Nothing Special   »   [go: up one dir, main page]

TW201014898A - Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) - Google Patents

Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) Download PDF

Info

Publication number
TW201014898A
TW201014898A TW98122289A TW98122289A TW201014898A TW 201014898 A TW201014898 A TW 201014898A TW 98122289 A TW98122289 A TW 98122289A TW 98122289 A TW98122289 A TW 98122289A TW 201014898 A TW201014898 A TW 201014898A
Authority
TW
Taiwan
Prior art keywords
mass
hfc32
hf01234yf
refrigerant composition
hfc134a
Prior art date
Application number
TW98122289A
Other languages
Chinese (zh)
Inventor
Tatsumi Tsuchiya
Katsuki Fujiwara
Masahiro Noguchi
Yasufu Yamada
Original Assignee
Daikin Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Ind Ltd filed Critical Daikin Ind Ltd
Publication of TW201014898A publication Critical patent/TW201014898A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

The present invention provides a refrigerant composition that is non-flammable in the liquid phase. The present invention further provides a refrigerant composition that is non-flammable, and has low LCCP, a low environmental impact, and a low global warming potential. More specifically the invention provides a refrigerant composition containing difluoromethane (HFC32), 2, 3, 3, 3-tetrafluoropropene (HFO1234yf), and 1, 1, 1, 2-tetrafluoroethane (HFC134a) at a ratio of HFC32/HFO1234yf/HFC134a in a range surrounded by points (0/64/36 mass%), (0/0/100 mass%), and (45/0/55 mass%) in a ternary diagram of a refrigerant composition containing HFC32, HFO1234yf and HFC134, the composition essentially including HFC32 and HFO1234yf.

Description

201014898 六、發明說明: 【發明所屬之技術領域】 本發明係關於冷凍及空調機器所用之二氟甲烷( HFC32) 、2,3,3,3-四氟丙烯(HF01234yf)、及 1,1,1,2-四氟乙烷(HFC 13 4a)所成之混合冷媒組成物。 【先前技術】 φ 更深刻之地球暖化問題在全世界被議論中,而對環境 負擔少之冷凍空調機之開發,重要性與日益增。冷媒除自 身所具有之對地球暖化之影響外,亦大大關係到冷凍空調 機之性能,故冷媒之選擇對於作爲減少使地球暖化之二氧 化碳之產量之技術有重要之角色。 如今,與已知的氯氟碳(CFC ),氫氯氟碳(HCFC ) ,氫氟碳(HFC )相比,提出種種地球暖化係數低之分子 內具雙鍵的部分經氟化之丙烯。 〇 其中之一,如2,3,3,3-四氟丙烯(HF01234yf)(專 利文獻1、2等),但此冷媒有燃燒性,在21 °C、空氣中 濃度爲6.5-12.5vol·%之範圍內,有著火之性質。又,與習 知之用於落地式空調機之HCFC22或之後作爲替代之不造 成臭氧層破壞的R407C或R410A相比,因沸點高,有單 獨使用無法保有冷凍能力之缺點。 選擇冷媒時,冷媒本身的地球暖化係數(GWP )小之 重要性自不待言,但使用該冷媒時,機器能量使用效率爲 相同或在其以上之重要要素。前者評估爲直接影響、後者 -5- 201014898 評估爲間接影響,因此作爲客觀的指標’提出LCCP (201014898 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1 for use in refrigeration and air conditioning machines. A mixed refrigerant composition of 1,2-tetrafluoroethane (HFC 13 4a). [Prior Art] φ The deeper problem of global warming is being discussed throughout the world, and the importance of the development of refrigerating air conditioners with less environmental burden is increasing. In addition to its own impact on global warming, refrigerants are also heavily related to the performance of refrigerated air conditioners. Therefore, the choice of refrigerants plays an important role as a technology to reduce the production of carbon dioxide for global warming. Nowadays, compared with known chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs), some fluorinated propylene with double bonds in the molecule with low global warming coefficient is proposed. . One of them, such as 2,3,3,3-tetrafluoropropene (HF01234yf) (Patent Documents 1, 2, etc.), but the refrigerant is flammable, and the concentration in air is 6.5 to 12.5 vol at 21 °C. Within the scope of %, there is the nature of fire. Further, compared with the conventional HCFC 22 for floor-standing air conditioners or R407C or R410A which is not replaced by ozone layer, the boiling point is high, and there is a disadvantage that the refrigeration capacity cannot be maintained by using it alone. When choosing a refrigerant, the importance of the small global warming coefficient (GWP) of the refrigerant itself is self-evident, but when the refrigerant is used, the energy efficiency of the machine is the same or above. The former assessment is a direct impact, the latter -5 - 201014898 assessment is an indirect impact, so as an objective indicator 'propose LCCP (

Life Cycle Climate Performance)(非專利文獻 1 等)。 在今日,爲了冷媒總合的判斷而廣被認知’但在提供最適 當冷媒時,並無進行LCCP評估之例。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第2005/105947號文獻 [專利文獻2]國際公開第2006/094303號文獻 ❹ [非專利文獻] [非專利文獻 1]" Life Cycle Climate Performance of Some Applications in Japan", Haruo Onishi, 15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 1 3- 1 5, 2004 Conference Proceedings 【發明內容】 [發明所欲解決之課題] @ 冷媒沸點高、運作壓力低時,蒸氣壓縮式之冷凍循環 中,無法得到充分能力,爲確保冷房或暖房能力,變得需 要使機器大型化等對策,因壓力損失等影響而通常使間接 影響惡化。又,冷媒具燃燒性時,電氣系統變得需要使用 安全性高之構件、機器可充塡之冷媒重量有上限。 本發明以提供LCCP優、環境負荷小、且不燃性之冷 媒組成物爲目的。 201014898 [解決課題之手段] 本發明者有鑑於上述課題努力硏究之結果,發現在透 過壓縮機使冷媒循環而構成冷凍循環之裝置中,在含有二 氟甲烷(HFC32) 、2,3,3,3-四氟丙烯(HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組成物的三元相圖( 圖1)中,各成分係在( 0/64/36質量%),(0/0/100質 量% ),及(45/0/5 5質量%)各點所包圍之範圍內,且一 φ 定包含HFC32及HF01234yf之冷媒組成物成爲不燃性。 更且,發現該冷媒組成物之LCCP評估優異、環境負荷小 〇 又,上述三元相圖中,各成分係在(0/6 4/3 6質量%) ,(0/3 0.2/69.8 質量 % ),及(3 7.9/1 0.1/52.0 質量 % )之 各點所包圍之範圍內,且必包含HFC32之冷媒組成物爲 不燃性,且GWP (積分期間;ITH = 100yr )爲1000以下, 又於LCCP評估中亦優、環境負荷可變小。 φ 進一步,發現上述三元相圖中,各成分在(0/64/36 質量 %) ,( 0/40.7/59.3 質量。/〇 ),及(26.1/26.9/47.0 質 量%)之各點所包圍之範圍內,且必含有HFC32之冷媒組 成物爲不燃性、且GWP ( ITH=l〇〇yr )爲 850以下,又 LCCP評估中亦優、可使環境負荷變小。 又,發現上述三元相圖中,各成分在(7/3 7/56質量% ),( 9/35/56 質量 %),( 1 3/24/63 質量 %),(10/25/ 65質量% ),及(7/2 7/66質量% )之各點所包圍之範圍內 的冷媒組成物於冷凍機充塡時,即使由氣相及液相任一洩 201014898 漏之場合亦爲不燃性,且GWP(ITH=100yr)在1000以下 ,又LCCP評估中亦優、可使環境負荷變小。 在此,例如上述三元相圖(圖 1)中之(26.1/ 26.9/47.0質量%)點係指含 HFC32: 26.1質量%、 HF01234yf : 26.9 質量%、HFC134a: 47.0 質量 %之組成物 。又,該三元相圖中以上述各點包圍之範圍內係指上述3 點、4點或5點等多數點連接所成之三角形、四角形或五 角形等多角形之各邊上及其內部所含之3成分之組成比例 之全部。 基於相關知識,努力硏究之結果,完成本發明。 亦即,本發明在於提供下述不燃性冷媒組成物。 1、 一種冷媒組成物,其特徵係在包含二氟甲烷( HFC32 ) 、2,3,3,3-四氟丙烯(HF01234yf)、及 1,1,1,2- 四氟乙烷(HFC134a)之冷媒組成物的三元相圖中,各成 分(HFC32/HF01234yf/HFC134a )係在( 0/64/36 質量 %) ,(:0/0/100質量% ),及(45/0/55質量% )各點所包圍 之範圍內,且一定包含HFC32及HF01234yf。 2、 如第1項所記載之冷媒組成物,其中,在包含二 氟甲烷(HFC32) 、2,3,3,3-四氟丙烯(HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組成物的三元相圖中 ,各成分(HFC32/HF01234yf/HFC134a)係在(0/64/36 質量%) ,( 0/30.2/69.8 質量 %),及( 37.9/1 0.1/52.0 質 量% )之各點所包圍之範圍內,且必包含HFC32。 3、 如第1或2項所記載之冷媒組成物,其中,在包 -8 - 201014898 含二氟甲烷(HFC32) 、2,3,3,3-四氟丙烯(HF01234yf) 、及1,1,1,2-四氟乙烷(HFC134a)之冷媒組成物的三元 相圖中,各成分(HFC32/HF01234yf/HFC134a )在( 0/64/36 質量 % ) , ( 0/40.7/59.3 質量 % ),及( 26.1/26.9/47.0質量%)之各點所包圍之範圍內,且必含有 HFC32 。 4、 如第1〜3項中任一項所記載之冷媒組成物,其中 φ ,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf )、及 1,1,1,2 -四氟乙烷(H F C 1 3 4 a )之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC 1 34a )係在(7 / 5 4/3 9 質量 % ) ,( 2 6/2 7/4 7 質量 % ) ,及(7/3 7/56質量% )之各點所包圍之範圍內。 5、 如第1〜4項中任一項所記載之冷媒組成物,其中 ,在包含二氟甲烷(HFC32 ) 、2,3,3,3-四氟丙烯( HF01234yf )、及 1,1,1,2-四氟乙烷(HFC 1 3 4a )之冷媒組 φ 成物的三元相圖中,各成分(HFC32/HF01234yf/ HFC134a )係在(7/54/3 9 質量 % ) ,( 1 2/46/42 質量 % ) ,及(7/49/44質量% )之各點所包圍之範圍內。 6、 如第1〜4項中任一項所記載之冷媒組成物,其中 ,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf )、及 1,1,1,2-四氟乙烷(HFC 1 3 4a )之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC134a)在( 18/38/4 4 質量%) ,(26/27/4 7 質量%), 及( 20/3 1/49質量%)之各點所包圍之範圍內 201014898 7、 如第1或2項所記載之冷媒組成物,其中,在包 含二氟甲烷(HFC32) 、2,3,3,3-四氟丙烯(HF01234yf) 、及1,1,1,2-四氟乙烷(HFC134a )之冷媒組成物的三元 相圖中,各成分(HFC32/HF01234yf/HFC134a )在( 7/3 7/5 6 質量 %),( 9/3 5/56 質量%) ,(13/24/63 質量% ),(1 0/25/65質量% ),及(7/27/66質量% )之各點所 包圍之範圍內。 8、 如第1、2、7項中任一項所記載之冷媒組成物, 其中,在包含二氟甲烷(HFC3 2 ) 、2,3,3,3-四氟丙烯( HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分(HFC32/HF01234yf/HFC134a )在(7/37/56 質量 %),( 8/36/56 質量%) ,( 10/32/58 質量% ),及(7/3 4/ 5 9質量% )之各點所包圍之範圍內。 9、 如第1〜8項中任一項所記載之冷媒組成物,其中 ,更含有聚合防止劑。 10、 如第1〜9項中任一項所記載之冷媒組成物,其 中,更含有乾燥劑。 11、 如第1〜10項中任一項所記載之冷媒組成物,其 中,更含有安定劑。 12、 一種冷凍機之運轉方法,其特徵係將第1〜n項 中任一項所記載之冷媒組成物藉由壓縮機進行循環。 13、 一種第1項所記載之冷媒組成物之製造方法,其 特徵係搭配方式爲在包含二氟甲烷(HFC32) 、2,3,3,3 -四 氟丙烯(HF01234yf)、及m2-四氟乙烷(HFC134a) 201014898 之冷媒組成物的三元相圖中,各成分(HFC32/HF01234yf/ HFC13 4 a)係在(0/64/3 6 質量%) ,( 0/0/100 質量:%), 及(45/0/5 5質量% )各點所包圍之範圍內,且一定包含 HFC32 及 HFOl 234yf。 14、一種冷凍機,其特徵係含有第1〜11項中任一項 所記載之冷媒組成物。 ❹ [發明效果] 本發明之冷媒組成物爲不燃性。因此,裝置上不需變 更爲使用安全性高之構件等的特別機器。進一步,藉由將 組成限制在特定範圍,可達到以下效果。 (1) 可獲得與習知使用R407C或R410A爲冷媒之熱 栗相同或更佳之循環性能。 (2) 因臭氧破壞係數(ODP )爲零,即使使用後之 冷媒完全不回收,亦不對臭氧層產生破壞。 φ (3)與習知使用的冷媒R4〇7C或R410A相比較,地 球暖化係數(GWP)爲小。 (4) LCCP之評估爲優,且用作熱泵之冷媒時,可達 到習知使用的冷媒R407C或R410A之同等或更佳的不造 成地球暖化效果。 [實施發明之最佳形態] 本發明者努力硏究 HFC32、HF01234yf及 HFC134a 之混合比例與 LCCP (life cycle climate performance)及 -11 - 201014898 燃燒性之關係。LCCP爲以試驗例1、燃燒性爲以試驗例2 所記載之方法進行評估。 評估之結果,在包含HFC32、HF01234yf及HFC134a 之冷媒組成物的三元相圖中(圖1),各成分係在( 0/6 4/36 質量%) ,(0/0/100 質量 %),及( 45/0/55 質量 %)各點所包圍之範圍內,且一定包含 HFC32 及 HF01234yf之冷媒組成物(組成物1)時,爲不燃性,且 LCCP優、環境負荷小。 換言之,係爲包含 HFC32、HF01234yf及 HFC134a 之冷媒組成物,且各成分之組成比例(a/b/c質量% )滿足 下述式(1 )〜(3 ); 0<a ^ 45 (1) 0<b^(64-1 9/45 xa) (2) c=l〇〇-a-b (3) 之關係的冷媒組成物爲不燃性,且LCCP優、環境負荷小 。此等之式爲將不燃區域數式化者,可被實施例支持(圖 1作參考)。 又,在包含HFC32、HF01234yf及HF’C 134a之冷媒 組成物的三元相圖中(圖1),各成分係在(0/64/36質量 %) ,( 0/30.2/69.8 質量 % ),及(37.9/1 0.1/52.0 質量 % )之各點所包圍之範圍內’且必包含HFC32之冷媒組成 物(組成物 2)時’爲不燃性,GWP ( ITH=100yr )爲 1000以下,且LCCP亦優、環境負荷小。 換言之,係爲包含 HFC32、HF01234yf及 HFC134a 201014898 之冷 述式 之關 1000 Φ 燃邊 化者 組成 ), 之各 (組 以下 之冷 述式 之關 )亦 係將 媒組成物’各成分之組成比例(a/b/c質量% )滿足下 (4)〜(6); 0<a ^ 3 7.9 (4) ((43000-755xa)/1426)^b^(64-19/4 5xa) (5) c=100-a-b (6) 係的冷媒組成物爲不燃性,GWP ( ITH=100yr )爲 以下,且LCCP亦優、環境負荷小。此等之式爲將不 界線與GWP(ITH = 100yr) =1〇〇〇所包圍之範圍數式 ,且可被實施例支持(圖1作參考)。 又,在包含HFC32、HF01234yf及HFC134a之冷媒 物的三元相圖中(圖1),各成分在(0/64/36質量% (0/40.7/59.3 質量 %),及(26.1/26.9/47.0 質量。/〇 點所包圍之範圍內,且必含有HFC32之冷媒組成物 成物3)時,爲不燃性,GWP ( ITH = 100yr)亦成850 ,且LCCP亦優、環境負荷小。 換言之,係爲包含 HFC32、HF01234yf及 HFC134a 媒組成物,各成分之組成比例(a/b/c質量% )滿足下 (7)〜(9); 0<a ^ 26.1 (7) ((58000-755xa)/1426)^b^(64- 1 9/4 5 xa) (8) c=100-a-b (9) 係之冷媒組成物,液相爲不燃性,GWP ( ITH=100yr 成8 5 0以下,且LCCP亦優、環境負荷小。此等之式 以不燃邊界線與GWP(ITH=100yr) =850所包圍之範 -13- 201014898 圍數式化者,且可被實施例支持(圖1作參考)。 又,在包含HFC32、HF01234yf及HFC134a之冷媒 組成物的三元相圖中(圖1),各成分爲在(7/54/39質量 % ),( 26/27/47 質量 % ),及(7/37/56 質量 % )所包圍 之範圍內混合之冷媒組成物(組成物4)時,LCCP優、 環境負荷小,且爲不燃性。組成物4爲GWP低且具良好 冷凍能力。例如,組成物4之GWP ( ITH = 100yr )約爲 600 〜8 50,爲 R410A ( GWP : 2088 )或 R407C ( GWP : 1 774 )之1/2以下。 進一步,該三元相圖中(圖1),各成分在(7/54/39 質量 % ) ,( 12/46/42 質量 % ),及(7/49/44 質量 % )所 包圍之範圍內的組成物(組成物 5),或各成分在( 1 8/3 8/44 質量%) , ( 26/27/47 質量%),及(20/31/49 質量%)所包圍之範圍內的組成物(組成物6)時,尤其 發揮優異效果。組成物5成爲與HFC32( GWP : 675 )同 等以下之GWP。 又,在包含HFC32、HF01234yf及 HFC134a之冷媒 組成物的三元相圖中(圖1),各成分在(7/3 7/56質量% ),( 9/3 5/5 6 質量%) , ( 1 3/24/63 質量%) , (10/25/ 65質量%),及(7/2 7/66質量%)所包圍之範圍內被混合 之冷媒組成物(組成物7 )時,LCCP優、環境負荷小, 且塡充於冷凍機之場合等之液相組成及對應其之飽和狀態 下的氣相組成中,爲不燃性。上述組成物7,GWP低,具 有良好之冷凍能力。例如,該冷媒組成物之 GWP ( 201014898 ΙΤΗ= 1 OOyr )約爲 8 50 〜1 000,爲 R410A ( GWP : 208 8 ) 之 1/2 以下,R407C(GWP: 1774)之 3/5 以下。 進一步,該三元相圖中(圖1),各成分在(7/37/56 質量 % ) ,( 8/3 6/56 質量 % ) ,( 1 0/3 2/5 8 質量 % ),及 (7/3 4/5 9質量%)所包圍之範圍內的組成物(組成物8 ) 時,尤其發揮優異效果。 本發明之冷媒組成物雖顯示高安定性,但在過嚴苛之 φ 使用條件下要求高度安定性時,可因應需要添加安定劑。 如此之安定劑,可舉例如(i)硝基甲烷、硝基乙烷 等脂肪族硝基化合物、硝基苯、硝基苯乙烯等芳香族硝基 化合物、(Π) 1,4 一二噁烷等醚類、2,2,3,3,3 —五氟丙基 胺、二苯基胺等胺類、丁基羥基二甲苯、苯並三唑等。安 定劑可單獨或2種以上組合使用。 安定劑之使用量因安定劑之種類而異,但爲不妨礙不 燃性組成物之性質的程度。安定劑之使用量相對於HFC32 φ 、HF01234yf及HFC134a之混合物100重量份,通常以 0.01〜5重量份程度爲佳,0.05〜2重量份程度更佳。 本發明之組成物可再含有聚合禁止劑。例如4-甲氧 基-1-萘酚、對苯二酚、對苯二酚甲基醚、二甲基-t-丁基 酚、2,6-二-tert-丁基-P-甲酚、苯並三唑等。 聚合禁止劑之使用量相對於HFC32、HF01234yf及 HFC134a之混合物100重量份,通常以0.01〜5重量份程 度爲佳,0.05〜2重量份程度更佳。 本發明之組成物可再含有乾燥劑。 -15- 201014898 可使本發明之冷媒組成物藉由壓縮機進行循環以構成 冷凍循環。又’亦可爲透過壓縮機使該冷媒組成物循環之 構成冷凍循環的裝置。 可使用本發明之冷媒組成物的冷凍機,例如汽車空調 、自動販賣機用冷凍機、業務用•家庭用空調及氣體熱泵 (GHP ) •電熱泵(EHP )等,但不限於此等。尤其,可 用作要求機器小型化之業務用•家庭用空調之冷媒組成物 【實施方式】 [實施例] 以下,以實施例說明本發明,但並不限於此。 試驗例1 作爲冷媒,使用表 1 所示之 HFC32/HF01234yf/ HFC134a之組成物(實施例1〜13),使用熱泵,冷房定 格條件方面,能力4kW、蒸發器之冷媒的蒸發溫度爲10 °C、凝縮器之冷媒的凝縮溫度爲45°C ;冷房中間條件方面 ,能力2kW、蒸發溫度17°C、凝縮溫度42°C ;暖房定格 條件方面,能力5kW、蒸發溫度0°C、凝縮溫度42°C ;暖 房中間條件方面,能力2.5kW、蒸發溫度、凝縮溫度 32t:下進行運轉。分別使過熱度及過冷卻度爲0°C進行運 轉。 又,比較例使用R410A (比較例1 )及R407C (比較 -16- 201014898 例2 ),與上述相同條件進行熱泵之運轉。 以此等結果爲準算出之成績係數(COP ),蒸發壓力 、及凝縮壓力如表2所示。又,以此等之結果,將年度消 費電力量以JRA 4046: 2004基準算出,進行LCCP之評 估(表3 )。 成績係數(COP )及LCCP由下式求得。可表示爲: COP = (冷凍能力 或 暖房能力)/消費電力量 φ LCCP =直接影響(kg-C02) +間接影響(kg-C〇2) 直接影響=(在製造設備充塡時之損耗)+ (—般年度損耗 )+ (非一般年度損耗)+ (服務時之損耗)+ (廢棄時之損耗) 間接影響=(空調使用之C〇2排出量)+ (冷媒製造、輸 送時C02排出量) ,具體上可如下求出。 直接影響=GWP X Μ X (l-α) + GWPAE X Μ 間接影響 =ΝχΕχβ φ GWP :每lKg之C〇2基準的地球暖化係數 積分期 間 1〇〇 年(kg-C02/kg) GWPAE :製造時之放出等之付加GWP(亦包含副生成 物等洩漏而造成者或間接的放出)(kg-C02/kg) N:機器運轉年數(年) N=12 Μ :機器之充塡量(kg) M=1.3 α:機器廢棄時之回收率(回收量/充塡量) α = 0.6 Ε:機器年度消費電力量(kWh/年) -17- 201014898 β : lkWh 發電所要 C〇2 產量(kg-C02/kWh) β = 0.378 表3中,實施例1〜1 3及比較例2之溫暖化賦予C02 產量比(間接影響、直接影響及LCCP )之數値,爲將實 施例1〜13及比較例2之間接影響、直接影響及LCCP以 比較例1 ( R410A)之彼等爲基準(100)所評估之相對値 (比)。 可知本發明之冷媒在包含二氧化碳排出之直接、間接 影響之指標的LCCP中,爲較R410A更且R407C低之値 ,對環境負荷最小。 [表1] i合冷媒組成J :匕(mass%) 實施例 1 2 3 4 5 6 7 8 9 10 11 12 13 HFC32 3 3 3 5 8 9 10 10 16 20 21 25 40 HF01234yf 3 50 57 40 34 28 25 48 34 3 31 28 3 HFC134a 94 47 40 55 58 63 65 42 50 77 48 47 57 201014898 [表2] 冷媒 COP 蒸發壓力 凝縮壓力 MPa MPa 實施例1 HFC32/HF01234yf/HFC134a (3/3/94mass%)) 冷房定格 3. 03 0. 440 1.227 冷房中間 5.10 0. 534 1. 136 暖房定格 3. 89 0.317 1.134 暖房中間 5.19 0. 335 0.890 實施例2 HFC32/HF01234yf/HFC134a (3/50/47mass%) 冷房定格 2· 72 0.486 1.298 冷房中間 4· 93 0.585 1.205 暖房定格 3.76 0.356 1.205 暖房中間 5.11 0. 375 0.952 實施例3 HFC32/HF01234yf/HFC134a (3/57/40mass%) 冷房定格 2· 67 0.487 1.296 冷房中間 4· 93 0. 587 1.201 暖房定格 3. 74 0.357 1.202 暖房中間 5.09 0.377 0. 952 實施例4 HFC32/HF01234yf/HFC134a (5/40/55mass%) 冷房定格 2.89 0.499 1.341 冷房中間 5.00 0. 601 1,244 驗定格 3.82 0. 365 1.245 暖房中間 5.14 0. 385 0.983 實施例5 HFC32/HF01234yf/HFC134a (8/34/58mass«) 冷房定格 3. 03 0.519 1.400 冷房中間 5. 06 0.628 1.299 暖房定格 3. 87 0. 379 1.299 暖房中間 5,17 0. 401 1.027 實施例6 HFC32/HF01234yf/HFC134a (9/28/63mass%) 冷房定格 3.09 0.520 1.412 冷房中間 5. 09 0. 630 1.308 暖房定格 3. 90 0.380 1.308 暖房中間 5.19 0. 402 1.034Life Cycle Climate Performance) (Non-Patent Document 1, etc.). Today, it is widely recognized for the judgment of the combination of refrigerants. However, there is no LCCP assessment when providing the most suitable refrigerant. [Prior Art Document] [Patent Document 1] [Public Document 1] International Publication No. 2005/105947 [Patent Document 2] International Publication No. 2006/094303 [Non-Patent Document] [Non-Patent Document 1] " Life Cycle Climate Performance of Some Applications in Japan", Haruo Onishi, 15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 1 3- 1 5, 2004 Conference Proceedings [Summary of the Invention] @The boiling point of the refrigerant is high When the operating pressure is low, in the refrigeration cycle of the vapor compression type, sufficient capacity cannot be obtained. In order to ensure the capacity of the cold room or the greenhouse, measures such as increasing the size of the machine are required, and the indirect effects are usually deteriorated by the influence of pressure loss or the like. Further, when the refrigerant is combustible, the electric system needs to use a member having high safety, and the weight of the refrigerant that can be charged by the machine has an upper limit. The present invention has an object of providing a refrigerant composition which is excellent in LCCP, has a small environmental load, and is incombustible. 201014898 [Means for Solving the Problems] As a result of the above-mentioned problems, the inventors of the present invention have found that a device that circulates a refrigerant through a compressor to constitute a refrigeration cycle contains difluoromethane (HFC32), 2, 3, and 3 In the ternary phase diagram (Fig. 1) of the refrigerant composition of 3-tetrafluoropropene (HF01234yf) and 1,1,1,2-tetrafluoroethane (HFC134a), each component is at (0/64/ 36% by mass), (0/0/100% by mass), and (45/0/5 5 mass%) are surrounded by the respective points, and the refrigerant composition containing HFC32 and HF01234yf is incombustible. Furthermore, it was found that the refrigerant composition was excellent in LCCP evaluation and environmental load was small. In the above ternary phase diagram, each component was (0/6 4/36 6 mass%), (0/3 0.2/69.8 mass) % ), and (3 7.9/1 0.1/52.0% by mass) are surrounded by each point, and the refrigerant composition of HFC32 must be incombustible, and GWP (integration period; ITH = 100yr) is 1000 or less. It is also excellent in LCCP assessment and the environmental load can be small. φ Further, it was found that in the above ternary phase diagram, each component is at (0/64/36 mass%), (0/40.7/59.3 mass./〇), and (26.1/26.9/47.0 mass%). In the range enclosed, the refrigerant composition containing HFC32 is incombustible, and GWP (ITH=l〇〇yr) is 850 or less, and the LCCP evaluation is also excellent, and the environmental load can be made small. Further, it was found that in the above ternary phase diagram, each component was (7/3 7/56 mass%), (9/35/56 mass%), (1 3/24/63 mass%), (10/25/ When the refrigerant composition in the range surrounded by each point of 65 mass%) and (7/2 7/66 mass%) is filled in the freezer, even if it is leaked by the gas phase or the liquid phase, 201014898 is leaked. It is non-flammable, and GWP (ITH=100yr) is below 1000, and it is also excellent in LCCP evaluation, which can reduce the environmental load. Here, for example, the (26.1 / 26.9 / 47.0% by mass) point in the above ternary phase diagram (Fig. 1) means a composition containing HFC32: 26.1% by mass, HF01234yf: 26.9% by mass, and HFC134a: 47.0% by mass. Further, in the ternary phase diagram, the range surrounded by the above-mentioned respective points means that each of the sides of the polygon such as a triangle, a quadrangle or a pentagon formed by connecting a plurality of points such as the above three points, four points, or five points and the inside thereof All of the composition ratios of the three components. The present invention has been completed on the basis of relevant knowledge and efforts to study the results. That is, the present invention provides the following nonflammable refrigerant composition. A refrigerant composition characterized by comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2-tetrafluoroethane (HFC134a) In the ternary phase diagram of the refrigerant composition, each component (HFC32/HF01234yf/HFC134a) is (0/64/36% by mass), (:0/0/100% by mass), and (45/0/55) Mass %) Within the range enclosed by each point, and must include HFC32 and HF01234yf. 2. The refrigerant composition according to Item 1, which comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2-tetrafluoro In the ternary phase diagram of the refrigerant composition of ethane (HFC134a), each component (HFC32/HF01234yf/HFC134a) is (0/64/36% by mass), (0/30.2/69.8% by mass), and (37.9) /1 0.1/52.0% by mass) is surrounded by each point and must contain HFC32. 3. The refrigerant composition according to Item 1 or 2, wherein in the package -8 - 201014898 contains difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1 , in the ternary phase diagram of the refrigerant composition of 1,2-tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC134a) is at (0/64/36 mass%), (0/40.7/59.3 mass) %), and (26.1/26.9/47.0% by mass) are surrounded by each point and must contain HFC32. 4. The refrigerant composition according to any one of items 1 to 3, wherein φ comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1 In the ternary phase diagram of the refrigerant composition of 1,2 -tetrafluoroethane (HFC 1 3 4 a ), each component (HFC32/HF01234yf/HFC 1 34a ) is at (7 / 5 4/3 9 mass%) ), (2 6/2 7/4 7 mass %), and (7/3 7/56 mass%) are surrounded by various points. 5. The refrigerant composition according to any one of items 1 to 4, which comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1, In the ternary phase diagram of the refrigerant group φ of 1,2-tetrafluoroethane (HFC 1 3 4a ), each component (HFC32/HF01234yf/HFC134a) is at (7/54/3 9 mass%), ( 1 2/46/42 mass%), and (7/49/44% by mass) are surrounded by various points. 6. The refrigerant composition according to any one of items 1 to 4, which comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1, In the ternary phase diagram of the refrigerant composition of 1,2-tetrafluoroethane (HFC 1 3 4a ), each component (HFC32/HF01234yf/HFC134a) is (18/38/4 4% by mass), (26/27 /4 7 mass%), and (20/3 1/49 mass%) of the range enclosed by each point 201014898 7. The refrigerant composition as described in item 1 or 2, wherein the product contains difluoromethane ( In the ternary phase diagram of the refrigerant composition of HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf) and 1,1,1,2-tetrafluoroethane (HFC134a), each component (HFC32/ HF01234yf/HFC134a ) at (7/3 7/5 6 mass%), (9/3 5/56 mass%), (13/24/63 mass%), (1 0/25/65 mass%), and (7/27/66% by mass) is surrounded by various points. 8. The refrigerant composition according to any one of items 1, 2, and 7, wherein the composition comprises difluoromethane (HFC3 2 ), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1 In the ternary phase diagram of the refrigerant composition of 1,1,2-tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC134a) is at (7/37/56 mass%), (8/36/ 56% by mass), (10/32/58 mass%), and (7/3 4/599% by mass) are surrounded by various points. The refrigerant composition according to any one of the items 1 to 8, further comprising a polymerization inhibitor. The refrigerant composition according to any one of items 1 to 9, which further comprises a desiccant. The refrigerant composition according to any one of the items 1 to 10, further comprising a stabilizer. 12. A method of operating a refrigerator, characterized in that the refrigerant composition according to any one of items 1 to n is circulated by a compressor. 13. The method for producing a refrigerant composition according to the first aspect, which is characterized by comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and m2-four. In the ternary phase diagram of the refrigerant composition of fluoroethane (HFC134a) 201014898, each component (HFC32/HF01234yf/ HFC13 4 a) is (0/64/3 6 mass%), (0/0/100 mass: %), and (45/0/5 5 mass%) are within the range enclosed by each point, and must include HFC32 and HFOl 234yf. A refrigerator comprising the refrigerant composition according to any one of items 1 to 11. ❹ [Effect of the invention] The refrigerant composition of the present invention is incombustible. Therefore, it is not necessary to change the special machine using a member such as a safety member. Further, by limiting the composition to a specific range, the following effects can be achieved. (1) It is possible to obtain the same or better cycle performance than the conventional heat pump using R407C or R410A as a refrigerant. (2) Since the ozone destruction coefficient (ODP) is zero, even if the refrigerant after use is not recovered at all, the ozone layer is not damaged. φ (3) The ground warming coefficient (GWP) is small compared to the conventional refrigerant R4〇7C or R410A. (4) The evaluation of LCCP is excellent, and when used as a refrigerant for heat pumps, it can reach the equivalent or better of the conventional refrigerant R407C or R410A without causing global warming effect. BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have made an effort to investigate the relationship between the mixing ratio of HFC32, HF01234yf and HFC134a and the LCCP (life cycle climate performance) and -11 - 201014898 flammability. The LCCP was evaluated by the method described in Test Example 1 and the flammability as described in Test Example 2. As a result of the evaluation, in the ternary phase diagram of the refrigerant composition containing HFC32, HF01234yf and HFC134a (Fig. 1), each component is (0/6 4/36% by mass), (0/0/100% by mass) And (45/0/55 mass%) in the range enclosed by each point, and must contain the refrigerant composition (composition 1) of HFC32 and HF01234yf, it is incombustible, and LCCP is excellent and the environmental load is small. In other words, it is a refrigerant composition containing HFC32, HF01234yf, and HFC134a, and the composition ratio (a/b/c mass%) of each component satisfies the following formulas (1) to (3); 0 < a ^ 45 (1) 0<b^(64-1 9/45 xa) (2) The refrigerant composition of c=l〇〇-ab (3) is incombustible, and the LCCP is excellent and the environmental load is small. These equations are those that quantify the incombustible region and can be supported by the embodiment (see Figure 1 for reference). Further, in the ternary phase diagram of the refrigerant composition containing HFC32, HF01234yf, and HF'C 134a (Fig. 1), each component is (0/64/36% by mass), (0/30.2/69.8% by mass) And (in the range enclosed by each point of (37.9/1 0.1/52.0% by mass)' and must contain the refrigerant composition (composition 2) of HFC32, 'is non-combustible, and GWP ( ITH=100yr ) is 1000 or less. And LCCP is also excellent, and the environmental load is small. In other words, it is composed of HFC32, HF01234yf, and HFC134a 201014898, which is composed of a cold-form type of 1000 Φ flammability, and each of the groups (the following is a closed-form formula) is also a composition ratio of each component of the media composition. (a/b/c mass%) satisfies the following (4)~(6); 0<a^3 7.9 (4) ((43000-755xa)/1426)^b^(64-19/4 5xa) (5 c=100-ab (6) The refrigerant composition is incombustible, with GWP ( ITH = 100 yr ) being the same, and LCCP is also excellent, and the environmental load is small. These equations are the range of numbers enclosed by the unbounded line and GWP (ITH = 100yr) = 1 , and can be supported by the embodiment (see Figure 1 for reference). Further, in the ternary phase diagram of the refrigerant containing HFC32, HF01234yf, and HFC134a (Fig. 1), each component was (0/64/36% by mass (0/40.7/59.3% by mass), and (26.1/26.9/). When the mass of the 47.0 mass / / 〇 point is included, and the refrigerant composition of HFC32 must be contained, 3), it is incombustible, GWP ( ITH = 100 yr) is also 850, and LCCP is also excellent, and the environmental load is small. The composition is composed of HFC32, HF01234yf and HFC134a, and the composition ratio (a/b/c mass%) of each component satisfies the following (7) to (9); 0 < a ^ 26.1 (7) ((58000-755xa )/1426)^b^(64- 1 9/4 5 xa) (8) c=100-ab (9) is a refrigerant composition, the liquid phase is incombustible, and GWP (ITH=100yr is less than 850) And LCCP is also excellent, the environmental load is small. These formulas are surrounded by non-combustible boundary line and GWP (ITH=100yr) = 850, and can be supported by the example (Figure 1 For reference, in the ternary phase diagram of the refrigerant composition containing HFC32, HF01234yf and HFC134a (Fig. 1), each component is (7/54/39% by mass), (26/27/47% by mass) ), and (7/37/56% by mass) When the refrigerant composition (composition 4) is mixed in the range, the LCCP is excellent, the environmental load is small, and it is nonflammable. The composition 4 has a low GWP and good freezing ability. For example, the GWP of the composition 4 ( ITH = 100yr ) is about 600 to 8 50, which is 1/2 or less of R410A (GWP: 2088) or R407C (GWP: 1 774). Further, in the ternary phase diagram (Fig. 1), the components are at (7/54/ 39% by mass), (12/46/42% by mass), and (7/49/44% by mass) of the composition within the range (composition 5), or each component at (1 8/3 8/ When the composition (composition 6) in the range surrounded by 44% by mass), (26/27/47% by mass), and (20/31/49% by mass) is particularly excellent, the composition 5 becomes HFC32 (GWP: 675) is equal to or less than GWP. In addition, in the ternary phase diagram of the refrigerant composition containing HFC32, HF01234yf, and HFC134a (Fig. 1), each component is (7/3 7/56 mass%), ( 9/3 5/5 6 mass%), (1 3/24/63 mass%), (10/25/65 mass%), and (7/2 7/66 mass%) are surrounded by the range Refrigerant composition (composition) 7) In the case of a liquid phase composition such as a case where the LCCP is excellent, the environmental load is small, and it is filled in a refrigerator, and the gas phase composition in a saturated state corresponding thereto, it is incombustible. The above composition 7, GWP is low, and has a good freezing ability. For example, the refrigerant composition has a GWP (201014898 ΙΤΗ = 1 OOyr ) of about 8 50 to 1 000, which is 1/2 or less of R410A (GWP: 208 8 ) and 3/5 or less of R407C (GWP: 1774). Further, in the ternary phase diagram (Fig. 1), each component is in (7/37/56 mass%), (8/3 6/56 mass%), (1 0/3 2/5 8 mass%), In particular, when the composition (composition 8) in the range surrounded by (7/3 4/5 9 mass%) is exhibited, an excellent effect is particularly exhibited. The refrigerant composition of the present invention exhibits high stability, but when high stability is required under severe conditions of use of φ, a stabilizer may be added as needed. Such a stabilizer may, for example, be an aliphatic nitro compound such as (i) nitromethane or nitroethane, an aromatic nitro compound such as nitrobenzene or nitrostyrene, or the like. An ether such as an alkane, an amine such as 2,2,3,3,3-pentafluoropropylamine or diphenylamine, butylhydroxyxylene or benzotriazole. The stabilizers may be used singly or in combination of two or more. The amount of stabilizer used varies depending on the type of stabilizer, but does not interfere with the nature of the incombustible composition. The amount of the stabilizer used is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, per 100 parts by weight of the mixture of HFC32 φ, HF01234yf and HFC134a. The composition of the present invention may further contain a polymerization inhibiting agent. For example, 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butyl phenol, 2,6-di-tert-butyl-P-cresol , benzotriazole and the like. The amount of the polymerization inhibiting agent used is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, per 100 parts by weight of the mixture of HFC32, HF01234yf and HFC134a. The composition of the present invention may further contain a desiccant. -15- 201014898 The refrigerant composition of the present invention can be circulated by a compressor to constitute a refrigeration cycle. Further, it may be a device that circulates the refrigerant composition through a compressor to constitute a refrigeration cycle. The refrigerator of the refrigerant composition of the present invention, for example, an automobile air conditioner, a vending machine refrigerator, a business/home air conditioner, a gas heat pump (GHP), an electric heat pump (EHP), or the like, may be used, but is not limited thereto. In particular, it can be used as a refrigerant composition for business and home air conditioners that require miniaturization of the machine. [Embodiment] [Embodiment] Hereinafter, the present invention will be described by way of examples, but it is not limited thereto. Test Example 1 As a refrigerant, the composition of HFC32/HF01234yf/HFC134a shown in Table 1 (Examples 1 to 13) was used, and a heat pump was used. The cooling capacity of the refrigerant was 4 kW, and the evaporation temperature of the evaporator was 10 °C. The condensation temperature of the condenser of the condenser is 45 °C; the capacity of the cold room is 2kW, the evaporation temperature is 17 °C, the condensation temperature is 42 °C; the capacity of the greenhouse is 5kW, the evaporation temperature is 0 °C, and the condensation temperature is 42. °C; In the middle condition of the greenhouse, the capacity is 2.5kW, the evaporation temperature, and the condensation temperature are 32t: the operation is performed. The superheat degree and the supercooling degree were respectively operated at 0 °C. Further, in the comparative example, R410A (Comparative Example 1) and R407C (Comparative -16-201014898 Example 2) were used, and the operation of the heat pump was carried out under the same conditions as above. The coefficient of achievement (COP), evaporation pressure, and condensing pressure calculated based on these results are shown in Table 2. In addition, as a result of this, the annual consumption power amount is calculated based on the JRA 4046:2004 standard, and the LCCP evaluation is performed (Table 3). The coefficient of achievement (COP) and LCCP are obtained by the following formula. Can be expressed as: COP = (freezing capacity or greenhouse capacity) / consumption power φ LCCP = direct impact (kg-C02) + indirect impact (kg-C 〇 2) direct impact = (loss when manufacturing equipment is full) + (general annual loss) + (non-general annual loss) + (loss during service) + (loss at disposal) Indirect impact = (C〇2 discharge amount for air conditioner use) + (C02 discharge during refrigerant production and transportation) The amount can be determined as follows. Direct influence = GWP X Μ X (l-α) + GWPAE X Μ Indirect impact = ΝχΕχβ φ GWP : Earth's warming coefficient per 1KK of the C〇2 benchmark integral period 1〇〇 (kg-C02/kg) GWPAE : GWP is added during production, etc. (including the leakage of by-products or indirect release) (kg-C02/kg) N: Number of years of operation (year) N=12 Μ : The amount of machine charge (kg) M=1.3 α: Recovery rate when the machine is discarded (recycling amount/charged amount) α = 0.6 Ε: Machine annual consumption power consumption (kWh/year) -17- 201014898 β : lkWh Power generation unit C〇2 Production (kg-C02/kWh) β = 0.378 In Table 3, the warming of Examples 1 to 13 and Comparative Example 2 gives the CO 2 yield ratio (indirect influence, direct influence, and LCCP), which is Example 1~ 13 and Comparative Example 2 indirect effects, direct effects and relative enthalpy (ratio) evaluated by LCCP based on those of Comparative Example 1 (R410A). It can be seen that the refrigerant of the present invention is lower than R410A and lower than R407C in the LCCP containing the direct and indirect influence of carbon dioxide emission, and has the lowest environmental load. [Table 1] i combined refrigerant composition J: mas (mass%) Example 1 2 3 4 5 6 7 8 9 10 11 12 13 HFC32 3 3 3 5 8 9 10 10 16 20 21 25 40 HF01234yf 3 50 57 40 34 28 25 48 34 3 31 28 3 HFC134a 94 47 40 55 58 63 65 42 50 77 48 47 57 201014898 [Table 2] Refrigerant COP Evaporation pressure Condensation pressure MPa MPa Example 1 HFC32/HF01234yf/HFC134a (3/3/94mass% )) Cold room freeze 3. 03 0. 440 1.227 Cold room middle 5.10 0. 534 1. 136 Warm room freeze 3. 89 0.317 1.134 Heater middle 5.19 0. 335 0.890 Example 2 HFC32/HF01234yf/HFC134a (3/50/47mass%) Cold room freeze 2· 72 0.486 1.298 Cold room middle 4. 93 0.585 1.205 Warm room freeze 3.76 0.356 1.205 Heater middle 5.11 0. 375 0.952 Example 3 HFC32/HF01234yf/HFC134a (3/57/40mass%) Cold room freeze 2· 67 0.487 1.296 Cold room Intermediate 4· 93 0. 587 1.201 Warm room freeze 3. 74 0.357 1.202 Heater middle 5.09 0.377 0. 952 Example 4 HFC32/HF01234yf/HFC134a (5/40/55mass%) Cold room freeze 2.89 0.499 1.341 Cold room middle 5.00 0. 601 1,244 Check and fix 3.82 0. 365 1.245 mid-room 5.14 0. 385 0.983 implementation 5 HFC32/HF01234yf/HFC134a (8/34/58mass«) Cold room freeze 3. 03 0.519 1.400 Cold room middle 5. 06 0.628 1.299 Warm room freeze 3. 87 0. 379 1.299 Heater middle 5, 17 0. 401 1.027 Example 6 HFC32 /HF01234yf/HFC134a (9/28/63mass%) Cold room freezer 3.09 0.520 1.412 Cold room middle 5. 09 0. 630 1.308 Warm room freeze 3. 90 0.380 1.308 Heater middle 5.19 0. 402 1.034

-19- 201014898-19- 201014898

實施例7 HFC32/HF01234yf/HFC134a (10/25/65mass%) 冷房定格 3.14 0. 525 1.424 冷房中間 5.10 0. 635 L 321 賴定格 3· 92 0.382 1.321 暖房中間 5.20 0. 405 1.044 實施例8 HFC32/HF01234yf/HFC134a (10/48/42massX) 冷房定格 3. 02 0. 548 1.459 冷房中間 5.03 0.661 1.355 暖房定格 3. 87 0. 402 1.354 暖房中間 5.17 0. 425 1.075 實施例9 HFC32/HF01234yf/HFC134a (16/34/50massX) 冷房定格 3.23 0. 585 1.570 冷房中間 5.11 0.707 1.456 暖房定格 3. 95 0. 429 1.456 暖房中間 5.20 0. 454 1.156 實施例10 HFC32/HF01234yf/HFC134a (20/3/77mass%) 冷房定格 3. 42 0.560 1.542 冷房中間 5.21 0. 679 1.429 暖房定格 4. 05 0. 406 1.429 暖房中間 5. 28 0. 431 1.126 實施例11 HFC32/HF01234yf/HFC134a (2l/3l/48mass%) 冷房定格 3.34 0.622 1.663 冷房中間 5.11 0.750 1.546 驗定格 3.98 0. 456 1.545 暖房中間 5.20 0.482 1.228 實施例12 HFC32/HF01234yf/HFC134a (25/28/47mas s%) 冷房定格 3.39 0. 648 1.734 冷房中間 5.12 0. 783 1.613 暖房定格 3. 99 0.475 1.613 暖房中間 5,21 0.503 1.279 實施例13 HFC32/HF01234yf/HFC134a (40/3/57mass%) 冷房定格 3.59 0. 696 1.890 冷房中間 5. 20 0.843 1.752 暖房定格 3.81 0.335 1· 166 暖房中間 5. 25 0.540 1.389 比較例1 R410A 冷房定格 3.44 1.100 2. 752 冷房中間 4. 92 1. 307 2. 564 暖房定格 3.90 0.823 2.562 暖房中間 5. 09 0.863 2.054 比較例2 R407C 冷房定格 3· 42 0. 678 1.837 冷房中間 5. 11 0,821 1.705 暖房定格 3. 99 0. 495 1. 706 暖房中間 5.20 0.526 1.350 -20- 201014898Example 7 HFC32/HF01234yf/HFC134a (10/25/65mass%) Cold room freeze 3.14 0. 525 1.424 Cold room middle 5.10 0. 635 L 321 Lai Dingge 3 · 92 0.382 1.321 Mid-room 5.20 0. 405 1.044 Example 8 HFC32/ HF01234yf/HFC134a (10/48/42massX) Cold room freeze 3. 02 0. 548 1.459 Cold room middle 5.03 0.661 1.355 Warm room frame 3. 87 0. 402 1.354 Heater middle 5.17 0. 425 1.075 Example 9 HFC32/HF01234yf/HFC134a (16 /34/50massX) Cold room freeze 3.23 0. 585 1.570 Middle of the cold room 5.11 0.707 1.456 Warm room freeze 3. 95 0. 429 1.456 Heater middle 5.20 0. 454 1.156 Example 10 HFC32/HF01234yf/HFC134a (20/3/77mass%) Cold room Freezing 3.42 0.560 1.542 Middle of the cold room 5.21 0. 679 1.429 Warm room freeze 4. 05 0. 406 1.429 Heater middle 5. 28 0. 431 1.126 Example 11 HFC32/HF01234yf/HFC134a (2l/3l/48mass%) Cold room freeze 3.34 0.622 1.663 Middle of the cold room 5.11 0.750 1.546 Test and finalization 3.98 0. 456 1.545 Heater middle 5.20 0.482 1.228 Example 12 HFC32/HF01234yf/HFC134a (25/28/47mas s%) Cold room freeze 3.39 0. 648 1.734 Cold room middle 5.12 0. 783 1.613 Warm room freeze 3. 99 0.475 1.613 Heater middle 5,21 0.503 1.279 Example 13 HFC32/HF01234yf/HFC134a (40/3/57mass%) Cold room freeze 3.59 0. 696 1.890 Cold room middle 5. 20 0.843 1.752 Warm room freeze 3.81 0.335 1 · 166 The middle of the greenhouse 5.25 0.540 1.389 Comparative example 1 R410A Cold room freeze 3.44 1.100 2. 752 Cold room middle 4. 92 1. 307 2. 564 Warm room freeze 3.90 0.823 2.562 Warm room middle 5. 09 0.863 2.054 Comparative example 2 R407C Cold room freeze 3 · 42 0. 678 1.837 The middle of the cold room 5. 11 0,821 1.705 The warm room is fixed 3. 99 0. 495 1. 706 The middle of the greenhouse 5.20 0.526 1.350 -20- 201014898

冷媒 GWP (ITH:100y) 賦予溫B 愛化之c〇2產量比 間接影響 直接影響 LCCP 實施例1 HFC32/HF01234yf/HFC134a (3/3/94mass%) 1365 98.9 66.3 94.7 實施例2 HFC32/HF01234yf/HFC134a (3/50/47mass%) 694 101.6 35.1 92.9 實施例3 HFC32/HF01234yf/HFC134a (3/57/40mass%) 595 102.0 30.4 92.7 實施例4 HFC32/HF01234yf/HFC134a (5/40/55mass%) 822 100.4 41.0 92.7 實施例5 HFC32/HF01234yf/HFC134a (8/34/58mass%) 885 99.3 43.9 92.1 實施例6 HFC32/HF01234yf/HFC134a (9/28/63mass%) 963 98.7 47.6 92.0 實施例7 HFC32/HF01234yf/HFC134a (l0/25/65mass%) 998 98.4 49.2 92· 0 實施例8 HFC32/HF01234yf/HFC134a (10/48/42mass%) 670 99.5 33.9 91.0 實施例9 HFC32/HF01234yf/HFC134a (16/34/50mass%) 824 98.0 41. 1 90· 6 實施例10 HFC32/HF01234yf/HFC134a (20/3/77mass%) 1236 96.3 60.3 91.6 實施例11 HFC32/HF01234yf/HFC134a (21/31/48mass%) 829 97.8 41.3 90.5 實施例12 HFC32/HF01234yf/HFC134a (25/28/47mass%) 842 97.6 41.9 90.4 實施例13 HFC32/HF01234yf/HFC134a (40/3/57mass%) 1085 97.4 53.3 91.7 比較例1 R410A 2088 100 100 100 比較例2 R407C 1774 97.8 85.4 96.2 試驗例2 將構成本冷媒的3成分之混合冷媒之燃燒性以ASTM E6 8 1 -2 00 1爲準,使用測定裝置,進行燃燒範圍測定。圖 3作參考。 燃燒狀態以可目視及錄影之方式,使用內容積12公 升之球形玻璃燒杯,因燃燒產生過大壓力時,由上蓋釋放 氣體。著火方法係藉由從維持距離底部1/3高之電極的放 -21 - 201014898 電而產生。 試驗容器:280mm φ球形(內容積:12公升)Refrigerant GWP (ITH: 100y) gives temperature B Aihua's c〇2 yield ratio directly affects LCCP. Example 1 HFC32/HF01234yf/HFC134a (3/3/94mass%) 1365 98.9 66.3 94.7 Example 2 HFC32/HF01234yf/ HFC134a (3/50/47mass%) 694 101.6 35.1 92.9 Example 3 HFC32/HF01234yf/HFC134a (3/57/40mass%) 595 102.0 30.4 92.7 Example 4 HFC32/HF01234yf/HFC134a (5/40/55mass%) 822 100.4 41.0 92.7 Example 5 HFC32/HF01234yf/HFC134a (8/34/58mass%) 885 99.3 43.9 92.1 Example 6 HFC32/HF01234yf/HFC134a (9/28/63mass%) 963 98.7 47.6 92.0 Example 7 HFC32/HF01234yf/ HFC134a (l0/25/65mass%) 998 98.4 49.2 92· 0 Example 8 HFC32/HF01234yf/HFC134a (10/48/42mass%) 670 99.5 33.9 91.0 Example 9 HFC32/HF01234yf/HFC134a (16/34/50mass% 824 98.0 41. 1 90· 6 Example 10 HFC32/HF01234yf/HFC134a (20/3/77 mass%) 1236 96.3 60.3 91.6 Example 11 HFC32/HF01234yf/HFC134a (21/31/48 mass%) 829 97.8 41.3 90.5 Implementation Example 12 HFC32/HF01234yf/HFC134a (25/28/47 mass%) 842 97.6 41.9 90.4 Example 13 HFC32/HF01234yf/HFC134a (40/3/57 mass%) 1085 97.4 53.3 91.7 Comparative Example 1 R410A 2088 100 100 100 Comparative Example 2 R407C 1774 97.8 85.4 96.2 Test Example 2 The combustibility of the mixed refrigerant constituting the three components of the refrigerant is determined by ASTM E6 8 1 - 2 00 1 The device performs the combustion range measurement. Figure 3 is for reference. The combustion state uses a 12-liter spherical glass beaker with visual volume and video recording. When excessive pressure is generated by combustion, the gas is released from the upper cover. The ignition method is generated by discharging the electrode -21 - 201014898 from the electrode which is 1/3 higher than the bottom. Test container: 280mm φ spherical (internal volume: 12 liters)

試驗溫度:60°C ±3°C 壓力 :101.3 kPa ±0.7 kPa 水分 :每乾燥空氣lg爲0.0088 g ±0.0005g 冷媒/空氣混合比:lvol.%刻度 ±0.2vol·% 冷媒混合: ±0.1mass%Test temperature: 60 ° C ± 3 ° C Pressure: 101.3 kPa ± 0.7 kPa Moisture: lg of each dry air is 0.0088 g ± 0.0005 g Refrigerant / air mixing ratio: lvol.% scale ± 0.2 vol · % Refrigerant mixing: ± 0.1 mass %

點火方法:交流放電 電極間隔: 6.4mm(l/4inch) spark ·· 0.4 秒 ±0.05 秒 判定基準:著火點於中心90度以上波及火炎時=燃 燒(傳播) 與 HFC32/HF01234yf/HFC134a之混合系之可燃範圍 的結果如圖2所示。不燃界線之 HFC32、HF01234yf及 HFC134a各成分之組成比例(a/b/c質量%)幾乎爲滿足下 述式(10)〜(12)所示關係者。Ignition method: AC discharge electrode spacing: 6.4mm (l/4inch) spark ·· 0.4 seconds ±0.05 seconds Judgment base: The ignition point is above 90 degrees in the center and the fire is burning = Propagation (propagation) and HFC32/HF01234yf/HFC134a The results of the flammable range are shown in Figure 2. The composition ratio (a/b/c mass%) of each component of the non-combustible boundary HFC32, HF01234yf, and HFC134a is almost the same as the relationship shown in the following formulas (10) to (12).

0 ^ a ^ 45 (10) b=(64-19/45xa) (11) c=l00-a-b (12) 由此結果,本發明之冷媒HFC32/HF01234yf/HFC134a 之組成物爲不燃性係爲明確,且與空氣以任意比率混合亦 不見燃燒。 [產業上利用性] 本發明之混合冷媒組成物係由二氟甲烷、2,3,3,3-四 -22- 201014898 氟丙烯、及1,1,1,2-四氟乙烷所成,可用作冷凍及空調機 器所用之冷媒組成物。 【圖式簡單說明】 [圖 1]包含 HFC32、HF01234yf 及 HFC134a 之冷媒組 成物的三元相圖。 [圖 2]HFC32、HF01234yf 及 HFC134a 之混合系的可 φ 燃範圍。 [圖3]使用於燃燒性試驗之裝置的模式圖。 【主要元件符號說明】 A:不燃邊界線 X :可燃區域 Y:不燃區域 1 ·* Ignition source ❹ 2 : Sample inlet 3 · Springs 4 · 12-liter glass flask 5 ·· Electrodes 6 : Stirrer 7 : Insulated chamber0 ^ a ^ 45 (10) b = (64-19/45xa) (11) c = l00-ab (12) From this result, the composition of the refrigerant HFC32/HF01234yf/HFC134a of the present invention is incombustible. And it is mixed with air at any ratio and there is no burning. [Industrial Applicability] The mixed refrigerant composition of the present invention is composed of difluoromethane, 2,3,3,3-tetra-22-201014898 fluoropropene, and 1,1,1,2-tetrafluoroethane. It can be used as a refrigerant composition for refrigeration and air conditioning machines. [Simplified illustration] [Fig. 1] A ternary phase diagram of a refrigerant composition containing HFC32, HF01234yf, and HFC134a. [Fig. 2] The flammable range of the hybrid system of HFC32, HF01234yf and HFC134a. Fig. 3 is a schematic view of a device used in a flammability test. [Main component symbol description] A: Incombustible boundary line X: Flammable area Y: Non-combustible area 1 ·* Ignition source ❹ 2 : Sample inlet 3 · Springs 4 · 12-liter glass flask 5 ·· Electrodes 6 : Stirrer 7 : Insulated chamber

Claims (1)

201014898 七、申請專利範園: 1·—種冷媒組成物,其特徵係在包含二氟甲烷( HFC32)、2,3,3,3-四氟丙烯(HF01234yf)、及 ΐ,ΐ,ι,2-四氟乙烷(HFC 134a )之冷媒組成物的三元相圖中,各成 分(HFC32/HF01234yf/HFC134a)係在(0/64/36 質量%) ,(0/0/1 00質量% ) ’及(45/0/55質量% )各點所包圍 之範圍內,且一定包含HFC32及HF01234yf。 2.如申請專利範圍第1項所記載之冷媒組成物,其 中’在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01 234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC134a )係在(0/6 4/3 6 質量 % ) ,( 〇/3 Ο · 2/6 9.8 質量 % ),及(37.9/10.1/52.0質量% )之各點所包圍之範圍內, 且必包含HFC32。 3 ·如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC1 34a )在(0/6 4/3 6 質量 % ) ,( 0/4 0 · 7 / 5 9.3 質量 % ) ,及(26.1/26.9/47.0質量%)之各點所包圍之範圍內,且 必含有HFC32。 4.如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf )、及 1,1,1,2 -四氟乙烷(H F C 1 3 4 a )之冷媒組 201014898 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC134a)係在( 7/54/39 質量 %),( 26/27/47 質量 %) ’及(7/3 7/56質量%)之各點所包圍之範圍內。 5 ·如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf)、及 l,l,l,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ 0 HFC134a )係在(7/5 4/3 9 質量 % ) ,( 1 2/4 6/42 質量。/〇 ) ,及(7M9M4質量%)之各點所包圍之範圍內。 6.如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC32) 、2,3,3,3 -四氟丙烯( HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC 13 4a)係在(18/3 8/44 質量 %),( 26/27/47 質量 %) ,及(20/3 1/49質量% )之各點所包圍之範圍內。 φ 7.如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC3 2 ) 、2,3,3,3 -四氟丙烯( HF01234yf )、及 1,1,1,2-四氟乙烷(HFC 1 34a )之冷媒組 成物的三元相圖中,各成分 (HFC32/HF01234yf/ HFC134a)係在( 7/3 7/56 質量 %),(9/35/56 質量 %), (13/24/63 質量%) ,( 1 0/25/65 質量 %),及(7/27/66 質量%)之各點所包圍之範圍內。 8 .如申請專利範圍第1項所記載之冷媒組成物,其 中,在包含二氟甲烷(HFC 32) 、2,3,3,3 -四氟丙烯( -25- 201014898 HF01234yf)、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組 成物的三元相圖中,各成分(HFC32/HF01234yf/ HFC134a)係在( 7/37/56 質量 %),(8/3 6/56 質量 %), (1 0/32/58質量% ),及(7/34/59質量% )之各點所包圍 之範圍內。 9. 如申請專利範圍第1項所記載之冷媒組成物,其 中,更含有聚合防止劑。 10. 如申請專利範圍第1項所記載之冷媒組成物,其 _ 中,更含有乾燥劑。 11. 如申請專利範圍第1項所記載之冷媒組成物,其 中,更含有安定劑。 12. —種冷凍機之運轉方法,其特徵係將申請專利範 圍第1項所記載之冷媒組成物藉由壓縮機進行循環。 13. —種申請專利範圍第1項所記載之冷媒組成物之 製造方法,其特徵係在包含二氟甲烷(HFC32 ) ' 2,3,3,3- 四氟丙烯(HF01234yf )、及 1,1,1,2 -四氟乙烷(H F C 1 3 4 a φ ) 之冷媒組成物的三元相圖中,各成分 ( HFC32/HF01234yf/HFC134a)係在(0/64/3 6 質量 % ),( 0/0/100質量%),及( 45/0/5 5質量%)各點所包圍之範 圍內,且一定包含HFC32及HF01234yf。 14. 一種冷凍機,其特徵係包含申請專利範圍第1項 所記載之冷媒組成物。201014898 VII. Application for Patent Park: 1. A refrigerant composition characterized by containing difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and ΐ, ΐ, ι, In the ternary phase diagram of the refrigerant composition of 2-tetrafluoroethane (HFC 134a), each component (HFC32/HF01234yf/HFC134a) is at (0/64/36 mass%), (0/0/1 00 mass) % ) ' and (45/0/55 mass%) are within the range enclosed by each point, and must include HFC32 and HF01234yf. 2. The refrigerant composition as recited in claim 1, wherein 'containing difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01 234yf), and 1,1,1, In the ternary phase diagram of the refrigerant composition of 2-tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC134a) is at (0/6 4/3 6 mass%), (〇/3 Ο · 2 /6 9.8 mass%), and (37.9/10.1/52.0% by mass) are surrounded by each point and must contain HFC32. 3. The refrigerant composition according to the first aspect of the patent application, which comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2 - In the ternary phase diagram of the refrigerant composition of tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC1 34a) is at (0/6 4/3 6 mass%), (0/4 0 · 7 / 5 9.3 mass%), and (26.1/26.9/47.0 mass%) are surrounded by each point and must contain HFC32. 4. The refrigerant composition according to claim 1, wherein the difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2 are contained. - In the ternary phase diagram of the refrigerant group 201014898 of tetrafluoroethane (HFC 1 3 4 a ), each component (HFC32/HF01234yf/HFC134a) is at (7/54/39 mass%), (26/27 /47% by mass) Within the range enclosed by 'and (7/3 7/56 mass%). 5. The refrigerant composition according to claim 1, wherein the composition comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and l,l,l,2 - In the ternary phase diagram of the refrigerant composition of tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/0 HFC134a) is at (7/5 4/3 9 mass%), (1 2/4 6/ 42%./〇), and (7M9M4% by mass) are surrounded by various points. 6. The refrigerant composition according to claim 1, wherein the composition comprises difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2 - In the ternary phase diagram of the refrigerant composition of tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC 13 4a) is at (18/3 8/44 mass%), (26/27/47 mass) %), and (20/3 1/49% by mass) are surrounded by various points. φ 7. The refrigerant composition according to the first aspect of the invention, which comprises difluoromethane (HFC3 2 ), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1 In the ternary phase diagram of the refrigerant composition of 2-tetrafluoroethane (HFC 1 34a ), each component (HFC32/HF01234yf/HFC134a) is at (7/3 7/56 mass%), (9/35/ 56% by mass), (13/24/63 mass%), (1 0/25/65 mass%), and (7/27/66 mass%) are surrounded by various points. 8. The refrigerant composition according to claim 1, wherein the composition comprises difluoromethane (HFC 32), 2,3,3,3-tetrafluoropropene (-25-201014898 HF01234yf), and 1, In the ternary phase diagram of the refrigerant composition of 1,1,2-tetrafluoroethane (HFC134a), each component (HFC32/HF01234yf/HFC134a) is (7/37/56 mass%), (8/3 6 /56% by mass), (1 0/32/58% by mass), and (7/34/59% by mass) are surrounded by various points. 9. The refrigerant composition according to claim 1, wherein the polymerization agent is further contained. 10. The refrigerant composition as described in claim 1 of the patent application, further comprising a desiccant. 11. The refrigerant composition according to the first aspect of the patent application, further comprising a stabilizer. 12. A method of operating a refrigerator, characterized in that the refrigerant composition described in the first aspect of the patent application is circulated by a compressor. A method for producing a refrigerant composition according to the first aspect of the invention, characterized in that it comprises difluoromethane (HFC32) '2,3,3,3-tetrafluoropropene (HF01234yf), and 1, In the ternary phase diagram of the refrigerant composition of 1,1,2-tetrafluoroethane (HFC 1 3 4 a φ ), each component (HFC32/HF01234yf/HFC134a) is (0/64/3 6 mass%) , (0/0/100% by mass), and (45/0/5 5 mass%) are within the range enclosed by each point, and must include HFC32 and HF01234yf. A refrigerator comprising the refrigerant composition described in claim 1 of the patent application.
TW98122289A 2008-07-01 2009-07-01 Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) TW201014898A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12950508P 2008-07-01 2008-07-01
US12950608P 2008-07-01 2008-07-01
US11290508P 2008-11-10 2008-11-10

Publications (1)

Publication Number Publication Date
TW201014898A true TW201014898A (en) 2010-04-16

Family

ID=41090299

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122289A TW201014898A (en) 2008-07-01 2009-07-01 Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)

Country Status (2)

Country Link
TW (1) TW201014898A (en)
WO (1) WO2010002023A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201002625D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
US8628681B2 (en) 2007-10-12 2014-01-14 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US8512591B2 (en) 2007-10-12 2013-08-20 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
FR2936806B1 (en) 2008-10-08 2012-08-31 Arkema France REFRIGERANT FLUID
EP2367601B2 (en) * 2008-11-19 2022-08-03 The Chemours Company FC, LLC Tetrafluoropropene compositions and uses thereof
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
GB0915004D0 (en) * 2009-08-28 2009-09-30 Ineos Fluor Holdings Ltd Heat transfer composition
US9074115B2 (en) 2009-08-28 2015-07-07 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
FR2950065B1 (en) 2009-09-11 2012-02-03 Arkema France BINARY REFRIGERANT FLUID
FR2950066B1 (en) 2009-09-11 2011-10-28 Arkema France LOW AND MEDIUM TEMPERATURE REFRIGERATION
FR2950071B1 (en) * 2009-09-11 2012-02-03 Arkema France TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION
FR2950069B1 (en) 2009-09-11 2011-11-25 Arkema France USE OF TERNARY COMPOSITIONS
FR2950070B1 (en) 2009-09-11 2011-10-28 Arkema France TERNARY COMPOSITIONS FOR HIGH CAPACITY REFRIGERATION
GB201002622D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
AU2011254381C1 (en) 2010-05-20 2014-09-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
EP2571952B1 (en) 2010-05-20 2015-07-29 Mexichem Fluor S.A. de C.V. Heat transfer compositions
GB2481443B (en) 2010-06-25 2012-10-17 Mexichem Amanco Holding Sa Heat transfer compositions
US9783721B2 (en) 2012-08-20 2017-10-10 Honeywell International Inc. Low GWP heat transfer compositions
US8940180B2 (en) 2012-11-21 2015-01-27 Honeywell International Inc. Low GWP heat transfer compositions
US9982180B2 (en) 2013-02-13 2018-05-29 Honeywell International Inc. Heat transfer compositions and methods
EP2970735A4 (en) * 2013-03-15 2016-11-23 Honeywell Int Inc Heat transfer compositions and methods
US10035937B2 (en) * 2014-05-05 2018-07-31 Honeywell International Inc. Low GWP heat transfer compositions
US10330364B2 (en) 2014-06-26 2019-06-25 Hudson Technologies, Inc. System and method for retrofitting a refrigeration system from HCFC to HFC refrigerant
CN116278639A (en) * 2018-07-17 2023-06-23 大金工业株式会社 Refrigeration cycle device for automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TWI482748B (en) * 2005-06-24 2015-05-01 Honeywell Int Inc Compositions containing fluorine substituted olefins
DE202007008291U1 (en) * 2006-06-17 2007-10-18 Ineos Fluor Holdings Ltd., Runcorn Heat transfer compositions
KR20090049617A (en) * 2006-09-01 2009-05-18 이 아이 듀폰 디 네모아 앤드 캄파니 Method for circulating selected heat transfer fluids through a closed loop cycle
JP2010530952A (en) * 2007-06-21 2010-09-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Leakage detection method in heat transfer system

Also Published As

Publication number Publication date
WO2010002023A1 (en) 2010-01-07
WO2010002023A8 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
TW201014898A (en) Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
JP5556813B2 (en) Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
US8318039B2 (en) Refrigerant composition comprising 1,1,1,2-tetrafluoroethane (HFC134a) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
Devotta et al. Alternatives to HCFC-22 for air conditioners
US9994749B2 (en) Compositions and methods for refrigeration
JP6642757B2 (en) Composition containing refrigerant, heat transfer medium and heat cycle system
JP6870727B2 (en) Refrigerant-containing compositions, heat transfer media and heat cycle systems
JP2013530265A5 (en)
JP2022087163A (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
Emani et al. Development of refrigerants: a brief review
TW201014897A (en) Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
JP2016517460A (en) Systems that provide efficient heating and / or cooling and have little impact on climate change
TW201014899A (en) Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
JPWO2018052000A1 (en) Working medium composition for thermal cycling and thermal cycling system