thermoelectric module 130 of the surface of the surface or the lower surface needs to be replaced with the heat conducting blocks 111 and 121 of the corresponding area, the accuracy of the thermoelectric module 130 can be measured. Therefore, if the thermoelectric module 130 having different area sizes needs to be measured, In its nature, it is necessary to replace the heat conducting blocks 111, 121 to correspond to the area of the thermoelectric module 130, which is not convenient.

請參閱第2圖,第2圖係繪示第二種傳統熱電模組測量系統之剖面圖。第二種傳統熱電模組測量系統係與第一種傳統熱電模組測量系統相似,都具有被絕熱材料112包覆的熱傳導塊111、121,以及加熱片110及冷卻模組120分別供熱予熱電模組130的上表面及自熱電模組130的下表面吸熱。然而,第二種傳統熱電模組測量系統僅在熱傳導塊111、121各設置一熱電偶140,且熱電偶140較靠近熱電模組130的上表面及下表面,其中,熱傳導塊111、121的面積不需與熱電模組130的上表面或下表面的面積對應,即可量測出熱電模組130的等效席貝克係數、內電阻值及發電功率。但是,卻具有無法量測熱電模組130之發電效率及熱阻值的缺點。 Please refer to FIG. 2, which is a cross-sectional view showing a second conventional thermoelectric module measuring system. The second conventional thermoelectric module measuring system is similar to the first conventional thermoelectric module measuring system, and both have heat conducting blocks 111 and 121 covered by the heat insulating material 112, and the heating sheet 110 and the cooling module 120 respectively supply heat to the heat. The upper surface of the electrical module 130 and the lower surface of the thermoelectric module 130 absorb heat. However, in the second conventional thermoelectric module measurement system, only one thermocouple 140 is disposed in each of the thermal conduction blocks 111 and 121, and the thermocouple 140 is closer to the upper surface and the lower surface of the thermoelectric module 130, wherein the thermal conduction blocks 111 and 121 are The area does not need to correspond to the area of the upper surface or the lower surface of the thermoelectric module 130, and the equivalent Sibeck coefficient, internal resistance value and power generation of the thermoelectric module 130 can be measured. However, it has the disadvantage that the power generation efficiency and the thermal resistance value of the thermoelectric module 130 cannot be measured.

鑒於以上的問題,本發明之一方面在於提供一種熱電模組性質測量系統、發電效率、內電阻性能、熱阻性能測量方法,藉以無須更換熱傳導塊的大小,就可以測量不同面積的熱電模組的等效席貝克係數、熱阻值、內電阻值、發電功率及發電效率。 In view of the above problems, an aspect of the present invention provides a thermoelectric module property measuring system, a power generation efficiency, an internal resistance performance, and a thermal resistance performance measuring method, so that different sizes of thermoelectric modules can be measured without replacing the size of the heat conducting block. The equivalent Sibeck coefficient, thermal resistance value, internal resistance value, power generation power and power generation efficiency.

根據本發明之一實施例,此熱電模組性質測量系 統,適於測量熱電模組,熱電模組性質測量系統包含絕熱裝置、供熱裝置、冷卻模組、第一溫度測量單元、第二溫度測量單元以及第三溫度測量單元。絕熱裝置具有第一中空部、第二中空部以及供熱部,其中第一中空部係位於第二中空部與供熱部上,第二中空部係環繞供熱部。供熱裝置設置在絕熱裝置之供熱部中,用以加熱熱電模組。供熱裝置包含導熱材及加熱模組,導熱材之導熱材表面用以接觸熱電模組之上表面,以及加熱模組設置於導熱材中,加熱模組用以透過導熱材來提供加熱量至熱電模組。冷卻模組用以冷卻熱電模組,冷卻模組之冷卻模組表面係用以接觸熱電模組之下表面。第一溫度測量單元用以量測導熱材之導熱材表面之溫度,也就是導熱材與熱電模組接觸之上表面之溫度,以獲得熱電模組熱端溫度值。第二溫度測量單元用以量測絕熱裝置之溫度,以獲得絕熱裝置溫度值。第三溫度測量單元用以量測冷卻模組之冷卻模組表面之溫度,也就是量測冷卻模組與熱電模組接觸之下表面之溫度,以獲得熱電模組冷端溫度值。 According to an embodiment of the invention, the thermoelectric module property measurement system The system is suitable for measuring a thermoelectric module. The thermoelectric module property measuring system comprises a heat insulating device, a heating device, a cooling module, a first temperature measuring unit, a second temperature measuring unit and a third temperature measuring unit. The heat insulating device has a first hollow portion, a second hollow portion, and a heat supply portion, wherein the first hollow portion is located on the second hollow portion and the heat supply portion, and the second hollow portion surrounds the heat supply portion. The heating device is disposed in the heating portion of the heat insulating device for heating the thermoelectric module. The heating device comprises a heat conducting material and a heating module, the surface of the heat conducting material of the heat conducting material is used for contacting the upper surface of the thermoelectric module, and the heating module is disposed in the heat conducting material, and the heating module is configured to provide the heating amount through the heat conducting material to Thermoelectric module. The cooling module is used to cool the thermoelectric module, and the cooling module surface of the cooling module is used to contact the lower surface of the thermoelectric module. The first temperature measuring unit is configured to measure the temperature of the surface of the heat conducting material of the heat conducting material, that is, the temperature of the surface of the heat conducting material contacting the upper surface of the thermoelectric module to obtain the hot end temperature value of the thermoelectric module. The second temperature measuring unit is configured to measure the temperature of the heat insulating device to obtain a temperature value of the heat insulating device. The third temperature measuring unit is configured to measure the temperature of the surface of the cooling module of the cooling module, that is, measure the temperature of the surface of the cooling module and the surface of the thermoelectric module to obtain the cold junction temperature value of the thermoelectric module.

依據本發明之另一實施例,上述之熱電模組性質測量系統更包含計算裝置,電性連接至第一溫度測量單元、第二溫度測量單元以及第三溫度測量單元,以利用熱電模組熱端溫度值、熱電模組冷端溫度值以及絕熱裝置溫度值來計算出熱電模組之席貝克係數、內電阻值、熱阻值、發電功率或發電效率。 According to another embodiment of the present invention, the thermoelectric module property measuring system further includes a computing device electrically connected to the first temperature measuring unit, the second temperature measuring unit, and the third temperature measuring unit to utilize the heat of the thermoelectric module. The temperature value of the terminal, the temperature of the cold junction of the thermoelectric module, and the temperature value of the insulation device are used to calculate the Scheib coefficient, internal resistance value, thermal resistance value, power generation power or power generation efficiency of the thermoelectric module.

依據本發明之再一實施例,上述之第一溫度測量單 元、第二溫度測量單元以及第三溫度測量單元為熱電偶。 According to still another embodiment of the present invention, the first temperature measurement sheet described above The element, the second temperature measuring unit and the third temperature measuring unit are thermocouples.

依據本發明之又一實施例,上述之冷卻模組為水冷式冷卻模組或氣冷式冷卻模組。 According to still another embodiment of the present invention, the cooling module is a water-cooled cooling module or an air-cooled cooling module.

根據本發明之另一態樣,提供一種發電效率測量方法,用以量測熱電模組之發電效率。在一實施例中,首先利用加熱模組來加熱熱電模組之上表面,其中加熱模組係提供加熱量至熱電模組,接著利用冷卻模組來冷卻熱電模組之下表面。在冷卻熱電模組之下表面後,量測導熱材之導熱材表面之溫度,以獲得導熱材溫度值,其中導熱材表面係與熱電模組之上表面接觸,而加熱模組係導熱材來加熱熱電模組。接著提供電壓量測模組,其中電壓量測模組包含量測電阻,其中量測電阻之電阻值係等於熱電模組之內電阻值。在提供電壓量測模組之後,利用電壓量測模組來量測熱電模組之輸出電壓,並利用輸出電壓來計算熱電模組之發電功率。接著量測絕熱裝置之溫度,以獲得絕熱裝置溫度值,其中絕熱裝置係包覆加熱模組與導熱材。在量測絕熱裝置之溫度後,利用熱電模組熱端溫度值以及絕熱裝置溫度值來計算出熱散逸量;以及進行發電效率計算步驟,以利用加熱量、熱散逸量以及發電功率來計算出熱電模組之發電效率值。 According to another aspect of the present invention, a power generation efficiency measuring method for measuring power generation efficiency of a thermoelectric module is provided. In one embodiment, the heating module is first used to heat the upper surface of the thermoelectric module, wherein the heating module provides heating to the thermoelectric module, and then the cooling module is used to cool the lower surface of the thermoelectric module. After cooling the lower surface of the thermoelectric module, measuring the temperature of the surface of the heat conductive material of the heat conductive material to obtain the temperature value of the heat conductive material, wherein the surface of the heat conductive material is in contact with the upper surface of the thermoelectric module, and the heating module is a heat conductive material. Heat the thermoelectric module. Then, a voltage measuring module is provided, wherein the voltage measuring module comprises a measuring resistor, wherein the resistance value of the measuring resistor is equal to the internal resistance value of the thermoelectric module. After the voltage measurement module is provided, the voltage measurement module is used to measure the output voltage of the thermoelectric module, and the output voltage is used to calculate the power generation of the thermoelectric module. Then, the temperature of the heat insulating device is measured to obtain a temperature value of the heat insulating device, wherein the heat insulating device covers the heating module and the heat conducting material. After measuring the temperature of the thermal insulation device, the heat dissipation temperature value of the thermoelectric module and the temperature value of the thermal insulation device are used to calculate the heat dissipation amount; and the power generation efficiency calculation step is performed to calculate the heating amount, the heat dissipation amount, and the power generation power. The power generation efficiency value of the thermoelectric module.

依據本發明之另一實施例,上述之發電效率計算步驟係利用下列公式來計算出熱電模組之發電效率值: 其中,η為發電效率值;P為熱電模組之發電功率;Q heater 為加熱模組所提供之加熱量;以及Σ Q loss 為熱散逸量。 According to another embodiment of the present invention, the power generation efficiency calculation step described above calculates the power generation efficiency value of the thermoelectric module by using the following formula: Where η is the power generation efficiency value; P is the power generation power of the thermoelectric module; Q heater is the heating amount provided by the heating module; and Σ Q loss is the heat dissipation amount.

依據本發明之再一實施例,上述之熱散逸量之計算公式如下:Σ Q loss =3.144636×10-8.(T 1-T 2)4-8.539452×10-6.(T 1-T 2)3+9.48628×10-4.(T 1-T 2)2+0.1193478.(T 1-T 2)+0.01331508其中,T 1為熱電模組熱端溫度值;以及T 2為絕熱裝置溫度值。 According to still another embodiment of the present invention, the above formula for calculating the amount of heat dissipation is as follows: Σ Q loss = 3.144636 × 10 -8 . ( T 1 - T 2 ) 4 -8.539452 × 10 -6 . ( T 1 - T 2 ) 3 +9.48628×10 -4 . ( T 1 - T 2 ) 2 +0.1193478. ( T 1 - T 2 )+0.01331508 wherein T 1 is the thermoelectric module hot end temperature value; and T 2 is the thermal insulation device temperature value.

依據本發明之又一實施例,上述之熱電模組之發電功率之計算公式如下: 其中:V load 為輸出電壓之值;以及R load 為內電阻值。 According to still another embodiment of the present invention, the calculation formula of the power generation power of the thermoelectric module is as follows: Where: V load is the value of the output voltage; and R load is the internal resistance value.

依據本發明之再一態樣,提供一種內電阻性能測量方法,用以量測熱電模組之內電阻性能。在一實施例中,首先利用加熱模組來加熱熱電模組之上表面,其中加熱模組係提供加熱量至熱電模組,接著利用冷卻模組來冷卻熱電模組之下表面。在冷卻熱電模組之下表面後,量測導熱材之導熱材表面之溫度,以獲得導熱材溫度值,其中導熱材表面係與熱電模組之上表面接觸,而加熱模組係導熱材來加熱熱電模組,接著量測冷卻模組之冷卻模組表面之溫度,以獲得冷卻模組溫度值,其中冷卻模組表面係與加熱模組之下表面接觸。在量測冷卻模組表面之溫度後,提供電壓量測模組,其中電壓量測模組包含量測電阻,接著利用電壓量測模組來量測熱電模組之輸出電壓,以及進行內 電阻計算步驟,以利用熱電模組熱端溫度值、熱電模組冷端溫度值以及輸出電壓來計算出熱電模組之內電阻值。 According to still another aspect of the present invention, an internal resistance performance measuring method for measuring internal resistance performance of a thermoelectric module is provided. In one embodiment, the heating module is first used to heat the upper surface of the thermoelectric module, wherein the heating module provides heating to the thermoelectric module, and then the cooling module is used to cool the lower surface of the thermoelectric module. After cooling the lower surface of the thermoelectric module, measuring the temperature of the surface of the heat conductive material of the heat conductive material to obtain the temperature value of the heat conductive material, wherein the surface of the heat conductive material is in contact with the upper surface of the thermoelectric module, and the heating module is a heat conductive material. The thermoelectric module is heated, and then the temperature of the cooling module surface of the cooling module is measured to obtain a cooling module temperature value, wherein the surface of the cooling module is in contact with the lower surface of the heating module. After measuring the temperature of the surface of the cooling module, a voltage measuring module is provided, wherein the voltage measuring module includes a measuring resistor, and then the voltage measuring module is used to measure the output voltage of the thermoelectric module, and the inner voltage is measured. The resistance calculation step is to calculate the internal resistance value of the thermoelectric module by using the hot junction temperature value of the thermoelectric module, the cold junction temperature value of the thermoelectric module, and the output voltage.

依據本發明之另一實施例,上述之內電阻計算步驟係利用下列公式來計算出熱電模組之內電阻值: 其中:R TE 為平均溫度下的內電阻值,平均溫度為熱電模組冷端溫度值與熱電模組熱端溫度值總和的一半;V open 為熱電模組之開路電壓值;V load 為輸出電壓之值;以及R load 為量測電阻之電阻值。 According to another embodiment of the present invention, the internal resistance calculation step uses the following formula to calculate the internal resistance of the thermoelectric module: Where: R TE is the internal resistance value at the average temperature, and the average temperature is half of the sum of the cold junction temperature value of the thermoelectric module and the hot junction temperature of the thermoelectric module; V open is the open circuit voltage value of the thermoelectric module; V load is the output The value of the voltage; and R load is the resistance value of the measuring resistor.

依據本發明之又一態樣,提供一種熱阻性能測量方法,用以量測熱電模組之熱阻性能。在一實施例中,首先利用加熱模組來加熱熱電模組之上表面,其中加熱模組係提供加熱量至熱電模組,接著利用冷卻模組來冷卻熱電模組之下表面。在冷卻熱電模組之下表面後,量測導熱材之導熱材表面之溫度,以獲得熱電模組熱端溫度值,其中導熱材表面係與熱電模組之上表面接觸,而加熱模組係導熱材來加熱熱電模組,接著冷卻模組之冷卻模組表面之溫度,以獲得熱電模組冷端溫度值,其中冷卻模組之冷卻模組表面係與熱電模組之下表面接觸。在量測熱電模組之下表面之溫度後,量測絕熱裝置之溫度,以獲得絕熱裝置溫度值,其中絕熱裝置係包覆加熱模組與導熱材,以及進行熱阻計算步驟,以利用加熱量、熱散逸量、熱電模組熱端溫度值以及熱電模組冷端溫度值來計算出熱電模組之熱阻 值。 According to still another aspect of the present invention, a thermal resistance performance measuring method for measuring a thermal resistance performance of a thermoelectric module is provided. In one embodiment, the heating module is first used to heat the upper surface of the thermoelectric module, wherein the heating module provides heating to the thermoelectric module, and then the cooling module is used to cool the lower surface of the thermoelectric module. After cooling the lower surface of the thermoelectric module, measuring the temperature of the surface of the heat conductive material of the heat conductive material to obtain the hot end temperature value of the thermoelectric module, wherein the surface of the heat conductive material is in contact with the upper surface of the thermoelectric module, and the heating module is The heat conductive material is used to heat the thermoelectric module, and then the temperature of the cooling module surface of the cooling module is cooled to obtain the cold junction temperature value of the thermoelectric module, wherein the cooling module surface of the cooling module is in contact with the lower surface of the thermoelectric module. After measuring the temperature of the lower surface of the thermoelectric module, measuring the temperature of the thermal insulation device to obtain the temperature value of the thermal insulation device, wherein the thermal insulation device covers the heating module and the heat conduction material, and performs a thermal resistance calculation step to utilize the heating The amount of heat, the amount of heat dissipation, the temperature of the hot end of the thermoelectric module, and the temperature of the cold junction of the thermoelectric module to calculate the thermal resistance of the thermoelectric module value.

依據本發明之另一實施例,上述之熱散逸量之計算公式如下:Σ Q loss =3.144636×10-8.(T 1-T 2)4-8.539452×10-6.(T 1-T 2)3+9.48628×10-4.(T 1-T 2)2+0.1193478.(T 1-T 2)+0.01331508其中,T 1為熱電模組熱端溫度值;T 2為絕熱裝置溫度值以及Σ Q loss 為熱散逸量。 According to another embodiment of the present invention, the above formula for calculating the amount of heat dissipation is as follows: Σ Q loss = 3.144636 × 10 -8 . ( T 1 - T 2 ) 4 -8.539452 × 10 -6 . ( T 1 - T 2 ) 3 +9.48628×10 -4 . ( T 1 - T 2 ) 2 +0.1193478. ( T 1 - T 2 )+0.01331508 wherein T 1 is the hot end temperature value of the thermoelectric module; T 2 is the temperature value of the adiabatic device and Σ Q loss is the heat dissipation amount.

依據本發明之再一實施例,上述之熱阻計算步驟係利用下列公式來計算出熱電模組之熱阻值: 其中:R f 為熱阻值;T 1為熱電模組熱端溫度值;T 3為熱電模組冷端溫度值;Q heater 為加熱模組所提供之加熱量以及Σ Q loss 為熱散逸量。 According to still another embodiment of the present invention, the thermal resistance calculation step described above calculates the thermal resistance value of the thermoelectric module by using the following formula: Where: R f is the thermal resistance value; T 1 is the hot end temperature value of the thermoelectric module; T 3 is the cold end temperature value of the thermoelectric module; Q heater is the heating amount provided by the heating module and Σ Q loss is the heat dissipation amount .

因此,本發明之優點之一是在提供一種熱電模組性質測量系統、發電效率、內電阻性能及熱阻性能測量方法,其中絕熱裝置具有兩個中空部,以具有較佳的絕熱效果,並且以三個溫度測量單元分別量測熱電模組熱端溫度值、熱電模組冷端溫度值及絕熱裝置溫度值,藉以計算熱電模組之席貝克係數、內電阻值、發電功率、發電效率或熱阻值。另外,導熱材表面之面積無須與熱電模組之上表面之面積相對應,因此在需測量具有不同表面面積的熱電模組的情況下,仍可適用本發明之熱電模組性質測量系統。 Therefore, one of the advantages of the present invention is to provide a thermoelectric module property measuring system, a power generation efficiency, an internal resistance performance, and a thermal resistance performance measuring method, wherein the heat insulating device has two hollow portions to have a better heat insulating effect, and Three temperature measuring units respectively measure the hot end temperature value of the thermoelectric module, the cold end temperature value of the thermoelectric module, and the temperature value of the adiabatic device, thereby calculating the Schiebeck coefficient, internal resistance value, power generation power, power generation efficiency of the thermoelectric module or Thermal resistance value. In addition, the area of the surface of the heat conductive material does not need to correspond to the area of the upper surface of the thermoelectric module. Therefore, in the case where the thermoelectric module having different surface areas needs to be measured, the thermoelectric module property measuring system of the present invention can still be applied.

有關本發明的特徵、實作與功效,茲配合圖式作最 佳實施例詳細說明如下。 Regarding the features, implementation and efficacy of the present invention, The preferred embodiment is described in detail below.

110‧‧‧加熱片 110‧‧‧ heating film

111‧‧‧熱傳導塊 111‧‧‧heat conduction block

112‧‧‧絕熱材料 112‧‧‧Insulation materials

120‧‧‧冷卻模組 120‧‧‧Cooling module

121‧‧‧熱傳導塊 121‧‧‧heat conduction block

130‧‧‧熱電模組 130‧‧‧Thermal module

140‧‧‧熱電偶 140‧‧‧ thermocouple

300‧‧‧熱電模組性質測量系統 300‧‧‧Thermal Module Nature Measurement System

310‧‧‧絕熱裝置 310‧‧‧Insulation device

311‧‧‧供熱部 311‧‧The Ministry of Heating

312、313‧‧‧中空部 312, 313‧‧‧ hollow

320‧‧‧供熱裝置 320‧‧‧heating device

321‧‧‧加熱模組 321‧‧‧heating module

322‧‧‧導熱材 322‧‧‧heat-conducting materials

330‧‧‧熱電模組 330‧‧‧Thermal module

340‧‧‧冷卻模組 340‧‧‧Cooling module

350‧‧‧第一溫度測量單元 350‧‧‧First temperature measuring unit

360‧‧‧第二溫度測量單元 360‧‧‧Second temperature measuring unit

370‧‧‧第三溫度測量單元 370‧‧‧ Third temperature measuring unit

380‧‧‧電壓量測模組 380‧‧‧Voltage measurement module

381‧‧‧量測電阻 381‧‧‧Measurement resistance

400‧‧‧發電效率測量方法 400‧‧‧Measurement method for power generation efficiency

410、510、610、710‧‧‧加熱步驟 410, 510, 610, 710‧‧‧ heating steps

420、520、620、720‧‧‧冷卻步驟 420, 520, 620, 720‧‧‧ cooling steps

430、530、630、730‧‧‧量測熱電模組上表面之溫度步驟 430, 530, 630, 730 ‧ ‧ Measure the temperature of the upper surface of the thermoelectric module

440、550、650‧‧‧提供電壓量測模組 440, 550, 650‧ ‧ provide voltage measurement module

450‧‧‧發電功率計算步驟 450‧‧‧Power generation calculation steps

460、750‧‧‧量測絕熱裝置溫度 460, 750‧‧‧Measure the temperature of the insulation device

470、760‧‧‧熱逸散量計算步驟 470, 760‧‧‧ Thermal runoff calculation steps

480‧‧‧發電效率計算步驟 480‧‧‧Power generation efficiency calculation steps

500‧‧‧內電阻性能測量方法 500‧‧‧ Internal resistance performance measurement method

540、640、740‧‧‧量測熱電模組下表面之溫度步驟 540, 640, 740‧‧‧Measure the temperature of the lower surface of the thermoelectric module

560‧‧‧量測輸出電壓步驟 560‧‧‧Measure output voltage step

570‧‧‧內電阻計算步驟 570‧‧‧ Internal resistance calculation steps

600‧‧‧席貝克係數之測量方法 600‧‧ ‧Becker coefficient measurement method

660‧‧‧量測開路電壓步驟 660‧‧‧Measure open circuit voltage steps

670‧‧‧席貝克係數計算步驟 670‧‧ ‧Becker coefficient calculation steps

700‧‧‧熱阻性能測量方法 700‧‧‧ Thermal resistance performance measurement method

770‧‧‧熱阻計算步驟 770‧‧‧ Thermal resistance calculation steps

第1圖係繪示第一種傳統熱電模組測量系統之剖面圖。 Figure 1 is a cross-sectional view showing the first conventional thermoelectric module measurement system.

第2圖係繪示第二種傳統熱電模組測量系統之剖面圖。 Figure 2 is a cross-sectional view showing the second conventional thermoelectric module measuring system.

第3圖係繪示依照本發明之熱電模組性質測量系統之剖面圖。 Figure 3 is a cross-sectional view showing the thermoelectric module property measuring system in accordance with the present invention.

第4圖係繪示本發明之發電效率測量方法之步驟圖。 Fig. 4 is a view showing the steps of the power generation efficiency measuring method of the present invention.

第4a圖係繪示依照本發明之熱電模組性質測量系統以具有量測電阻之電壓量測模組量測輸出電壓之示意圖。 Figure 4a is a schematic diagram showing the measurement of the output voltage by a voltage measuring module having a measuring resistor according to the thermoelectric module property measuring system of the present invention.

第5圖係繪示本發明之內電阻性能測量方法之步驟圖。 Fig. 5 is a view showing the steps of a method for measuring the internal resistance of the present invention.

第6圖係繪示本發明之席貝克係數之測量方法之步驟圖。 Fig. 6 is a view showing the steps of a method for measuring the Becker coefficient of the present invention.

第6a圖係繪示依照本發明之熱電模組性質測量系統以不具有量測電阻之電壓量測模組量測開路電壓之示意圖。 Figure 6a is a schematic diagram showing the measurement of the open circuit voltage by a voltage measuring module without a measuring resistor according to the thermoelectric module property measuring system of the present invention.

第7圖係繪示本發明之熱阻性能測量方法之步驟圖。 Fig. 7 is a view showing the steps of the method for measuring the thermal resistance of the present invention.

以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。 The making and using of the embodiments of the invention are discussed in detail below. However, it will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of specific content. The specific embodiments discussed are illustrative only and are not intended to limit the scope of the invention.

請參照第3圖,第3圖係繪示依照本發明實施例之熱電模組性質測量系統300之剖面圖。絕熱裝置310具 有供熱部311以及中空部312、313。中空部312位於中空部313與供熱部311上,中空部313係環繞供熱部311,其中,中空部312、313可選擇性的以真空設置或充填具有絕熱效果之氣體,藉以提供絕熱效果。供熱部311中設置有供熱裝置320,用以加熱熱電模組330。供熱裝置320包含加熱模組321及導熱材322,其中加熱模組321可以是加熱片或是具有加熱效果的裝置,導熱材322之材質可以是金屬或是具有較佳導熱性的材料。導熱材322之導熱材表面用以接觸熱電模組330之上表面,並且加熱模組321設置在導熱材322中,其中加熱模組321係用以透過導熱材322來加熱熱電模組330。 Please refer to FIG. 3, which is a cross-sectional view of a thermoelectric module property measuring system 300 in accordance with an embodiment of the present invention. Insulation device 310 There are a heating unit 311 and hollow portions 312 and 313. The hollow portion 312 is located on the hollow portion 313 and the heating portion 311. The hollow portion 313 surrounds the heating portion 311. The hollow portion 312, 313 can selectively set or fill a gas having a heat insulating effect to provide a heat insulating effect. . The heating unit 311 is provided with a heating device 320 for heating the thermoelectric module 330. The heating device 320 includes a heating module 321 and a heat-conducting material 322. The heating module 321 may be a heating sheet or a heating device. The material of the heat-conducting material 322 may be metal or a material having better thermal conductivity. The heat conductive material surface of the heat conductive material 322 is used to contact the upper surface of the thermoelectric module 330, and the heating module 321 is disposed in the heat conductive material 322. The heating module 321 is configured to heat the thermoelectric module 330 through the heat conductive material 322.

另外,冷卻模組340用以冷卻熱電模組330,其中冷卻模組340之冷卻模組表面係用以接觸熱電模組330之下表面。較佳地,冷卻模組340可為水冷式冷卻模組或氣冷式冷卻模組。在熱電模組330被加熱及冷卻並達穩定後,以第一溫度測量單元350、第二溫度測量單元360及第三溫度測量單元370分別量測導熱材322之導熱材表面之溫度、絕熱裝置310之溫度及冷卻模組340之冷卻模組表面之溫度,以獲得熱電模組熱端溫度值、絕熱裝置溫度值以及熱電模組冷端溫度值。較佳地,第一溫度測量單元350、第二溫度測量單元360以及第三溫度測量單元370可為熱電偶。另外,第一溫度測量單元350可設置在導熱材322中,並且靠近用以接觸熱電模組330之上表面的導熱材表面,或是第一溫度測量單元350可設置在導熱材表面上; 第二溫度測量單元360可設置在在中空部312之上;第三溫度測量單元370可設置靠近冷卻模組340的冷卻模組表面,且冷卻模組表面接觸熱電模組330之下表面,或是第三溫度測量單元370可設置在冷卻模組表面上。 In addition, the cooling module 340 is used to cool the thermoelectric module 330. The cooling module surface of the cooling module 340 is used to contact the lower surface of the thermoelectric module 330. Preferably, the cooling module 340 can be a water-cooled cooling module or an air-cooled cooling module. After the thermoelectric module 330 is heated and cooled and stabilized, the first temperature measuring unit 350, the second temperature measuring unit 360, and the third temperature measuring unit 370 respectively measure the temperature of the heat conducting material surface of the heat conducting material 322 and the heat insulating device. The temperature of 310 and the temperature of the surface of the cooling module of the cooling module 340 are obtained to obtain the hot end temperature value of the thermoelectric module, the temperature value of the heat insulating device, and the cold end temperature value of the thermoelectric module. Preferably, the first temperature measuring unit 350, the second temperature measuring unit 360, and the third temperature measuring unit 370 may be thermocouples. In addition, the first temperature measuring unit 350 may be disposed in the heat conductive material 322 and close to the surface of the heat conductive material for contacting the upper surface of the thermoelectric module 330, or the first temperature measuring unit 350 may be disposed on the surface of the heat conductive material; The second temperature measuring unit 360 may be disposed on the hollow portion 312; the third temperature measuring unit 370 may be disposed adjacent to the cooling module surface of the cooling module 340, and the cooling module surface contacts the lower surface of the thermoelectric module 330, or It is the third temperature measuring unit 370 that can be disposed on the surface of the cooling module.

另外,本發明之熱電模組性質測量系統中,更可包含計算裝置(未繪示),電性連接至第一溫度測量單元350、第二溫度測量單元360以及第三溫度測量單元370,以利用熱電模組熱端溫度值、熱電模組冷端溫度值以及絕熱裝置溫度值來計算出熱電模組330之席貝克係數、內電阻值、發電功率、發電效率或熱阻值。 In addition, the thermoelectric module property measuring system of the present invention may further include a computing device (not shown) electrically connected to the first temperature measuring unit 350, the second temperature measuring unit 360, and the third temperature measuring unit 370. The heat cycle temperature value of the thermoelectric module, the cold junction temperature value of the thermoelectric module, and the temperature value of the heat insulating device are used to calculate the Becker coefficient, internal resistance value, power generation power, power generation efficiency or thermal resistance value of the thermoelectric module 330.

本發明實施例之熱電模組性質測量系統可計算熱電模組330之席貝克係數、內電阻值、發電功率、發電效率或熱阻值。詳細之測量方法請參閱後續段落。 The thermoelectric module property measuring system of the embodiment of the invention can calculate the Sieke coefficient, the internal resistance value, the power generation power, the power generation efficiency or the thermal resistance value of the thermoelectric module 330. Please refer to the subsequent paragraphs for detailed measurement methods.

首先說明本發明實施例之發電效率測量方法,請參閱第4圖,第4圖係繪示本發明實施例之發電效率測量方法之步驟圖。發電效率測量方法400首先進行步驟410,以利用加熱模組321來加熱熱電模組330之上表面,其中加熱模組321係提供一加熱量至熱電模組330。接著,進行步驟420,以利用冷卻模組340來冷卻熱電模組330之下表面。在步驟420之後,接著進行步驟430,以利用第一溫度測量單元350來量測導熱材322之表面溫度,也就是導熱材322與熱電模組330接觸之上表面之溫度,以獲得熱電模組熱端溫度值,其中,由於導熱材322之導熱材表面與熱電模組330接觸,所以加熱模組321之上表面在經加熱 並穩定後,導熱材表面與加熱模組321之上表面的溫度會接近或相等,故所量測到導熱材322之表面溫度,也會接近或相等量測到熱電模組330上表面之溫度,故可獲得熱電模組熱端溫度值。 First, a method for measuring power generation efficiency according to an embodiment of the present invention will be described. Referring to FIG. 4, FIG. 4 is a flow chart showing a method for measuring power generation efficiency according to an embodiment of the present invention. The power generation efficiency measuring method 400 first performs step 410 to heat the upper surface of the thermoelectric module 330 by using the heating module 321 , wherein the heating module 321 provides a heating amount to the thermoelectric module 330 . Next, step 420 is performed to cool the lower surface of the thermoelectric module 330 by using the cooling module 340. After step 420, step 430 is performed to measure the surface temperature of the heat conductive material 322 by using the first temperature measuring unit 350, that is, the temperature of the heat conductive material 322 and the thermoelectric module 330 contacting the upper surface to obtain a thermoelectric module. The hot end temperature value, wherein the upper surface of the heating module 321 is heated because the surface of the heat conductive material of the heat conductive material 322 is in contact with the thermoelectric module 330 After being stabilized, the temperature of the surface of the heat conductive material and the upper surface of the heating module 321 will be close to or equal, so that the surface temperature of the heat conductive material 322 is measured, and the temperature of the upper surface of the thermoelectric module 330 is also measured close to or equal. Therefore, the hot end temperature value of the thermoelectric module can be obtained.

接著,進行步驟440來提供電壓量測模組,如第4a圖所示,第4a圖係繪示依照本發明之熱電模組性質測量系統以具有量測電阻之電壓量測模組量測輸出電壓之示意圖。其中,電壓量測模組380包含量測電阻381,其中量測電阻381之電阻值係等於熱電模組330之內電阻值。接著,進行步驟450係利用電壓量測模組380來量測熱電模組330之輸出電壓,並利用輸出電壓來計算熱電模組330之發電功率。其中,發電功率之計算公式如下: 其中,V load 為輸出電壓之值;R load 為內電阻值;以及P為熱電模組之發電功率。 Next, step 440 is performed to provide a voltage measurement module. As shown in FIG. 4a, FIG. 4a is a diagram showing the measurement system of the thermoelectric module property measuring system according to the present invention. Schematic diagram of voltage. The voltage measurement module 380 includes a measurement resistor 381, wherein the resistance value of the measurement resistor 381 is equal to the internal resistance value of the thermoelectric module 330. Next, in step 450, the voltage measurement module 380 is used to measure the output voltage of the thermoelectric module 330, and the output voltage is used to calculate the power generation of the thermoelectric module 330. Among them, the calculation formula of power generation is as follows: Where V load is the value of the output voltage; R load is the internal resistance value; and P is the power generation of the thermoelectric module.

接著,進行步驟460,以量測絕熱裝置310之溫度,而獲得絕熱裝置之溫度值。在步驟460之後,接著進行步驟470,以利用熱電模組熱端溫度值以及絕熱裝置溫度值來計算出熱散逸量。其中,熱散逸量之計算公式如下:Σ Q loss =3.144636×10-8.(T 1-T 2)4-8.539452×10-6.(T 1-T 2)3+9.48628×10-4.(T 1-T 2)2+0.1193478.(T 1-T 2)+0.01331508其中,T 1為熱電模組熱端溫度值;T 2為絕熱裝置溫度值;Σ Q loss 為熱散逸量。 Next, step 460 is performed to measure the temperature of the heat insulating device 310 to obtain the temperature value of the heat insulating device. After step 460, step 470 is followed to calculate the heat dissipation amount using the thermoelectric module hot end temperature value and the adiabatic device temperature value. Among them, the calculation formula of the heat dissipation amount is as follows: Σ Q loss =3.144636×10 -8 . ( T 1 - T 2 ) 4 -8.539452 × 10 -6 . ( T 1 - T 2 ) 3 +9.48628×10 -4 . ( T 1 - T 2 ) 2 +0.1193478. ( T 1 - T 2 )+0.01331508 wherein T 1 is the hot end temperature value of the thermoelectric module; T 2 is the temperature value of the adiabatic device; Σ Q loss is the heat dissipation amount.

接著,進行發電效率計算步驟480,以利用加熱量、熱散逸量以及發電功率來計算出熱電模組330之發電效率值。其中,熱電模組330之發電效率值之計算公式如下: 其中,η為發電效率值;以及Q heater 為加熱模組所提供之加熱量。換言之,本發明之發電效率測量方法中,導熱材表面無須與熱電模組330之上表面之面積相對應,並經由量測出各種數值可推算出熱電模組330的發電功率、熱散逸量以及發電效率。 Next, a power generation efficiency calculation step 480 is performed to calculate the power generation efficiency value of the thermoelectric module 330 using the heating amount, the heat dissipation amount, and the power generation power. The calculation formula of the power generation efficiency value of the thermoelectric module 330 is as follows: Where η is the power generation efficiency value; and Q heater is the heating amount provided by the heating module. In other words, in the power generation efficiency measuring method of the present invention, the surface of the heat conductive material does not need to correspond to the area of the upper surface of the thermoelectric module 330, and the various values can be measured to calculate the power generation and heat dissipation amount of the thermoelectric module 330 and Power generation efficiency.

另外,請參閱第5圖,第5圖係繪示本發明之內電阻性能測量方法500之步驟圖。其中,本發明之內電阻性能測量方法500,用以量測熱電模組330之內電阻性能。其中,步驟510、520、530係類似於步驟410、420、430,故不再贅述。在步驟530之後,接著進行步驟540,以利用第三溫度測量單元370來量測冷卻模組340之冷卻模組表面之溫度,也就是冷卻模組340與熱電模組330接觸之下表面之溫度,而獲得熱電模組冷端溫度值,其中,由於冷卻模組340之冷卻模組表面與熱電模組330之下表面接觸,所以加熱模組330之下表面在經冷卻並穩定後,冷卻模組表面與加熱模組330之下表面的溫度會接近或相等,故所量測到冷卻模組340之表面溫度,也會接近等於量測到熱電模組330下表面之溫度,故可獲得熱電模組冷端溫 度值。在步驟540後,接著進行步驟550,以提供電壓量測模組380,如第4a圖所示,其中電壓量測模組380包含量測電阻381。接著,進行步驟560,以利用電壓量測模組380來量測熱電模組330之輸出電壓。另外,在進行量測熱電模組330之輸出電壓之步驟560之後,即可進行內電阻計算步驟570,以利用熱電模組熱端溫度值、熱電模組冷端溫度值以及輸出電壓來計算出熱電模組330之內電阻。其中,熱電模組330之內電阻值之計算公式如下: 其中,R TE 為平均溫度下的內電阻值,平均溫度為熱電模組冷端溫度值與熱電模組熱端溫度值總和的一半;V open 為熱電模組之開路電壓值;V load 為輸出電壓之值;以及R load 為量測電阻之電阻值。特別提到的是,開路電壓值係指電壓量測模組380在不包含量測電阻381時,對熱電模組330量測所獲得的電壓值。 In addition, please refer to FIG. 5, which is a step-by-step diagram of the internal resistance performance measuring method 500 of the present invention. The internal resistance performance measuring method 500 of the present invention is used to measure the internal resistance performance of the thermoelectric module 330. The steps 510, 520, and 530 are similar to the steps 410, 420, and 430, and therefore are not described again. After step 530, step 540 is performed to measure the temperature of the surface of the cooling module of the cooling module 340 by using the third temperature measuring unit 370, that is, the temperature of the surface of the cooling module 340 in contact with the thermoelectric module 330. The temperature of the cold junction temperature of the thermoelectric module is obtained, wherein the surface of the cooling module of the cooling module 340 is in contact with the lower surface of the thermoelectric module 330, so that the lower surface of the heating module 330 is cooled and stabilized, and then the cooling module is cooled. The temperature of the surface of the group and the lower surface of the heating module 330 may be close to or equal, so that the surface temperature of the cooling module 340 is measured, and the temperature of the lower surface of the thermoelectric module 330 is also measured, so that the thermoelectricity can be obtained. Module cold junction temperature value. After step 540, step 550 is followed to provide a voltage measurement module 380, as shown in FIG. 4a, wherein the voltage measurement module 380 includes a measurement resistor 381. Next, step 560 is performed to measure the output voltage of the thermoelectric module 330 by using the voltage measurement module 380. In addition, after performing the step 560 of measuring the output voltage of the thermoelectric module 330, the internal resistance calculation step 570 can be performed to calculate the hot junction temperature value of the thermoelectric module, the cold junction temperature value of the thermoelectric module, and the output voltage. The internal resistance of the thermoelectric module 330. The calculation formula of the internal resistance value of the thermoelectric module 330 is as follows: Wherein, R TE is the internal resistance value at the average temperature, and the average temperature is half of the sum of the cold junction temperature value of the thermoelectric module and the hot end temperature value of the thermoelectric module; V open is the open circuit voltage value of the thermoelectric module; V load is the output The value of the voltage; and R load is the resistance value of the measuring resistor. It is specifically mentioned that the open circuit voltage value refers to the voltage value obtained by the voltage measuring module 380 for measuring the thermoelectric module 330 when the measuring resistor 381 is not included.

本發明更包含席貝克係數之測量方法態樣,請參閱第6圖,第6圖係繪示本發明之席貝克係數之測量方法600之步驟圖。首先,步驟610至步驟640係類似於本發明之內電阻性能測量方法之步驟510至步驟540,故不再贅述。在量測冷卻模組表面之溫度之步驟640後,步驟650係提供電壓量測模組380,如第6a圖所示,第6a圖係繪示依照本發明之熱電模組性質測量系統以不具有量測電阻之電壓量測模組量測開路電壓之示意圖。其中電壓量測模組 380不包含量測電阻381,接著步驟660係利用電壓量測模組380來量測熱電模組330之開路電壓。然後,進行席貝克係數計算步驟670,以利用開路電壓、熱電模組熱端溫度值以及熱電模組冷端溫度值來計算出熱電模組之席貝克係數。其中,席貝克係數可用下列公式計算: 其中,T avg 為熱電模組熱端溫度值T 1以及熱電模組冷端溫度值T 3之平均溫度;S(T avg )為在平均溫度下的席貝克係數以及V open 為開路電壓值。 The present invention further includes a measurement method aspect of the Sibeck coefficient. Referring to FIG. 6, FIG. 6 is a step diagram showing a method 600 for measuring the Bibeck coefficient of the present invention. First, steps 610 to 640 are similar to steps 510 to 540 of the internal resistance performance measuring method of the present invention, and therefore will not be described again. After step 640 of measuring the temperature of the surface of the cooling module, step 650 provides a voltage measuring module 380, as shown in FIG. 6a, and FIG. 6a shows the thermoelectric module property measuring system according to the present invention. A schematic diagram of measuring the open circuit voltage by a voltage measuring module with a measuring resistor. The voltage measurement module 380 does not include the measurement resistor 381, and then the step 660 uses the voltage measurement module 380 to measure the open circuit voltage of the thermoelectric module 330. Then, the Sibeck coefficient calculation step 670 is performed to calculate the Siekeke coefficient of the thermoelectric module by using the open circuit voltage, the hot end temperature value of the thermoelectric module, and the cold junction temperature value of the thermoelectric module. Among them, the Sibeck coefficient can be calculated by the following formula: Where T avg is the average temperature of the hot end temperature value T 1 of the thermoelectric module and the cold end temperature value T 3 of the thermoelectric module; S ( T avg ) is the Sibeck coefficient at the average temperature and V open is the open circuit voltage value.

本發明更包含熱阻性能之測量方法態樣,請參閱第7圖,第7圖係繪示本發明之熱阻性能之測量方法700之步驟圖。首先,步驟710至步驟740係類似於本發明之內電阻性能測量方法之步驟510至步驟540,故不再贅述。在步驟740後,步驟750係量測絕熱裝置之溫度,以獲得絕熱裝置溫度值,如第3圖所示,其中絕熱裝置310係包覆加熱模組321與導熱材322。接著步驟760係利用熱電模組熱端溫度值以及絕熱裝置溫度值來計算出熱散逸量。然後,進行熱阻計算步驟770,以利用加熱量、熱散逸量、熱電模組熱端溫度值以及熱電模組冷端溫度值來計算出熱電模組之熱阻值。其中,前述的熱散逸量可例如但不限於利用本發明之發電效率測量方法中對於熱散逸量的相同計算公式來計算。 The present invention further includes a measurement method aspect of the thermal resistance performance. Referring to FIG. 7, FIG. 7 is a step diagram showing a method 700 for measuring the thermal resistance performance of the present invention. First, steps 710 to 740 are similar to steps 510 to 540 of the internal resistance performance measuring method of the present invention, and therefore will not be described again. After step 740, step 750 measures the temperature of the thermal insulation device to obtain a thermal insulation device temperature value, as shown in FIG. 3, wherein the thermal insulation device 310 covers the heating module 321 and the heat conductive material 322. Next, in step 760, the heat dissipation temperature value of the thermoelectric module and the temperature value of the heat insulating device are used to calculate the heat dissipation amount. Then, a thermal resistance calculation step 770 is performed to calculate the thermal resistance value of the thermoelectric module by using the heating amount, the heat dissipation amount, the thermoelectric module hot end temperature value, and the thermoelectric module cold end temperature value. Here, the aforementioned heat dissipation amount can be calculated, for example, but not limited to, by the same calculation formula for the heat dissipation amount in the power generation efficiency measuring method of the present invention.

另一方面,前述的熱阻計算步驟可利用下列公式 來計算出熱電模組之熱阻值: 其中:R f 為熱阻值;T 1為熱電模組熱端溫度值;T 3為熱電模組冷端溫度值;Q heater 為加熱模組所提供之加熱量;以及Σ Q loss 為熱散逸量。 On the other hand, the aforementioned thermal resistance calculation step can calculate the thermal resistance value of the thermoelectric module by using the following formula: Where: R f is the thermal resistance value; T 1 is the hot end temperature value of the thermoelectric module; T 3 is the cold end temperature value of the thermoelectric module; Q heater is the heating amount provided by the heating module; and Σ Q loss is the heat dissipation the amount.

綜合以上所述,在本發明之熱電模組性質測量系統、發電效率、內電阻性能及熱阻性能測量方法中,主要是在絕熱裝置設有兩中空部,並透過這些中空部提供較佳的絕熱效果之外,還分別在設有三個溫度測量單元,其分別用來量測導熱材表面、冷卻模組表面以及絕熱裝置之溫度。此些溫度可配合電壓量測模組所測量的輸出電壓及開路電壓,依照前述提供之公式以計算出席貝克係數、內電阻值、熱散逸量、發電功率、發電效率或熱阻值。因此,就算熱電模組的上表面或下表面未與導熱材之表面之面積相對應,仍可計算出熱電模組的各種性質。 In summary, in the measuring method of the thermoelectric module property measuring system, the power generation efficiency, the internal resistance performance and the thermal resistance performance of the present invention, the two insulating portions are mainly provided with two hollow portions, and the hollow portions are preferably provided through the hollow portions. In addition to the thermal insulation effect, there are three temperature measuring units respectively for measuring the temperature of the surface of the heat conductive material, the surface of the cooling module and the temperature of the heat insulating device. These temperatures can be combined with the output voltage and open circuit voltage measured by the voltage measurement module, and the attendance Becker coefficient, internal resistance value, heat dissipation amount, power generation power, power generation efficiency, or thermal resistance value can be calculated according to the formula provided above. Therefore, even if the upper surface or the lower surface of the thermoelectric module does not correspond to the area of the surface of the heat conductive material, various properties of the thermoelectric module can be calculated.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art to which the present invention pertains can make various changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

300‧‧‧熱電模組性質測量系統 300‧‧‧Thermal Module Nature Measurement System

310‧‧‧絕熱裝置 310‧‧‧Insulation device

311‧‧‧供熱部 311‧‧The Ministry of Heating

312、313‧‧‧中空部 312, 313‧‧‧ hollow

320‧‧‧供熱裝置 320‧‧‧heating device

321‧‧‧加熱模組 321‧‧‧heating module

322‧‧‧導熱材 322‧‧‧heat-conducting materials

330‧‧‧熱電模組 330‧‧‧Thermal module

340‧‧‧冷卻模組 340‧‧‧Cooling module

350‧‧‧第一溫度測量單元 350‧‧‧First temperature measuring unit

360‧‧‧第二溫度測量單元 360‧‧‧Second temperature measuring unit

370‧‧‧第三溫度測量單元 370‧‧‧ Third temperature measuring unit

Claims (13)

一種熱電模組性質測量系統,適於測量一熱電模組,其中該熱電模組性質測量系統包含:一絕熱裝置,具有一第一中空部、一第二中空部以及一供熱部,其中該第一中空部係位於該第二中空部與該供熱部上,該第二中空部係環繞該供熱部;一供熱裝置,設置於該絕熱裝置之該供熱部中,用以加熱該熱電模組,其中該供熱裝置包含:一導熱材,其中該導熱材之一導熱材表面係用以接觸該熱電模組之一上表面;以及一加熱模組,設置於該導熱材中,其中該加熱模組係用以透過該導熱材來提供一加熱量至該熱電模組;一冷卻模組,用以冷卻該熱電模組,其中該冷卻模組之一冷卻模組表面係用以接觸該熱電模組之一下表面;一第一溫度測量單元,用以量測該導熱材之該導熱材表面之溫度,以獲得一熱電模組熱端溫度值;一第二溫度測量單元,用以量測該絕熱裝置之溫度,以獲得一絕熱裝置溫度值;以及一第三溫度測量單元,用以量測該冷卻模組之該冷卻模組表面之溫度,以獲得一熱電模組冷端溫度值。 A thermoelectric module property measuring system, which is suitable for measuring a thermoelectric module, wherein the thermoelectric module property measuring system comprises: a heat insulating device having a first hollow portion, a second hollow portion and a heat supply portion, wherein The first hollow portion is located on the second hollow portion and the heating portion, the second hollow portion surrounds the heating portion; a heating device is disposed in the heating portion of the heat insulating device for heating The thermoelectric module, wherein the heating device comprises: a heat conducting material, wherein a surface of the heat conducting material is used to contact an upper surface of the thermoelectric module; and a heating module is disposed in the heat conducting material The heating module is configured to provide a heating amount to the thermoelectric module through the heat conducting material; a cooling module is configured to cool the thermoelectric module, wherein a cooling module surface of the cooling module is used Contacting a lower surface of the thermoelectric module; a first temperature measuring unit for measuring the temperature of the surface of the heat conductive material of the heat conductive material to obtain a hot end temperature value of the thermoelectric module; and a second temperature measuring unit, Used to measure the Means the temperature to obtain a temperature value of the heat insulating means; and a third temperature measuring unit, the temperature of the cooling module is used to measure the surface of the cooling module, to obtain a cold junction temperature of the thermoelectric module. 如申請專利範圍第1項所述之熱電模組性質測量系統,更包含一計算裝置,電性連接至該第一溫度測量單元、 該第二溫度測量單元以及該第三溫度測量單元,以利用該熱電模組熱端溫度值、該熱電模組冷端溫度值以及該絕熱裝置溫度值來計算出該熱電模組之席貝克(Seebeck)係數、內電阻值、熱阻值、發電功率或發電效率。 The thermoelectric module property measuring system of claim 1, further comprising a computing device electrically connected to the first temperature measuring unit, The second temperature measuring unit and the third temperature measuring unit calculate the thermoelectric module Schübeck by using the thermoelectric module hot end temperature value, the thermoelectric module cold end temperature value, and the thermal insulation device temperature value. Seebeck) coefficient, internal resistance, thermal resistance, power generation or power generation efficiency. 如申請專利範圍第1項所述之熱電模組性質測量系統,其中該第一溫度測量單元、該第二溫度測量單元以及該第三溫度測量單元為一熱電偶。 The thermoelectric module property measuring system of claim 1, wherein the first temperature measuring unit, the second temperature measuring unit, and the third temperature measuring unit are a thermocouple. 如申請專利範圍第1項所述之熱電模組性質測量系統,其中該冷卻模組為一水冷式冷卻模組或一氣冷式冷卻模組。 The thermoelectric module property measuring system according to claim 1, wherein the cooling module is a water-cooled cooling module or an air-cooled cooling module. 一種發電效率測量方法,用以量測一熱電模組之發電效率,其中該熱電模組性能測量方法包含:利用一加熱模組來加熱該熱電模組之一上表面,其中該加熱模組係提供一加熱量至該熱電模組;利用一冷卻模組來冷卻該熱電模組之一下表面;量測一導熱材之一導熱材表面之溫度,以獲得一熱電模組熱端溫度值,其中該導熱材表面係與該熱電模組之該上表面接觸,而該加熱模組係該導熱材來加熱該熱電模組;提供一電壓量測模組,其中該電壓量測模組包含一量測電阻,其中該量測電阻之電阻值係等於該熱電模組之一內電阻值; 利用該電壓量測模組來量測該熱電模組之一輸出電壓,並利用該輸出電壓來計算該熱電模組之一發電功率;量測一絕熱裝置之溫度,以獲得一絕熱裝置溫度值,其中該絕熱裝置係包覆該加熱模組與該導熱材;利用該熱電模組熱端溫度值以及該絕熱裝置溫度值來計算出一熱散逸量;以及進行一發電效率計算步驟,以利用該加熱量、該熱散逸量以及該發電功率來計算出該熱電模組之一發電效率值。 A method for measuring power generation efficiency for measuring power generation efficiency of a thermoelectric module, wherein the method for measuring performance of the thermoelectric module comprises: heating a top surface of one of the thermoelectric modules by using a heating module, wherein the heating module is Providing a heating amount to the thermoelectric module; cooling a lower surface of the thermoelectric module by using a cooling module; measuring a temperature of a surface of the heat conducting material of the heat conducting material to obtain a hot end temperature value of the thermoelectric module, wherein The surface of the heat conductive material is in contact with the upper surface of the thermoelectric module, and the heating module is the heat conductive material to heat the thermoelectric module; and a voltage measuring module is provided, wherein the voltage measuring module comprises an amount Measuring resistance, wherein the resistance value of the measuring resistor is equal to the resistance value in one of the thermoelectric modules; Using the voltage measurement module to measure an output voltage of the thermoelectric module, and using the output voltage to calculate a power generation of the thermoelectric module; measuring the temperature of an adiabatic device to obtain a thermal insulation device temperature value The heat insulating device covers the heating module and the heat conducting material; calculating a heat dissipation amount by using the hot end temperature value of the thermoelectric module and the temperature value of the heat insulating device; and performing a power generation efficiency calculating step to utilize The heating amount, the heat dissipation amount, and the power generation amount are used to calculate a power generation efficiency value of the thermoelectric module. 如申請專利範圍第5項所述之發電效率測量方法,其中該發電效率計算步驟係利用下列公式來計算出該熱電模組之該發電效率值: 其中:η為該發電效率值;P為該熱電模組之該發電功率;Q heater 為該加熱模組所提供之該加熱量;以及Σ Q loss 為該熱散逸量。 The power generation efficiency measuring method according to claim 5, wherein the power generation efficiency calculating step calculates the power generation efficiency value of the thermoelectric module by using the following formula: Where: η is the power generation efficiency value; P is the power generation power of the thermoelectric module; Q heater is the heating amount provided by the heating module; and Σ Q loss is the heat dissipation amount. 如申請專利範圍第6項所述之發電效率測量方法,其中該熱散逸量之計算公式如下:Σ Q loss =3.144636×10-8.(T 1-T 2)4-8.539452×10-6.(T 1-T 2)3 +9.48628×10-4.(T 1-T 2)2+0.1193478.(T 1-T 2)+0.01331508其中,T 1為該熱電模組熱端溫度值;以及T 2為該絕熱裝置溫度值。 The method for measuring power generation efficiency as described in claim 6 wherein the heat dissipation amount is calculated as follows: Σ Q loss =3.144636×10 -8 . ( T 1 - T 2 ) 4 -8.539452 × 10 -6 . ( T 1 - T 2 ) 3 +9.48628×10 -4 . ( T 1 - T 2 ) 2 +0.1193478. ( T 1 - T 2 )+0.01331508 wherein, T 1 is the hot end temperature value of the thermoelectric module; and T 2 is the temperature value of the heat insulating device. 如申請專利範圍第5項所述之發電效率測量方法,其中該熱電模組之該發電功率之計算公式如下: 其中:V load 為該輸出電壓之值;以及R load 為該內電阻值。 The method for measuring power generation efficiency according to claim 5, wherein the calculation formula of the power generation power of the thermoelectric module is as follows: Where: V load is the value of the output voltage; and R load is the internal resistance value. 一種內電阻性能測量方法,用以量測一熱電模組之一內電阻性能,其中該內電阻性能測量方法包含:利用一加熱模組來加熱該熱電模組之一上表面,其中該加熱模組係提供一加熱量至該熱電模組;利用一冷卻模組來冷卻該熱電模組之一下表面;量測一導熱材之一導熱材表面之溫度,以獲得一熱電模組熱端溫度值,其中該導熱材表面係與該熱電模組之該上表面接觸,而該加熱模組係該導熱材來加熱該熱電模組;量測該冷卻模組之一冷卻模組表面之溫度,以獲得一熱電模組冷端溫度值,其中該冷卻模組表面係與該熱電模組之該下表面接觸;提供一電壓量測模組,其中該電壓量測模組包含一量 測電阻;利用該電壓量測模組來量測該熱電模組之一輸出電壓;以及進行一內電阻計算步驟,以利用該導熱材溫度值、該熱電模組冷端溫度值以及該輸出電壓來計算出該熱電模組之一內電阻值。 An internal resistance performance measuring method for measuring an internal resistance performance of a thermoelectric module, wherein the internal resistance performance measuring method comprises: heating a top surface of one of the thermoelectric modules by using a heating module, wherein the heating mode The system provides a heating amount to the thermoelectric module; a cooling module is used to cool a lower surface of the thermoelectric module; and a temperature of a thermal conductive material surface of a thermal conductive material is measured to obtain a thermoelectric module hot end temperature value The heat conductive material surface is in contact with the upper surface of the thermoelectric module, and the heating module is the heat conductive material to heat the thermoelectric module; and measuring the temperature of the cooling module surface of the cooling module to Obtaining a cold junction temperature value of the thermoelectric module, wherein the surface of the cooling module is in contact with the lower surface of the thermoelectric module; and providing a voltage measurement module, wherein the voltage measurement module includes an amount Measuring the resistance; measuring the output voltage of the thermoelectric module by using the voltage measuring module; and performing an internal resistance calculating step to utilize the temperature value of the heat conductive material, the cold end temperature value of the thermoelectric module, and the output voltage To calculate the resistance value in one of the thermoelectric modules. 如申請專利範圍第9項所述之內電阻性能測量方法,其中該內電阻計算步驟係利用下列公式來計算出該熱電模組之該內電阻值: 其中:R TE 為一平均溫度下的內電阻值,該平均溫度為該熱電模組冷端溫度值與該熱電模組熱端溫度值總和的一半;V open 為該熱電模組之一開路電壓值;V load 為該輸出電壓之值;以及R load 為該量測電阻之電阻值。 The internal resistance performance measuring method according to claim 9, wherein the internal resistance calculating step calculates the internal resistance value of the thermoelectric module by using the following formula: Wherein: R TE is an internal resistance value at an average temperature, and the average temperature is half of a sum of a cold junction temperature value of the thermoelectric module and a hot junction temperature value of the thermoelectric module; V open is an open circuit voltage of the thermoelectric module Value; V load is the value of the output voltage; and R load is the resistance value of the measuring resistor. 一種熱阻性能測量方法,用以量測一熱電模組之一熱阻性能,其中該熱阻性能測量方法包含:利用一加熱模組來加熱該熱電模組之一上表面,其中該加熱模組係提供一加熱量至該熱電模組;利用一冷卻模組來冷卻該熱電模組之一下表面; 量測一導熱材之一導熱材表面之溫度,以獲得一熱電模組熱端溫度值,其中該導熱材表面係與該熱電模組之該上表面接觸,而該加熱模組係該導熱材來加熱該熱電模組;量測該冷卻模組之一冷卻模組表面之溫度,以獲得一熱電模組冷端溫度值,其中該冷卻模組表面係與該熱電模組之該下表面接觸;量測一絕熱裝置之溫度,以獲得一絕熱裝置溫度值,其中該絕熱裝置係包覆該加熱模組與該導熱材;利用該熱電模組熱端溫度值以及該絕熱裝置溫度值來計算出一熱散逸量;以及進行一熱阻計算步驟,以利用該加熱量、該熱散逸量、該熱電模組熱端溫度值以及該熱電模組冷端溫度值來計算出該熱電模組之一熱阻值。 A thermal resistance performance measuring method for measuring a thermal resistance performance of a thermoelectric module, wherein the thermal resistance performance measuring method comprises: heating a top surface of one of the thermoelectric modules by using a heating module, wherein the heating mode The system provides a heating amount to the thermoelectric module; and a cooling module is used to cool a lower surface of the thermoelectric module; Measuring a temperature of a surface of the heat conductive material of a heat conductive material to obtain a hot end temperature value of the thermoelectric module, wherein the surface of the heat conductive material is in contact with the upper surface of the thermoelectric module, and the heating module is the heat conductive material Heating the thermoelectric module; measuring a temperature of a cooling module surface of the cooling module to obtain a cold junction temperature value of the thermoelectric module, wherein the surface of the cooling module is in contact with the lower surface of the thermoelectric module Measuring the temperature of an adiabatic device to obtain a temperature value of the heat insulating device, wherein the heat insulating device covers the heating module and the heat conducting material; and calculating a temperature value of the hot end of the thermoelectric module and a temperature value of the heat insulating device Generating a heat dissipation amount; and performing a thermal resistance calculation step to calculate the thermoelectric module by using the heating amount, the heat dissipation amount, the hot end temperature value of the thermoelectric module, and the cold junction temperature value of the thermoelectric module A thermal resistance value. 如申請專利範圍第11項所述之熱阻性能測量方法,其中該熱散逸量之計算公式如下:Σ Q loss =3.144636×10-8.(T 1-T 2)4-8.539452×10-6.(T 1-T 2)3+9.48628×10-4.(T 1-T 2)2+0.1193478.(T 1-T 2)+0.01331508其中,T 1為該熱電模組熱端溫度值;T 2為該絕熱裝置溫度值;以及Σ Q loss 為該熱散逸量。 The method for measuring thermal resistance performance as described in claim 11 wherein the heat dissipation amount is calculated as follows: Σ Q loss =3.144636×10 -8 . ( T 1 - T 2 ) 4 -8.539452 × 10 -6 . ( T 1 - T 2 ) 3 +9.48628×10 -4 . ( T 1 - T 2 ) 2 +0.1193478. ( T 1 - T 2 )+0.01331508 wherein T 1 is the hot end temperature value of the thermoelectric module; T 2 is the temperature value of the heat insulating device; and Σ Q loss is the heat dissipation amount. 如申請專利範圍第11項所述之熱阻性能測量方法,其中該熱阻計算步驟係利用下列公式來計算出該熱電 模組之該熱阻值: 其中:R f 為該熱阻值;T 1為該熱電模組熱端溫度值;T 3為該熱電模組冷端溫度值;Q heater 為該加熱模組所提供之該加熱量;以及Σ Q loss 為該熱散逸量。 The thermal resistance performance measuring method according to claim 11, wherein the thermal resistance calculating step calculates the thermal resistance value of the thermoelectric module by using the following formula: Wherein: R f is the thermal resistance value; T 1 is the hot end temperature value of the thermoelectric module; T 3 is the cold end temperature value of the thermoelectric module; Q heater is the heating amount provided by the heating module; Q loss is the amount of heat dissipation.
TW102131726A 2013-09-03 2013-09-03 System and method for measuring properties of thermoelectric module TWI495868B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131726A TWI495868B (en) 2013-09-03 2013-09-03 System and method for measuring properties of thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131726A TWI495868B (en) 2013-09-03 2013-09-03 System and method for measuring properties of thermoelectric module

Publications (2)

Publication Number Publication Date
TW201510519A true TW201510519A (en) 2015-03-16
TWI495868B TWI495868B (en) 2015-08-11

Family

ID=53186685

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131726A TWI495868B (en) 2013-09-03 2013-09-03 System and method for measuring properties of thermoelectric module

Country Status (1)

Country Link
TW (1) TWI495868B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093654A (en) * 2016-07-11 2016-11-09 浙江大学 The test device of thermoelectricity module conversion efficiency of thermoelectric and method of testing thereof
CN113758966A (en) * 2021-09-08 2021-12-07 英业达科技有限公司 Adjustable simulated heat source test platform
US11327035B2 (en) 2019-08-16 2022-05-10 Illumina, Inc. Method for measuring thermal resistance between a thermal component of an instrument and a consumable

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201041559Y (en) * 2007-05-11 2008-03-26 华中科技大学 A device for measuring semiconductor thin film material Seebeck coefficient and resistance rate
TW201239350A (en) * 2011-03-30 2012-10-01 Ind Tech Res Inst Test key structure and measurement method thereof
TWI457559B (en) * 2011-05-10 2014-10-21 Univ Nat Taiwan Ocean Apparatus for inspecting thermoelectric device
CN202837214U (en) * 2012-07-26 2013-03-27 国家纳米科学中心 Thermoelectric material test sample seat and thermoelectric property measuring equipment of thermoelectric material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093654A (en) * 2016-07-11 2016-11-09 浙江大学 The test device of thermoelectricity module conversion efficiency of thermoelectric and method of testing thereof
US11327035B2 (en) 2019-08-16 2022-05-10 Illumina, Inc. Method for measuring thermal resistance between a thermal component of an instrument and a consumable
TWI764224B (en) * 2019-08-16 2022-05-11 美商伊路米納有限公司 Method for measuring thermal resistance between a thermal component of an instrument and a consumable
US11709143B2 (en) 2019-08-16 2023-07-25 Illumina, Inc. Method for measuring thermal resistance between a thermal component of an instrument and a consumable
US12013358B2 (en) 2019-08-16 2024-06-18 Illumina, Inc. Method for measuring thermal resistance between a thermal component of an instrument and a consumable
CN113758966A (en) * 2021-09-08 2021-12-07 英业达科技有限公司 Adjustable simulated heat source test platform

Also Published As

Publication number Publication date
TWI495868B (en) 2015-08-11

Similar Documents

Publication Publication Date Title
Hsu et al. An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module
Huang et al. Thermoelectric water-cooling device applied to electronic equipment
Kim Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators
Lineykin et al. Modeling and analysis of thermoelectric modules
Sandoz-Rosado et al. On the Thomson effect in thermoelectric power devices
Anatychuk et al. Procedure and equipment for measuring parameters of thermoelectric generator modules
He et al. An approximate and efficient characterization method for temperature-dependent parameters of thermoelectric modules
Barako et al. A reliability study with infrared imaging of thermoelectric modules under thermal cycling
Park et al. Effect of thermal cycling on commercial thermoelectric modules
Li et al. Multiphysics simulations of a thermoelectric generator
WO2018174173A1 (en) Thermoelectric power generating module, thermoelectric power generating device using said thermoelectric power generating module, and temperature measuring method
CN110988530A (en) Device and method for measuring equivalent thermoelectric parameters of thermoelectric power generation piece
Cheng Calculation methods for thermoelectric generator performance
TWI495868B (en) System and method for measuring properties of thermoelectric module
US9448121B2 (en) Measurement method, measurement apparatus, and computer program product
Orr et al. Validating an alternative method to predict thermoelectric generator performance
TWI467165B (en) Measurement method, measurement apparatus, and computer program product
Khalil et al. Comparative study of heat pipes and liquid‐cooling systems with thermoelectric generators for heat recovery from chimneys
Ahmed et al. Natural convection heat transfer from a heat sink with fins of different configuration
Lineykin et al. SPICE compatible equivalent circuit of the energy conversion processes in thermoelectric modules
Wojciechowski et al. Performance characterization of high-efficiency segmented Bi2Te3/CoSb3 unicouples for thermoelectric generators
Gao et al. Assessing the accuracy of mathematical models used in thermoelectric simulation: Thermal influence of insulated air zone and radiation heat
TWI454672B (en) Thermoelectric heat flow meter and thermoelectric transformation efficiency measure device
JP7229575B1 (en) test equipment
RU137156U1 (en) DEVICE FOR COOLING THE FUEL EQUIPMENT

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees