TW201349569A - Light-emitting component and method for manufacturing the same - Google Patents
Light-emitting component and method for manufacturing the same Download PDFInfo
- Publication number
- TW201349569A TW201349569A TW101118956A TW101118956A TW201349569A TW 201349569 A TW201349569 A TW 201349569A TW 101118956 A TW101118956 A TW 101118956A TW 101118956 A TW101118956 A TW 101118956A TW 201349569 A TW201349569 A TW 201349569A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- layer
- doped semiconductor
- type doped
- semiconductor layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 117
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 125000002524 organometallic group Chemical group 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910002601 GaN Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 230000004888 barrier function Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 2
- DTMUJVXXDFWQOA-UHFFFAOYSA-N [Sn].FOF Chemical compound [Sn].FOF DTMUJVXXDFWQOA-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum tin oxide Chemical compound 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IEJHYFOJNUCIBD-UHFFFAOYSA-N cadmium(2+) indium(3+) oxygen(2-) Chemical compound [O-2].[Cd+2].[In+3] IEJHYFOJNUCIBD-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 1
- UMJICYDOGPFMOB-UHFFFAOYSA-N zinc;cadmium(2+);oxygen(2-) Chemical compound [O-2].[O-2].[Zn+2].[Cd+2] UMJICYDOGPFMOB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
本發明是有關於一種發光元件及其製作方法,特別是指一種含有接觸層的發光元件及其製作方法。 The present invention relates to a light-emitting element and a method of fabricating the same, and more particularly to a light-emitting element including a contact layer and a method of fabricating the same.
參閱圖1,目前的發光元件包含由半導體材料構成的一第一型摻雜半導體層11、一發光層12、一第二型摻雜半導體層13,及一以導體材料構成的電極單元14。 Referring to FIG. 1, the current light-emitting element comprises a first type doped semiconductor layer 11, a light-emitting layer 12, a second-type doped semiconductor layer 13, and an electrode unit 14 made of a conductive material.
該第一型摻雜半導體層11以n型半導體材料構成,例如n型氮化鎵,所以通常稱作n型摻雜半導體層(以下將第一型摻雜半導體層11稱作n型摻雜半導體層)。該第二型摻雜半導體層13以p型半導體材料構成,例如p型氮化鎵,所以通常稱作p型摻雜半導體層(以下將第二型摻雜半導體層13稱作p型摻雜半導體層)。該發光層12夾置於n型摻雜半導體層與p型摻雜半導體層之間,並在接受電能時將電能轉換為光能而發光。 The first type doped semiconductor layer 11 is made of an n-type semiconductor material, such as n-type gallium nitride, so it is generally called an n-type doped semiconductor layer (hereinafter, the first type doped semiconductor layer 11 is referred to as n-type doping). Semiconductor layer). The second type doped semiconductor layer 13 is made of a p-type semiconductor material, such as p-type gallium nitride, so it is generally called a p-type doped semiconductor layer (hereinafter, the second type doped semiconductor layer 13 is referred to as p-type doping). Semiconductor layer). The light-emitting layer 12 is interposed between the n-type doped semiconductor layer and the p-type doped semiconductor layer, and converts electrical energy into light energy to emit light when receiving electrical energy.
該電極單元14以例如金屬元素、金屬合金等導體材料構成,並包括一設置於該n型摻雜半導體層上的第一電極141,及一設置於該p型摻雜半導體層上的第二電極142,該第一、二電極141、142可傳送來自外界的電能。 The electrode unit 14 is made of a conductive material such as a metal element or a metal alloy, and includes a first electrode 141 disposed on the n-type doped semiconductor layer, and a second disposed on the p-type doped semiconductor layer. The electrode 142, the first and second electrodes 141, 142 can transmit electrical energy from the outside.
當電極單元14的第一、二電極141、142接受來自外界的電能時,電能經過該n型摻雜半導體層及該p型摻雜半導體層到達該發光層12,電能在發光層12中產生光電反應而發光。 When the first and second electrodes 141, 142 of the electrode unit 14 receive electrical energy from the outside, electrical energy passes through the n-type doped semiconductor layer and the p-type doped semiconductor layer to reach the luminescent layer 12, and electrical energy is generated in the luminescent layer 12. Photoelectric reaction and luminescence.
由於電流需先流經該p型摻雜半導體層再到達該發光層12,但該p型摻雜半導體層為半導體材料,電流流動的速率及導電率不若以導體材料構成的電極單元14的速度快,造成第二電極142與該p型摻雜半導體層間的接觸電阻高,使得發光元件整體的工作電壓較高,發光效率並不理想。 Since the current needs to flow through the p-type doped semiconductor layer to reach the light-emitting layer 12, but the p-type doped semiconductor layer is a semiconductor material, the rate of current flow and the conductivity are not as the electrode unit 14 composed of a conductor material. The speed is high, and the contact resistance between the second electrode 142 and the p-type doped semiconductor layer is high, so that the operating voltage of the entire light-emitting element is high, and the luminous efficiency is not ideal.
雖然隨著例如銦錫氧化物(Indium Tin Oxide,簡稱ITO)等透明、導電度佳的金屬氧化物被發現後,該作為透明導電層的金屬氧化物隨即被導入上述的發光元件的技術中,以降低該p型摻雜半導體層與該第二電極142之間的接觸電阻,並同時增加電流橫向擴散均勻度。然而,該以銦錫氧化物構成的透明導電層與p型摻雜半導體層間存在著材料種類差異太大導致接觸電阻太高的問題。 Although a transparent, highly conductive metal oxide such as Indium Tin Oxide (ITO) is found, the metal oxide as a transparent conductive layer is then introduced into the above-described technique of the light-emitting element. To reduce the contact resistance between the p-doped semiconductor layer and the second electrode 142, and at the same time increase the lateral spread uniformity of the current. However, there is a problem that the difference in material type between the transparent conductive layer made of indium tin oxide and the p-type doped semiconductor layer is too large, resulting in too high contact resistance.
因此,本發明之一目的,即在提供一種具低接觸電阻的發光元件。 Accordingly, it is an object of the present invention to provide a light-emitting element having a low contact resistance.
於是,本發明發光元件包含一第一型摻雜半導體層、一發光層、一第二型摻雜半導體層、一接觸層,及一電極單元。 Thus, the light-emitting element of the present invention comprises a first type doped semiconductor layer, a light emitting layer, a second type doped semiconductor layer, a contact layer, and an electrode unit.
該發光層設置於該第一型摻雜半導體層上並在接受電能時將電能轉換為光,該第二型摻雜半導體層設置於該發光層上並與該第一型摻雜半導體層成相反電性,該接觸層設置於該第二型摻雜半導體層上,該接觸層由半導體材料構成,且該接觸層的晶格系統為斜方晶系(orthorhombic system),該電極單元傳送來自外界的電能至該發光層。 The luminescent layer is disposed on the first type doped semiconductor layer and converts electrical energy into light when receiving electrical energy, and the second type doped semiconductor layer is disposed on the luminescent layer and is formed with the first type doped semiconductor layer In the opposite polarity, the contact layer is disposed on the second type doped semiconductor layer, the contact layer is composed of a semiconductor material, and the lattice system of the contact layer is orthorhombic (orthormbic System), the electrode unit transmits electrical energy from the outside to the luminescent layer.
此外,本發明之另一目的,即在提供一種具低接觸電阻的發光元件的製作方法。 Further, another object of the present invention is to provide a method of fabricating a light-emitting element having a low contact resistance.
於是,本發明發光元件的製作方法包含一磊晶步驟及一電極設置步驟。 Therefore, the method for fabricating the light-emitting device of the present invention comprises an epitaxial step and an electrode setting step.
該磊晶步驟以有機金屬化學氣相沈積法的方式依序在一基材上形成一六方晶系的第一型摻雜半導體層、一六方晶系的發光層、一六方晶系的第二型摻雜半導體層,及一斜方晶系的接觸層。 The epitaxial step sequentially forms a hexagonal first-type doped semiconductor layer, a hexagonal-based luminescent layer, and a hexagonal system on a substrate by means of an organometallic chemical vapor deposition method. The second type doped semiconductor layer and an orthorhombic contact layer.
該電極設置步驟形成一可傳送來自外界的電能至該發光層的電極單元。 The electrode setting step forms an electrode unit that can transfer electrical energy from the outside to the luminescent layer.
本發明之功效在於:利用有機金屬化學氣相沈積法於該第二型摻雜半導體層上形成低接觸電阻的接觸層,藉此降低元件的工作電壓,進而提升元件的發光效率。 The invention has the effect of forming a contact layer with low contact resistance on the second type doped semiconductor layer by an organometallic chemical vapor deposition method, thereby reducing the operating voltage of the element and thereby improving the luminous efficiency of the element.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
在本發明被詳細描述之前,要注意的是,在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals.
參閱圖2,本發明發光元件的一較佳實施例包含一基材20、一形成於該基材20上的第一型摻雜半導體層21、一第二型摻雜半導體層23、一夾置於該第一型摻雜半導體層21與該第二型摻雜半導體層23間的發光層22、一形成於該第 二型摻雜半導體層23上的接觸層24,及一傳送來自外界電能至該發光層22的電極單元25。 Referring to FIG. 2, a preferred embodiment of the light-emitting device of the present invention comprises a substrate 20, a first type doped semiconductor layer 21, a second type doped semiconductor layer 23, and a clip formed on the substrate 20. a light-emitting layer 22 disposed between the first-type doped semiconductor layer 21 and the second-type doped semiconductor layer 23 is formed in the first The contact layer 24 on the doped semiconductor layer 23, and an electrode unit 25 that transfers electrical energy from the outside to the luminescent layer 22.
該第一型摻雜半導體層21以有機金屬化學氣相沈積法形成於該基材20上面,並以n型氮化物半導體材料所構成,在該第一較佳實施例中,n型氮化物半導體材料是n型氮化鎵(GaN)。第一型摻雜半導體層21在該領域的研究人員通常稱作n型摻雜半導體層21,因此以下以n型摻雜半導體層代稱第一型摻雜半導體層21。 The first type doped semiconductor layer 21 is formed on the substrate 20 by an organometallic chemical vapor deposition method and is formed of an n-type nitride semiconductor material. In the first preferred embodiment, the n-type nitride is formed. The semiconductor material is n-type gallium nitride (GaN). The first type doped semiconductor layer 21 is generally referred to as an n-type doped semiconductor layer 21 by researchers in the field, and thus the first type doped semiconductor layer 21 is hereinafter referred to as an n-type doped semiconductor layer.
該發光層22形成於該n型摻雜半導體層21上,並在接受電能時將電能轉換為光能。特別地,該發光層22可為雙異質接面結構(double hetero-junction structure)、單一量子井結構(single quantum well structure),或是多重量子井結構(multiple quantum well structure),其中,多重量子井結構可包含多數阻障層部與多數井層部,該等阻障層部與該等井層部自該n型摻雜半導體層表面依序交錯地疊置,其中,該等阻障層部為氮化鎵(gallium nitride,GaN),該等井層部為氮化銦鎵(indium gallium nitride,InGaN)。且該發光層22的井層部與阻障層部間的配置方式已為熟習本領域的技術人員所熟知,在此不再多加贅述。 The light emitting layer 22 is formed on the n-type doped semiconductor layer 21 and converts electrical energy into light energy when receiving electrical energy. In particular, the light-emitting layer 22 may be a double hetero-junction structure, a single quantum well structure, or a multiple quantum well structure, wherein multiple quantum well structures The well structure may include a plurality of barrier layers and a plurality of well layers, the barrier layers and the well layers being sequentially staggered from the surface of the n-type doped semiconductor layer, wherein the barrier layers are sequentially staggered The part is gallium nitride (GaN), and the well layers are indium gallium nitride (InGaN). The arrangement between the well portion and the barrier layer portion of the luminescent layer 22 is well known to those skilled in the art and will not be further described herein.
該第二型摻雜半導體層23形成於該發光層22上,且以有機金屬化學氣相沈積法形成於該發光層22遠離該n型摻雜半導體層21的表面,並以p型氮化物半導體材料所構成,在該第一較佳實施例中,p型氮化物半導體材料是p型氮化鎵。第二型摻雜半導體層23在該領域的研究人員通常 稱作p型摻雜半導體層,因此以下以p型摻雜半導體層23代稱第二型摻雜半導體層23。 The second type doped semiconductor layer 23 is formed on the light emitting layer 22, and is formed on the surface of the light emitting layer 22 away from the n-type doped semiconductor layer 21 by organometallic chemical vapor deposition, and is a p-type nitride. A semiconductor material is constructed. In the first preferred embodiment, the p-type nitride semiconductor material is p-type gallium nitride. The second type doped semiconductor layer 23 is usually used by researchers in the field. Referring to the p-type doped semiconductor layer, the second-type doped semiconductor layer 23 is hereinafter referred to as a p-type doped semiconductor layer 23.
值得注意的是,上述之該n型摻雜半導體層21、該發光層22以及該p型摻雜半導體層23皆由氮化鎵基(GaN Based)為主要材料所構成,且n型摻雜半導體層21、該發光層22以及該p型摻雜半導體層23均為單晶(single crystal)的固體形式,且其晶格系統皆為六方晶系(hexagonal system)。 It is to be noted that the n-type doped semiconductor layer 21, the light-emitting layer 22 and the p-type doped semiconductor layer 23 are all composed of GaN based and n-type doped. The semiconductor layer 21, the light-emitting layer 22, and the p-type doped semiconductor layer 23 are all solid forms of a single crystal, and their lattice systems are all hexagonal systems.
該接觸層24透明並可導電,且以有機金屬化學氣相沈積法形成於該p型摻雜半導體層23中遠離該n型摻雜半導體層21的表面,該接觸層24包括多數自該p型摻雜半導體層23的表面凸伸而出的島狀結構241。 The contact layer 24 is transparent and electrically conductive, and is formed in the p-type doped semiconductor layer 23 away from the surface of the n-type doped semiconductor layer 21 by organometallic chemical vapor deposition. The contact layer 24 includes a majority from the p An island-like structure 241 from which the surface of the doped semiconductor layer 23 protrudes.
該接觸層24以半導體材料構成,該接觸層24為單晶的固體形式,且該晶格系統為斜方晶系,該接觸層24的成分可為InyGa1-yOxN1-x,其中,0<y<1,0<x≦1。當x=1時,該接觸層24的成分為InyGa1-yO,其中,0<y<1。 The contact layer 24 is made of a semiconductor material, the contact layer 24 is a solid form of a single crystal, and the lattice system is an orthorhombic system, and the composition of the contact layer 24 can be In y Ga 1-y O x N 1- x , where 0 < y < 1, 0 < x ≦ 1. When x=1, the composition of the contact layer 24 is In y Ga 1-y O, where 0 < y < 1.
配合參閱圖3、圖4,該二圖分別為實際量測根據該較佳實施例所完成的一具體例的接觸層24成份分析圖。先由廠牌為JEOL及型號為JSM-6700F的能量分析儀(EDS)分析該接觸層24具有的化學成份(如圖3),再利用各化學成份的峰值(peak)推算得到如圖4所示各成份的重量百分比。 Referring to FIG. 3 and FIG. 4, the two figures are respectively a component analysis diagram of the contact layer 24 which is actually measured according to a specific example of the preferred embodiment. The chemical composition of the contact layer 24 is analyzed by an energy analyzer (EDS) whose design is JEOL and model JSM-6700F (Fig. 3), and then the peak of each chemical component is used to calculate the peak as shown in Fig. 4. Show the weight percentage of each component.
從圖式可清楚看出,該接觸層24至少是以銦、鎵、氧三種元素組合而成,且經計算後,各元素的重量百分比約為銦有77.97wt%,鎵含有16.36wt%,氧含有5.67wt%。 It can be clearly seen from the drawing that the contact layer 24 is composed of at least three elements of indium, gallium and oxygen, and after calculation, the weight percentage of each element is about 77.97 wt% of indium and 16.36 wt% of gallium. The oxygen contained 5.67 wt%.
本發明之接觸層24與該p型摻雜半導體層23二者都是單晶的固體形式,所以二者之間的材料相容度高。因此,該接觸層24與該p型摻雜半導體層23間的附著性佳。 Both the contact layer 24 of the present invention and the p-type doped semiconductor layer 23 are in a single crystal solid form, so that the material compatibility between the two is high. Therefore, the adhesion between the contact layer 24 and the p-type doped semiconductor layer 23 is good.
再者,由於該接觸層24由可導電之材料所構成,故當電流流過該接觸層時較為順暢,而有更佳的導電性。在該較佳實施例中,藉由電子顯微鏡發現該接觸層24的結構為斜方晶系,確實成規則排列的原子鍵結模式,而供電洞更易於穿越,進而具備導電性佳的特性。 Moreover, since the contact layer 24 is made of an electrically conductive material, current flows through the contact layer relatively smoothly, and has better conductivity. In the preferred embodiment, the structure of the contact layer 24 is found to be an orthorhombic system by an electron microscope, and the atomic bonding mode is regularly arranged, and the power supply hole is more easily traversed, thereby providing excellent conductivity.
又因該接觸層24包括多數個島狀結構241,該接觸層24的島狀結構241可增加垂直方向的電流傳遞的效率,且較佳地,有機金屬化學氣相沈積法適合形成尺寸小於300nm或是低密集程度的島狀結構,而尺寸大於30nm的島狀結構可更為有效地增加垂直方向的電流傳遞的效率。因此,較佳地,每一島狀結構241的平均徑寬為30nm~300nm,每一島狀結構241的平均高度為10nm~20nm,且兩相鄰的島狀結構241的間距大於100nm。 Moreover, since the contact layer 24 includes a plurality of island structures 241, the island structure 241 of the contact layer 24 can increase the efficiency of current transfer in the vertical direction, and preferably, the organometallic chemical vapor deposition method is suitable for forming a size smaller than 300 nm. Or a low-density island structure, and an island structure larger than 30 nm can more effectively increase the efficiency of current transfer in the vertical direction. Therefore, preferably, each of the island structures 241 has an average diameter of 30 nm to 300 nm, an average height of each of the island structures 241 is 10 nm to 20 nm, and a pitch of two adjacent island structures 241 is greater than 100 nm.
該電極單元25包括一與該n型摻雜半導體層21電性連結且與該發光層22位於同一表面的第一電極251,及一與該接觸層24電性連結的第二電極252,構成側向型的發光元件。 The electrode unit 25 includes a first electrode 251 electrically connected to the n-type doped semiconductor layer 21 and on the same surface as the light-emitting layer 22, and a second electrode 252 electrically connected to the contact layer 24. Lateral type of light-emitting element.
當該第一、二電極251、252相配合傳送來自外界的電能時,電能經由該接觸層24、該n、p型摻雜半導體層21、23傳送至該發光層22而將電能轉換為光能發光,且由於該接觸層24的導電性佳,也供電流快速地到達該發光層22 ,進一步地增加電子電洞對復合而產生光的機率,進而有效地提升元件的內部量子效率。 When the first and second electrodes 251, 252 cooperate to transmit electrical energy from the outside, the electrical energy is transmitted to the luminescent layer 22 via the contact layer 24, the n, p-type doped semiconductor layers 21, 23 to convert electrical energy into light. It can emit light, and because the conductivity of the contact layer 24 is good, the current is also quickly reached to the light-emitting layer 22 Further increasing the probability that the electron holes will combine to generate light, thereby effectively improving the internal quantum efficiency of the element.
且特別地,本發明發光元件除了可適用於一般的封裝方式,也可以覆晶的方式來封裝。 In particular, the light-emitting element of the present invention can be packaged in a flip-chip manner, except that it can be applied to a general package.
參閱圖5,需提出說明的是,上述本發明較佳實施例的接觸層24還可以如圖5所示,包括一形成於該p型摻雜半導體層23上的層體242。該接觸層24的層體242除了提供與該p型摻雜半導體層23間良好的歐姆接觸外,也由於與該p型摻雜半導體層23間的附著性佳,因此可大幅提升電流橫向擴散的均勻程度。又或是如圖6所示,該接觸層24還包括多數間隔地自該層體242往遠離該p型摻雜半導體層23方向凸伸的島狀結構241,也就是該接觸層24包括一層體242,及多數自該層體242表面形成的島狀結構241,並藉此達到橫向電流均勻擴散,同時也具有垂直方向的電流傳遞效率佳的特性。 Referring to FIG. 5, it should be noted that the contact layer 24 of the preferred embodiment of the present invention described above may further include a layer body 242 formed on the p-type doped semiconductor layer 23 as shown in FIG. The layer body 242 of the contact layer 24 not only provides good ohmic contact with the p-type doped semiconductor layer 23, but also has good adhesion to the p-type doped semiconductor layer 23, thereby greatly increasing lateral diffusion of current. The degree of uniformity. Or as shown in FIG. 6, the contact layer 24 further includes an island structure 241 extending from the layer body 242 away from the p-type doped semiconductor layer 23 at a plurality of intervals, that is, the contact layer 24 includes a layer. The body 242, and most of the island-like structure 241 formed from the surface of the layer body 242, thereby achieving uniform lateral current diffusion, and also has a characteristic of high current transfer efficiency in the vertical direction.
參閱圖7,還需說明的是,本發明還可包含一遮覆該接觸層24的透明導電層26,在此以上述圖6所說明的發光元件再設置透明導電層26作說明,該第二電極252與該透明導電層26連結,該接觸層24透過該透明導電層26而與該電極單元25電性連接。藉由該透明導電層26與該接觸層24相配合地供該電極單元25的電流更均勻地傳送至該發光層22。 Referring to FIG. 7, it should be noted that the present invention may further include a transparent conductive layer 26 covering the contact layer 24. Here, the light-emitting element illustrated in FIG. 6 is further provided with a transparent conductive layer 26, which is described. The two electrodes 252 are connected to the transparent conductive layer 26, and the contact layer 24 is electrically connected to the electrode unit 25 through the transparent conductive layer 26. The current supplied to the electrode unit 25 is more uniformly transmitted to the light-emitting layer 22 by the transparent conductive layer 26 in cooperation with the contact layer 24.
該透明導電層26以金屬氧化物或金屬薄膜為主要材料構成,其中,金屬氧化物可選自銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)、銦錫鋅氧化物(indium tin zinc oxide,ITZO)、氧化鋅(zinc oxide)、鋁錫氧化物(aluminum tin oxide,ATO)、摻鋁氧化鋅(aluminum zinc oxide,AZO)、鎘銦氧化物(cadmium indium oxide,CIO)、鎘鋅氧化物(cadmium zinc oxide,CZO)、鎵鋅氧化物(GZO)及錫氟氧化物(FTO)及其中之一組合為材料所構成;而金屬薄膜可自選鎳(Ni)、金(Au)及其中之一組合為材料所構成。較佳地,該透明導電層26選自銦錫氧化物、摻鋁氧化鋅、銦鋅氧化物,及此等之一組合。 The transparent conductive layer 26 is composed of a metal oxide or a metal film as a main material, wherein the metal oxide may be selected from indium tin (indium tin) Oxide, ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), zinc oxide, aluminum tin oxide (ATO), Aluminum zinc oxide (AZO), cadmium indium oxide (CIO), cadmium zinc oxide (CZO), gallium zinc oxide (GZO), and tin oxyfluoride (FTO) And one of the combinations is composed of materials; and the metal film can be composed of nickel (Ni), gold (Au) and one of them as a material. Preferably, the transparent conductive layer 26 is selected from the group consisting of indium tin oxide, aluminum-doped zinc oxide, indium zinc oxide, and combinations thereof.
且在此還需說明的是,該透明導電層26的晶格系統為立方晶系(cubic system);且該透明導電層26為多晶(polycrystalline)或非晶(amorphous)的固體形式。 It should be noted here that the lattice system of the transparent conductive layer 26 is a cubic system; and the transparent conductive layer 26 is a polycrystalline or amorphous solid form.
在本發明的較佳實施例中,該透明導電層26是以銦錫氧化物(ITO)為例,但不以此為限。 In the preferred embodiment of the present invention, the transparent conductive layer 26 is exemplified by indium tin oxide (ITO), but is not limited thereto.
此外,值得一提的是,本發明之接觸層24亦可應用於垂直型的發光元件。參閱圖8,當電極單元25的第一電極251配置於n型摻雜半導體層21的下方(即遠離發光層22的一側),即構成垂直型的發光元件,在此圖式是以上述圖7所示的發光元件簡易更動為垂直型的發光元件作說明。 Further, it is worth mentioning that the contact layer 24 of the present invention can also be applied to a vertical type of light-emitting element. Referring to FIG. 8, when the first electrode 251 of the electrode unit 25 is disposed under the n-type doped semiconductor layer 21 (ie, the side away from the light-emitting layer 22), that is, a vertical-type light-emitting element is formed. The simple change of the light-emitting element shown in Fig. 7 is a vertical light-emitting element.
上述本發明發光元件的較佳實施例,在透過以下製作方法的說明後,當可更加清楚的明白。 The preferred embodiment of the above-described light-emitting device of the present invention can be more clearly understood by the following description of the production method.
參閱圖2、圖9,本發明發光元件的較佳實施例的製作方法包含一磊晶步驟31,及一電極設置步驟32。 Referring to FIG. 2 and FIG. 9, a manufacturing method of a preferred embodiment of the light-emitting device of the present invention comprises an epitaxial step 31 and an electrode setting step 32.
首先,進行該磊晶步驟31,以有機金屬化學氣相沈積 法依序在該基材20上形成六方晶系的一第一型摻雜半導體層21、一發光層22、及一第二型摻雜半導體層23,及一斜方晶系的接觸層24。 First, the epitaxial step 31 is performed to perform organic metal chemical vapor deposition A first hexagonal doped semiconductor layer 21, a light emitting layer 22, and a second doped semiconductor layer 23, and an orthorhombic contact layer 24 are formed on the substrate 20 in sequence. .
該磊晶步驟31中的第一型摻雜半導體層21、發光層22以及第二型摻雜半導體層23由氮化鎵基為主要材料所構成。而該磊晶步驟31中的接觸層24的化學式InyGa1-yOxN1-x,其中,0<y<1,0<x≦1。上述之第一型摻雜半導體層21、發光層22、第二型摻雜半導體層23以及接觸層24均為單晶的晶體形式。 The first type doped semiconductor layer 21, the light emitting layer 22, and the second type doped semiconductor layer 23 in the epitaxial step 31 are composed of a gallium nitride group as a main material. And the chemical formula In y Ga 1-y O x N 1-x of the contact layer 24 in the epitaxial step 31, wherein 0 < y < 1, 0 < x ≦ 1. The first type doped semiconductor layer 21, the light emitting layer 22, the second type doped semiconductor layer 23, and the contact layer 24 described above are all in the form of a single crystal.
該磊晶步驟31中的接觸層24的形成方式是在有機金屬化學氣相沈積反應器的腔體中導入作為鎵源的三甲基鎵((CH3)3Ga,或Trimmethyl Ga,簡稱TMGa)、作為銦源的三甲基銦((CH3)3In,或Trimmethyl In,簡稱TMIn)、作為氧源的含氧化物,及作為載體的氮氣(N2),再以有機金屬化學氣相沈積法製成。該含氧化物選自H2O、O2、CO2、CO及其中之一組合為材料所構成。 The contact layer 24 in the epitaxial step 31 is formed by introducing trimethylgallium ((CH 3 ) 3 Ga, or Trimmethyl Ga, or TMGa for short) as a gallium source in the cavity of the organometallic chemical vapor deposition reactor. , trimethyl indium as a source of indium ((CH 3 ) 3 In, or Trimmethyl In, TMIn for short), an oxide as an oxygen source, and nitrogen (N 2 ) as a carrier, followed by an organometallic chemical gas Made by phase deposition. The oxide is selected from the group consisting of H 2 O, O 2 , CO 2 , CO, and a combination thereof.
且需說明的是,該接觸層24可依據所需要的型態,藉由控制腔體中溫度、所通入的氣流速率,或是沈積的時間形成該等彼此間隔設置的島狀結構241與該層體242,且以該較佳實施例的製作方法所得到較佳的每一島狀結構241的平均徑寬為30nm~300nm,每一島狀結構241的平均高度為10nm~20nm,且兩相鄰的島狀結構241的間距大於100nm。 It should be noted that the contact layer 24 can form the island structures 241 spaced apart from each other by controlling the temperature in the cavity, the flow rate of the airflow, or the time of deposition according to a desired pattern. The layer body 242, and the average diameter of each of the island structures 241 obtained by the manufacturing method of the preferred embodiment is 30 nm to 300 nm, and the average height of each of the island structures 241 is 10 nm to 20 nm. The spacing between two adjacent island structures 241 is greater than 100 nm.
接著,進行該電極設置步驟32,形成分別與該第一、 二摻雜半導體層21、23電性連接而可傳送來自外界的電能至該發光層的電極單元25。 Then, the electrode setting step 32 is performed to form the first and the first The two doped semiconductor layers 21, 23 are electrically connected to transmit electric energy from the outside to the electrode unit 25 of the light emitting layer.
更詳細地說,該電極設置步驟32是分別於該第一型摻雜半導體層21與該第二型摻雜半導體層23上形成該第一電極251與該第二電極252,該第一電極251與該第二電極252共同構成該電極單元25。 In more detail, the electrode setting step 32 is to form the first electrode 251 and the second electrode 252 on the first type doped semiconductor layer 21 and the second type doped semiconductor layer 23, respectively. The electrode unit 25 is formed by the second electrode 252 together with the second electrode 252.
上述的製作方法利用控制有機金屬化學氣相沈積反應器中的含氧化物的氣體的種類與反應時的流速,再配合作為鎵源的TMGa、作為銦源的TMIn等的起始物,與腔體內的溫度及壓力,而在該第二型摻雜半導體層23頂面構成透明可透光且導電性優良的接觸層24,藉此克服目前銦錫氧化物和第二型摻雜半導體層23間附著性不佳並導致接觸電阻高的問題。 The above-described production method utilizes the type of the oxide-containing gas in the organometallic chemical vapor deposition reactor and the flow rate during the reaction, and further combines TMGa as a gallium source, TMIn as an indium source, and a cavity. The temperature and pressure in the body, and the top surface of the second type doped semiconductor layer 23 constitutes a contact layer 24 which is transparent and permeable and excellent in conductivity, thereby overcoming the current indium tin oxide and the second type doped semiconductor layer 23 Poor adhesion and high contact resistance.
參閱圖10並配合圖7,本發明發光元件的另一較佳實施例的製作方法可進一步包含一於該電極設置步驟32前進行的透明導電層形成步驟33,利用物理氣相沈積的方法在該接觸層24表面形成該以金屬氧化物或金屬薄膜為主要材料所構成的透明導電層26,則可製作出如圖7所示的發光元件,在該第二型摻雜半導體層24及該第二電極252間形成具有有該接觸層24與該透明導電層26的發光元件。 Referring to FIG. 10 and FIG. 7, the manufacturing method of another preferred embodiment of the light-emitting device of the present invention may further comprise a transparent conductive layer forming step 33 performed before the electrode setting step 32, by using physical vapor deposition. A transparent conductive layer 26 made of a metal oxide or a metal thin film as a main material is formed on the surface of the contact layer 24, and a light-emitting element as shown in FIG. 7 can be fabricated. The second-type doped semiconductor layer 24 and the A light-emitting element having the contact layer 24 and the transparent conductive layer 26 is formed between the second electrodes 252.
該較佳實施例的製作方法藉著透明的接觸層24和第二型摻雜半導體層23的附著性佳,及接觸層24的晶格系統為斜方晶系而具良好的導電性,再配合透明導電層26將電流橫向擴散,而達到更均勻的電流分佈,使得發光元件的 內部量子效率有效增加,進而顯著地提升元件整體發光效率。 The manufacturing method of the preferred embodiment has good adhesion by the transparent contact layer 24 and the second type doped semiconductor layer 23, and the lattice system of the contact layer 24 has an orthorhombic system and has good conductivity. Cooperating with the transparent conductive layer 26 to laterally diffuse the current to achieve a more uniform current distribution, so that the light-emitting element The internal quantum efficiency is effectively increased, which in turn significantly improves the overall luminous efficiency of the component.
綜上所述,本發明呈斜方晶系的接觸層24設置於該p型摻雜半導體層23和電極單元25間,而具備較佳的導電性,且較目前直接將透明導電層26設置於p型摻雜半導體層23和電極單元25間的接觸電阻低,克服以往透明導電層26和p型摻雜半導體層23間的附著性不佳及電洞率速低的問題,進而增加內部量子效率與整體發光亮度,故確實能達成本發明之目的。 In summary, the orthorhombic contact layer 24 of the present invention is disposed between the p-type doped semiconductor layer 23 and the electrode unit 25, and has better conductivity, and the transparent conductive layer 26 is directly disposed at present. The contact resistance between the p-type doped semiconductor layer 23 and the electrode unit 25 is low, and the problem of poor adhesion between the transparent conductive layer 26 and the p-type doped semiconductor layer 23 and a low rate of hole rate is overcome, thereby increasing the internal The quantum efficiency and the overall luminance of the light can indeed achieve the object of the present invention.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.
20‧‧‧基材 20‧‧‧Substrate
21‧‧‧第一型摻雜半導體層 21‧‧‧First type doped semiconductor layer
22‧‧‧發光層 22‧‧‧Lighting layer
23‧‧‧第二型摻雜半導體層 23‧‧‧Second type doped semiconductor layer
24‧‧‧接觸層 24‧‧‧Contact layer
241‧‧‧島狀結構 241‧‧‧ island structure
242‧‧‧層體 242‧‧‧ layer
25‧‧‧電極單元 25‧‧‧Electrode unit
251‧‧‧第一電極 251‧‧‧First electrode
252‧‧‧第二電極 252‧‧‧second electrode
26‧‧‧透明導電層 26‧‧‧Transparent conductive layer
31‧‧‧磊晶步驟 31‧‧‧ Epitaxial steps
32‧‧‧電極設置步驟 32‧‧‧Electrode setting steps
33‧‧‧透明導電層形成 步驟 33‧‧‧Transparent conductive layer formation step
圖1是一剖視示意圖,說明傳統的發光元件;圖2是一剖視示意圖,說明本發明的一較佳實施例;圖3是一成份分析圖,說明該較佳實施例的一接觸層含有銦、鎵,及氧;圖4是一含量分析表,說明該接觸層含有銦、鎵,及氧;圖5是一剖視示意圖,說明本發明的接觸層包括一層體;圖6是一剖視示意圖,說明本發明的接觸層包括層體及島狀結構; 圖7是一剖視示意圖,說明本發明還包含一透明導電層;圖8是一剖視示意圖,說明本發明為垂直型發光元件;圖9是一流程圖,說明本發明發光元件的製作方法;及圖10是一流程圖,說明本發明發光元件的製作方法還包含一透明導電層形成步驟。 1 is a cross-sectional view showing a conventional light-emitting element; FIG. 2 is a cross-sectional view showing a preferred embodiment of the present invention; and FIG. 3 is a compositional analysis diagram illustrating a contact layer of the preferred embodiment Including indium, gallium, and oxygen; FIG. 4 is a content analysis table indicating that the contact layer contains indium, gallium, and oxygen; FIG. 5 is a schematic cross-sectional view showing that the contact layer of the present invention includes a layer; FIG. A schematic cross-sectional view showing that the contact layer of the present invention comprises a layer body and an island structure; 7 is a schematic cross-sectional view showing a transparent conductive layer of the present invention; FIG. 8 is a schematic cross-sectional view showing the vertical light-emitting element of the present invention; FIG. 9 is a flow chart illustrating a method for fabricating the light-emitting element of the present invention. And FIG. 10 is a flow chart illustrating that the method of fabricating the light-emitting device of the present invention further includes a transparent conductive layer forming step.
20‧‧‧基材 20‧‧‧Substrate
21‧‧‧第一型摻雜半導體層 21‧‧‧First type doped semiconductor layer
22‧‧‧發光層 22‧‧‧Lighting layer
23‧‧‧第二型摻雜半導體層 23‧‧‧Second type doped semiconductor layer
24‧‧‧接觸層 24‧‧‧Contact layer
241‧‧‧島狀結構 241‧‧‧ island structure
25‧‧‧電極單元 25‧‧‧Electrode unit
251‧‧‧第一電極 251‧‧‧First electrode
252‧‧‧第二電極 252‧‧‧second electrode
Claims (19)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101118956A TW201349569A (en) | 2012-05-28 | 2012-05-28 | Light-emitting component and method for manufacturing the same |
CN201610668838.7A CN106057994B (en) | 2012-05-28 | 2012-07-20 | Light emitting element |
CN201210259330.3A CN103456858B (en) | 2012-05-28 | 2012-07-20 | Light emitting element and method for manufacturing the same |
US13/568,399 US8766293B2 (en) | 2011-08-08 | 2012-08-07 | Light-emitting device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101118956A TW201349569A (en) | 2012-05-28 | 2012-05-28 | Light-emitting component and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201349569A true TW201349569A (en) | 2013-12-01 |
TWI473301B TWI473301B (en) | 2015-02-11 |
Family
ID=49739020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101118956A TW201349569A (en) | 2011-08-08 | 2012-05-28 | Light-emitting component and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN106057994B (en) |
TW (1) | TW201349569A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201349569A (en) * | 2012-05-28 | 2013-12-01 | Genesis Photonics Inc | Light-emitting component and method for manufacturing the same |
CN112614921A (en) * | 2020-12-31 | 2021-04-06 | 深圳第三代半导体研究院 | Light emitting diode and manufacturing method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100647279B1 (en) * | 2003-11-14 | 2006-11-17 | 삼성전자주식회사 | light emitting device and method of manufacturing thereof |
KR100634503B1 (en) * | 2004-03-12 | 2006-10-16 | 삼성전자주식회사 | Light emitting device and method of manufacturing thereof |
CN2760762Y (en) * | 2004-04-08 | 2006-02-22 | 炬鑫科技股份有限公司 | Gallium nitride LED structure |
US8674375B2 (en) * | 2005-07-21 | 2014-03-18 | Cree, Inc. | Roughened high refractive index layer/LED for high light extraction |
CN101728462A (en) * | 2008-10-17 | 2010-06-09 | 先进开发光电股份有限公司 | Multi-wavelength light-emitting diode and production method thereof |
JP2011009502A (en) * | 2009-06-26 | 2011-01-13 | Showa Denko Kk | Light emitting element and method of manufacturing the same, lamp, electronic apparatus, and mechanical apparatus |
US9159892B2 (en) * | 2010-07-01 | 2015-10-13 | Citizen Holdings Co., Ltd. | LED light source device and manufacturing method for the same |
CN102956781B (en) * | 2011-08-31 | 2015-03-11 | 新世纪光电股份有限公司 | Light-emitting element and manufacturing method thereof |
TW201349569A (en) * | 2012-05-28 | 2013-12-01 | Genesis Photonics Inc | Light-emitting component and method for manufacturing the same |
-
2012
- 2012-05-28 TW TW101118956A patent/TW201349569A/en not_active IP Right Cessation
- 2012-07-20 CN CN201610668838.7A patent/CN106057994B/en active Active
- 2012-07-20 CN CN201210259330.3A patent/CN103456858B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106057994A (en) | 2016-10-26 |
CN103456858A (en) | 2013-12-18 |
TWI473301B (en) | 2015-02-11 |
CN106057994B (en) | 2019-03-15 |
CN103456858B (en) | 2016-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103531680B (en) | A kind of LED epitaxial structure and preparation method thereof | |
CN105990479A (en) | GaN-based light emitting diode epitaxial structure and manufacturing method thereof | |
US10381511B2 (en) | Nitride semiconductor structure and semiconductor light emitting device including the same | |
TW201308657A (en) | Nitride semiconductor light-emitting device | |
TW201421734A (en) | Nitride semiconductor structure and semiconductor light-emitting element | |
CN109742203A (en) | A kind of iii-nitride light emitting devices | |
CN104051589B (en) | Transverse zinc oxide nanorod array light emitting diode | |
CN101714602A (en) | Multiple quantum well structure for photoelectric device | |
CN103972340B (en) | Nitride semiconductor structure and semiconductor light-emitting elements | |
CN108305922B (en) | Nitride semiconductor structure and semiconductor light emitting element | |
CN104300058A (en) | Green-yellow light LED with doped wide potential barrier structure | |
TW201232824A (en) | Transparent thin film, light emitting device comprising the same, and methods for preparing the same | |
US20130175553A1 (en) | Light-emitting diode device | |
CN201766093U (en) | Gallium nitride light-emitting diode | |
TW201349569A (en) | Light-emitting component and method for manufacturing the same | |
CN103208571A (en) | GaN-based LED (light emitting diode) epitaxial wafer and production method thereof | |
CN103715317A (en) | Light emitting diode device | |
US8766293B2 (en) | Light-emitting device and method for manufacturing the same | |
CN102956781B (en) | Light-emitting element and manufacturing method thereof | |
CN203659911U (en) | LED epitaxial structure | |
KR101285925B1 (en) | Light Emitting Diode of using Graphene | |
CN102185053A (en) | Light-emitting diode and manufacturing method thereof | |
TWI589018B (en) | Nitride semiconductor structure | |
CN206210825U (en) | A kind of n type gallium nitride based light-emitting diode | |
TWI455355B (en) | Light emitting diode structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |