200812545 九、發明說明: 【發明所屬之技術領域】 本發明係有關脈波檢測裝置’特別是有關進行用以脈波檢 測之感測器的定位操作之脈波檢測裝置。 【先前技術】 在使用脈波計來測定受測者(患者等)之脈波時,於被測定 的脈波中,係檢測有從心臟推出血流之壓力波(驅出波),及 來自末端的反射壓力波(反射波)。且藉由測定含有驅出波及 反射波的脈波,可以知道該受測者之血管硬化(老化)程度。 因而,測定脈波因爲可知道該被測者之健康狀態故非常地重 要。 以往的脈波檢測裝置係具備有安裝在手腕等測定部位的 感測器單元。在禪定時,受測者等係以最佳的測定位置,亦 即使感測器單元移動到動脈之位置。籠統的對合位置係依手 工來操作,而微調整則係實際地一邊測定脈波一邊辨別動脈 位置。 如此的脈波檢測裝置,例如係揭示於日本國專利公開 200 3-3 25 4 63號公報和專利公開2004-222847號公報中。此等 文獻所記載之裝置係具有將最終決定的位置作成音調圖 (tonogram)而顯示在顯示單元之畫面上的機能。音調圖係用 以表示由感測器單元之脈波感測器所檢測的脈壓之分布。而 在微調整時一邊看所顯示的音調圖一邊移動感測器單元,而 探索最佳的位置。 專利文獻1 :日本國專利公開2003-325463號公報 200812545 專利文獻2 :日本國專利公開2004-222847號公報 【發明內容】 發明欲解決的課題 然而,於日本國專利公開2003-325463號公報和專利公開 2004-222847號公報所揭示的裝置中,應使裝在手腕的感測 器單元移動的方向與所顯示的音調圖指示的動脈位置之方 向難以對應。亦即,受測者僅看音調圖,係難以判斷應將感 測器單元移動於那個方向才好。 又、脈波裝置大多用於醫療機關等,但音調圖,是否指依 從穿戴在感測器單元之受測者視點的脈壓分布,或指依從操 作者(醫生等)視點的脈壓分布乃未有明示的顯示。因而,不 論是受測者還是測定者都難以從音調圖明確地掌握應使感 測器單元移動於哪個方向。 因而、本發明之目的係提供一種隨著觀看用以表示所檢出 的測定部位之脈壓分布的圖表方向而進行切換顯示的脈波 檢測裝置。 本發明之其他目的爲提供一種因應所檢測測定部位之脈 壓分布而顯示壓力感測器陣列移動方向的脈波檢測裝置。 用以解決課題的手段 較佳爲,顯示控制部係顯示旋轉中之圖表的狀態。 較佳爲,壓力感測器陣列係可滑移操作於排列方向,而依 由圖表作成部所作成圖表資料所指示的脈壓分布,檢測出位 在動脈壓力感測器排列中的位置。然後根據所檢測的位置, 將指示壓力感測器陣列應滑移方向用的方向指示資料顯示 200812545 於顯示部。 較佳爲,方向指示資料,係依看所顯示的圖表之視點者, 之不同,而指示應滑移的方向。 較佳爲,壓力感測器陣列係收容於框體,且在框體內能夠 滑移操作於排列方向,框體之表面印刷有分別指示可滑移的 方向圖樣。方向指示資料,係表示用以指示能夠滑移的方向 中之對應於應滑移方向的方向之圖樣。 較佳爲,顯示控制部係附關連於圖表之開始點或終止點所 Φ 標繪的壓力資料,且顯示圖樣,用以指示配置有輸出該壓力 資料的壓力感測器的一方端或另一方端。用以指示一方端或 另一方端的圖樣,係與指示分別被印刷在框體上之能夠滑移 的各個方向圖樣一致。 較佳爲,壓力感測器陣列係收容在框體,且能夠在框體內 滑移操作於排列方向。壓力感測器陣列之外面印刷有標記, 在框體,從外部能夠確認標記的開口部係被形成於滑移的方 向。於框體之表面,在開口部之周圍印刷有複數個不同顏色 ^ 的著色標記。顯示控制部,係藉由顯示用以指示壓力感測器 陣列之標記與著色標記中任一個著色標記的對合位置之資 料而指示應予滑移的方向。 較佳爲,壓力感測器陣列係收容於框體,能夠在框體內滑 移操作於排列方向。在壓力感測器陣列之外面印刷有標記。 在框體,從外部能夠確認的開口部係被形成於滑移的方向。 並於框體之表面,在開口部之周圍印刷有複數個不同的文字 或記號’顯示控制部,係藉由顯示用以指示壓力感測器陣列 200812545 之標記與複數個不同文字或記號中任一個之記號或文字對 合位置的資料而指示應予滑移的方向。 較佳爲、方向指示資料係依從看所顯示圖表的視點之不 同,使用從該視點所看到之收容有壓力感測器陣列的框體之 圖樣來指示應予滑移的方向。 依據本發明其他形態,係一種程式產品,係使電腦執行脈 波檢測裝置中之顯示,該脈波檢測裝置具有:壓力感測器陣 列,具有排列複數個壓力感測器的面,該面在生物體之動脈 上被推壓成該壓力感測器之排列方向與該動脈交叉;推壓 部,將該壓力感測器陣列之面推壓於該動脈上,其特徵爲具 備如以下者。 亦即程式產品,係使電腦執行如下步驟:從被推壓部推壓 的壓力感測器陣列之一方端之壓力感測器開始,一直到配置 於另一方端的壓力感測器爲止,按排列中的壓力感測器之排 列次序,作成將各壓力感測器輸出的壓力資料連續標繪之圖 表資料的步驟,及根據作成圖表的步驟所作成之圖表資料的 圖表,控制顯示於顯示部的步驟。而在顯示控制步驟中,係 將與外部賦予的切換指示對應的以下任一個圖表顯示於顯 示部,其中該圖表係指:於面被推壓的狀態下,從隔著平面 之一方側的視點所看的圖表,而該平面係配置有壓力感測器 陣列且含有與動脈交叉的方向;以及從隔著平面的另一方側 之視點所看的圖表。 較佳爲,在控制顯示的步驟,因應於自外部賦予的切換指 示,將於顯示部從顯示的一方側視點所看圖表,切換顯示爲 200812545 從另一方側視點看的圖表。 較佳爲,係在控制顯示的步驟中,於面被推壓的狀態下, 顯示從隔著平面之一方側的視點所看的圖表,而該平面係配 置有壓力感測器陣列且含有與動脈交叉的方向,且因應於轉 換指示,而顯示切換爲從隔著平面的另一方側視點所看的圖 表。 較佳爲、壓力感測器陣列係能夠滑移操作於排列方向。然 後,在控制顯示的步驟中,係按由作成圖表的步驟作成之圖 表資料所指示的脈壓分布,檢測位在動脈上的壓力感測器在 排列中的位置,根據所檢測的位置,將用以指示壓力感測器 陣列應予滑移方向的方向指示資料顯示在顯示部。 依據本發明之另一個其他形態,係一種脈波檢測裝置中之 顯示方法,該脈波檢測裝置具備:壓力感測器陣列,其具有 排列複數個壓力感測器之面;該面在生物體之動脈上被推壓 成使該壓力感測器之排列方向與該動脈交叉;推壓部,將該 壓力感測器陣列之面推壓於動脈上,該顯示方法具備如下之 特徵。 亦即、顯示方法係使電腦實行如下步驟:從被推壓部推壓 的壓力感測器陣列之一方端之壓力感測器開始,一直到配置 於另一方端的壓力感測器爲止,按排列中的壓力感測器之排 列次序,作成將各壓力感測器輸出的壓力資料連續標繪之圖 表資料的步驟,及依根據製作圖表步驟所作成之圖表資料的 圖表,控制顯示於顯示部的步驟。在顯示控制步驟中,係將 與外部賦予的切換指示對應的以下任一個圖表顯示於顯示 200812545 部,其中該圖表係指:於面被推壓的狀態下,從隔著平面之 一方側的視點所看的圖表,而該平面係配置有壓力感測器陣 列且含有與動脈交叉的方向;以及從隔著平面的另一方側之 視點所看的圖表。 依據發明、因爲具有將顯示部之圖表顯示,從現在視點之 顯示,切換爲相反(不同)視點的顯示之機能,所以可顯示因 應於看圖表的方向之圖表。又、顯示部而言,可依現在視點 之方向(看圖表的方向)指示壓力感測器陣列應予移動的方 向。 【實施方式】 發明最佳實施形態 對於本發明之實施形態,參照圖式詳細說明。各圖中,同 一符號係表示表示相同或者是對等部分。 第1圖和第2圖,係表示有關本實施形態的脈波檢測裝置 Z機能構成。第3圖係表示含感測器單元和固定台的各部之 連接關係。第4圖係表示將脈波檢測裝置穿戴於生物體的狀 態。參照第3圖和第4圖,脈波檢測裝置係具備有··爲了檢 測手腕動脈的脈波而穿戴在手腕表面的感測器單元丨、爲了 檢測脈波而用來固定手腕的固定台2以及用以執行包含有脈 波檢測及血壓測定用之演算的各種處理之顯示單元3。在第 3圖中、感測器單元1係收容在框體1 〇 〇內,在第4圖中顯 不、感測器單元1係被槽9 (參照第3圖)所引導而從框體1 〇 〇 內滑移到外部,而位於手腕上的狀態。 固定台2係內建固定台單元7,固定台單元7和感測器單 -10- .200812545 元1係藉由通信電纜5和空氣管6連接。又、被穿戴在血壓 測定部位的腕帶52和顯示單元3係透過空氣管53而連接。 在此、固定台單元7和顯示單元3爲了通信係透過 USB (Universal Serial Bus)電纜4來連接,但亦能以無線方式 作連接。 在脈波檢測時、如第4圖所示,使用者係在將手腕載置於 固定台2之規定位置狀態,藉滑移方式使感測器單元1位於 手腕之動脈側表面並利用帶8繫緊感測器單元1之框體1 〇〇 φ 和固定台2,以手腕上的感測器單元1不致移離地固定住。 作爲測定之形態,係假定爲僅使用感測器單元1的脈波測 定、僅使用腕帶52的血壓測定、或者是雙方之測定等3種。 脈波檢測用的感測器單元1係穿戴於手腕上,血壓測定用 的腕帶52係捲繞(穿戴)在上臂部。穿戴之形態有如以下者。 例如在左腕穿戴感測器單元1而在右腕穿戴腕帶52那樣、 亦可以作成同時在左右之腕部檢測脈波和血壓。或者如第4 圖那樣、將感測器單元1和腕帶52穿戴於同一腕部’而緊 ® 接脈波檢測之後再作血壓檢測亦可。 參照第1圖、感測器單元1係具有:複數個壓力感測器26 在由單結晶矽等所成的半導體晶片之後述的推壓面4 0上排 列於一方向而成的壓力感測器陣列11,該複數個壓力感測器 2 6係由檢測脈壓用的複數個隔膜和電阻電橋電路所構成;多 工器1 2,將因應於壓力感測器陣列1 1中之複數個壓力感測 器26各個輸出的檢測脈壓電壓信號選擇性地導出;以及推 壓腕帶1 3,其含有爲了將壓力感測器陣列11推壓於手腕上 -11- .200812545 而被加壓調整的空氣袋。顯示單元3係把音調圖及如後述用 以引導感測器單元1之滑動方向的資訊等通報於使用者。 固定台單元7係包含:用以對推壓腕帶(空氣袋)13之內壓 (以下,稱爲腕帶壓)加壓之加壓泵1 4和用以減壓之負壓泵 1 5 ;切換閥1 6,用以將加壓泵1 4和負壓泵1 5中任一個選擇 性地切換連接至空氣管6 ;對此等進行控制的控制電路17 ; 爲了與顯示單元3通信而連接有USB電纜4的通信電路18; 以及A/D(Analog/Digital)轉換器19,用以把從感測器單元1 • 導出的輸出信號轉換爲數位資料。 顯不單兀 3 係具有:CPU(Central Processing Unit)20,用以 執行含有用以集中控制脈波檢測裝置的演算之各種處理;用 以記憶脈波檢測裝置控制用資料及程式的R〇M(Read Only Memory)21 和 RAM(Random Access Memory)22 ;操作部 23, 設成可從外部操作而被操作用來輸入各種資訊;顯示器24, 係由用以將脈波檢測結果及血壓測定結果等各種資訊輸出 外部之 LCD(Liquid Crystal Display)等所構成;外部 ® I/F(Interface)41 ;計時現在時刻以作爲時間資料輸出的定時 器43 ;血壓測定單元50 ;通信電路71,係依通信方式而連 接血壓測定單元50和CPU20 ;及通信I/F 72,藉由USB電 纜4而連接固定台單元7之通信電路18和CPU20。 外部 I/F 41係裝設有裝卸自如的 CD-ROM(Compact Disk-Read Only Memory) 42 而對被裝設的 CD-ROM 42 之資 料進行存取。血壓測定單元50係透過空氣管53而連接被穿 戴在上臂的腕帶52。 -12- 200812545 此外、在此固定台2之固定台單元7和顯示單元3係分開 設置,但亦可爲將兩機能內建於固定台2的構成。在是被內 建的場合,係以操作部23和顯示器24可從外部操作、或是 可從外邰確認顯不內谷那樣地被安裝在固定台2之框體。 第2圖係表示血壓測定單元50和其關連部分之構成。參 照第2圖、血壓測定單元5 0係具備:壓力感測器5 4,容量 會依內建於腕帶52的空氣袋51內之壓力(以下稱「腕帶壓 力」)而變化;振盪電路55,藉由I/F 60把因應於壓力感測 器54之容量値的振盪頻率信號輸出到通信電路7 1 ;用以調 整腕帶壓力位準之栗56及閥58;用以驅動栗56的泵驅動電 路5 7 ;以及用以調整閥5 8開關程度之閥驅動電路5 9。空氣 袋51和壓力感測器54、泵56及閥58係藉由空氣管53來連 接。I/F60係把從振盪電路55得到的信號轉換爲壓力信號(表 示動脈之容積變化的壓力脈波信號),輸出於通信電路7 1。 參照第5圖來針對有關實施形態的脈波檢測裝置之機能構 成作說明。脈波檢測裝置係具備:用以算出後述之血壓測定 値的血壓算出部20 1 ;控制在顯示部24中的資訊、資料之顯 示的顯示控制部202 ;控制記憶體(RAM22)之資料儲存及讀 出的記憶體控制部203 ;音調圖作成部204,輸入從通信電 路1 8發送之壓力感測器26所輸出的脈壓資訊,而根據輸入 的資訊作成音調圖;切換部205,指示顯示控制部202切換 顯示器2 4之音調圖之顯示;脈波處理部2 0 6,輸入從通信電 路1 8發送之壓力感測器26所輸出的脈壓資訊、而根據輸入 的資訊來處理脈波;對話顯示控制部207,指示顯示控制部 200812545 202在顯示器24上顯示規定的對話。對話顯示控制部2〇7所 具有的機能’係在感測器單元1對測定部位的位置並不適當 時’換言之也就是在發生錯誤時’用以顯示規定的對話。 RAM22中儲存有:用以表示血壓測定(算出)結果之資料的 血壓資料300 ;用以表示依音調圖作成部204作成的音調圖 資料之音調圖資料301 ;用以表示與依脈波處理部2〇6所得 的脈波資訊有關的脈波資訊302 ;以及用以表示被顯示於顯 示器24之對話資料的患者用顯示資料(A側)及(B側)3〇3及 • 305、以及操作者用顯示資料(人側)及(6側)3〇4及3〇6。此等 資料303〜306之詳細容後述之。 於上述構成中,在血壓測定之際,血壓算出部201係根據 透過通信電路71而輸入的壓力信號,按規定之演算式,算 出血壓(mmHg)(相當最高血壓之收縮壓(syst〇Hc blood pressure)及相當最低血壓之舒張壓(diastolic blood pressure))以及脈博數(pulse : beat/minute))。如此算出之次序 因爲可適用於以往所提供之習知次序,所以在此省略其詳細 ® 說明。此外、以下亦將如此算出的血壓値、或血壓値及脈博 數稱爲「血壓測定値」。於本實施形態中、血壓測定値,係 以每一血壓測定就輸出於記憶體控制部203。記憶體控制部 203,係將輸入的血壓測定値,作爲與從計時器43輸入的時 刻資'料(測定時刻資料)對應的血壓資料 300而儲存在 RAM22。顯示控制部202係把從RAM22讀出的血壓資料300 顯示在顯示器24。此外、顯示控制部202,係把從計時器43 輸入的現在時刻資料顯示於顯示器24。 -14- 200812545 參照第1圖和第3圖、操作部23係含有用以指示切換在 顯示器24中的音調圖之顯示形態而被操作的開關23A和 23B、以及用以指示開始和停止測定而被操作的開關23C和 23D。 第6圖表示感測器單元1之構成。第6圖(A)之感測器單 元1之橫斷穿戴手腕時手腕方向之剖面構造表示於第6圖 (B)。第6圖(C)係把第6圖(B)之點線框內之一部分放大表 示。在第6圖(B)之推壓腕帶13 —被加壓泵14及負壓泵15 • 調整腕帶壓力時,隔著由陶瓷或樹脂所成型的塊而安裝的壓 ,力感測器陣列1 1係如第6圖(C)所示箭頭25方向僅自由地移 動因應於該腕帶壓力位準的量。壓力感測器陣列11係藉移 動於箭頭25之下面方向(手腕方向),而從框體1 00預先所設 開口部突出而推壓於手腕表面。如第6圖(D)和第6圖(E)所 示,壓力感測器陣列11之複數個壓力感測器26的排列方向 在是將感測器單元1穿戴在手腕時對應於與動脈大致正交 (交叉)的方向,排列長度係至少比動脈之徑長。在各個壓力 ^ 感測器26被推壓腕帶13之腕帶壓力所推壓時,把從動脈發 生並傳達於生物體表面之屬壓力振動波(脈壓)的壓力資訊作 爲電壓信號輸出。壓力感測器26係於規定之大小(5.5mm X 8.8mm)之推壓面40,例如排列40個。第6圖(A)之用以引導 感測器單元1的滑移方向的槽9所延伸方向,係對應於壓力 感測器陣列11之壓力感測器26的排列方向。 第7圖表示沿第4圖VII - VII線的剖面圖。在第7圖中、 推壓腕帶13之腕帶壓力因爲被負壓泵15充分減壓(因爲具 -15- .200812545 有遠低於大氣壓的壓力位準),所以壓力感測器陣列1 1係成 爲被收容在感測器單元1之框體1 〇〇內的狀態而不接觸於手 腕表面。 在本實施形態中、在脈波測定時,係透過顯示器24顯示 用以表示由壓力感測器陣列1 1所檢測的脈壓分布的音調 圖。因此,透過音調圖可對使用者報知固形物或徺骨動脈27 所位在的方向,。使用者透過音調圖,可以確認橈骨動脈27 之方向,亦即應使感測器單元1滑動的方向。針對此報知之 # 詳細內容將叙述如後。 在此、針將感應器單元1滑動的方向作說明。如同上述、 在將感測器單元1穿戴在手腕上時,複數個壓力感測器26 之排列方向係對應於與徺骨動脈27大致正交(交叉)的方 向,由槽9所引導的感測器單元1之滑移方向,係對應於壓 力感測器26的排列方向。因此,感測器單元1之滑移方向, 係對應於與橈骨動脈27大致正交(交叉)的方向。 第8圖和第9圖係顯示著被印刷(列印)於感測器單元1之 ® 框體100的標記61和62(附有文字‘A’和‘B,的箭頭)。 第8圖之標記6 1係於收容感測器單元1的框體100側面, 從既將感測器單元1穿戴在手腕狀態之患者側以可確認地把 由槽9所引導之可滑移操作方向印刷成—、—,同時各箭頭 附上並印刷有一味地指示朝向的文字(‘ A ’和‘ B ’ )。在 此、可滑移操作的方向係以文字和箭頭之組合的圖樣來表 示,但若可指示方向的話、則亦可爲其他的文字、數値、圖 形等之圖樣。 -1 6 - 200812545 於患者之手腕上穿戴著感測器單元1的狀態(參照第4圖) 時,標記6 1和62之文字‘ A,係指患者之左測,文字‘ b, 係指患者之右側。因此,在穿戴著感測器單元1之狀態中, 將感測器單元1滑動於文字‘ A’側,係指位在患者側的人 (患者或操作者)要進行滑動於其人之左側的操作,而將感測 器單元1滑動於文字‘ B’側,係指要進行滑動於其人之右 側的操作。 又,於患者手腕上穿戴著感測器單元1的狀態(參照第4 Φ 圖),位在與患者隔著感測器單元1而相對之位置的人(操作 者),標記61和62之文字‘ A’ ,係指其人(操作者)之右側, 文字‘ B ’係指左側。所以在將感測器單元1穿戴的狀態, 其人將感測器單元1滑動於文字‘ A’側,係指滑動操作於 其人之右側,而滑動於文字‘ B’側,係指滑動操作於其人 之左側。在此雖未圖示,但在感測器皐元1之框體100,位 在與患者隔著感測器單元1而相對之位置的人(操作者)側邊 之面上亦印刷有如第8圖般的標記6 1。 ® 第9圖(A)和(B)之標記62,係於收容感測器單元1的框體 1 00的上面,以穿戴感測器單元1在手腕狀態之患者,或操 作者可確認般地,把應使引導感測器單元1滑動到槽9的方 向印刷成—、—,同時各箭頭附有印刷著一味地表示朝向的 文字(‘ A’和‘ B’ )。 又,如第9圖(A)和(B)所示,在框體100上面之一部分形 成有開口部(窗)67。又、感測器單元1之上面印刷有標記66。 伴隨著感測器單元1被槽9所引導並滑移,標記66亦移動 -17- 200812545 於滑動開口部內的方向。 在此、參照第9圖(A),於收容感測器單元1的框體1〇〇 上面’隔著開口部67 ’在一方側上印刷有複數個棒狀之標記 64 ’在另一方側,亦在與此等棒狀標記各自對應的位置上印 刷有棒狀標記64。各個棒狀標記係用不同的顏色著色,且位 在隔著開口部67呈對應的位置之棒狀標記彼此係以相同顏 色著色。 第9圖(B)係顯示代替第9圖(A)之棒狀標記圖樣而印刷有 文字(在此係數値)所構成的標記65。有關用標記65表示的 數値’係指位在隔著開口部67對應的位置之數値彼此是指 同樣的値。 在利用槽9之引導來滑移操作感測器單元1時,操作使感 測器單元1之標記66配合於標記64之任何一個顏色之棒狀 標記、或是標記65之任何一個値之數値位置。針對此操作 之目的容後述之。 按第1 0圖之流程圖來說明本實施形態的處理次序。依照 該流程圖的程式,及於實行該程式時所參照的資料係預先儲 存在ROM21或RAM22,使CPU20邊適宜參照該資料邊讀出 程式來實行而進行處理。此外、在此係假定顯示單元3被供 •給電源而處於可動作的狀態。 首先使用者開啓(ON)操作部23之電源開關(未圖示)。 CPU20係響應該ON操作而透過通信電路18對控制電路17 指示把切換閥16切換到負壓泵15側以驅動負壓泵15(步驟 S 1)。因此、控制電路17係根據指示,切換切換閥1 6來驅 200812545 動負壓泵15。 負壓泵15 —被驅動時,使腕帶壓力透過切換閥16以遠低 大氣壓的壓力作用,所以壓力感測器陣列11係在第6圖(C) 之箭頭25之移動於上箭頭方向。此結果,可以迴避壓力感 測器陣列11不小心突出而導致錯誤動作或發生故障。 其後,在測定者將感測器單元1如第4圖那樣穿戴在手腕 上並開啓操作部23之起動開關23C時,隨著CPU20之指示 信號,控制電路1 7判定壓力感測器陣列1 1是否移動,亦即 判定感測器單元1是否已沿著滑動槽9滑移到手腕之表面上 的位置(S2)。在感測器單元1之框體1〇〇內設有檢測滑移用 的未圖示之微動開關,控制電路17係根據該微動開關之檢 測信號來判定壓力感測器陣列1 1是否有移動。 在未判定有移動之期間(步驟S2爲否),係反覆步驟S 1 之處理。而在判定爲有移動時(步驟S2爲是),控制電路就 根據從操作部23所賦予的操作信號來判定開關23C是否被 操作(步驟S2a)。在判定結果爲開關23C未被操作、亦即指 未指示開始測定時(步驟S2a爲否),返回步驟S1之處理, 以後,係一直到開關23C被操作之前,反覆步驟S 1和S2 之處理。 一方面,在步驟S2a之判定結果爲操作了開關23C時,亦 即指已被指示開啓測定時(步驟S 2 a爲是),控制電路17係把 切換閥16切換成加壓泵14側以驅動加壓泵14(步驟S3)。依 此、腕帶壓力上升使壓力感測器陣列11移動於第6圖(C)之 箭頭25之下箭頭方向,壓力感測器陣列1 1係被推壓於手 -19- 200812545 腕之表面。 在壓力感測器陣列1 1 一被推壓於手腕表面上(參照第7圖) 時’電壓信號之壓力資訊(指脈壓的資訊)係由各壓力感測器 26藉由多工器12而被導出,利用A/D轉換器19轉換爲數位 資訊,並藉由通信電路1 8而賦予顯示單元3之音調圖作成 部204。此時,從壓力感測器陣列1 1配列的一方端之壓力感 測器26 —直到另一方端之壓力感測器26爲止,壓力資訊係 按照其位置之次序而被賦予音調圖作成部204。音調圖作成 Φ 部204係使用被賦予的數位資訊(壓力資訊)來作成音調圖, 再將作成的音調圖之資料301輸出於記憶體控制部 203 (S3a)。記憶體控制部203係將被賦予的資料儲存於 RAM22。 此時,切換部205係根據從操作部23輸入的切換之操作 信號,現在,判定是否被指定而將音調圖之顯示按操作者視 點及患者視點之任何一形態而作切換(步驟S4)。在此,係預 先假設由患者或操作者操作了開關23A或23B。因此、例如, ® 在開關23A被預先操作時,根據該操作所輸入的切換操作信 號,切換部205係指示顯示控制部202顯示患者視點所用之 音調圖,但是在開關23 B被預先操作時,係根據該操作所輸 入的切換操作信號,指示顯示控制部202顯示操作者視點所 用之首調圖。 顯示控制部202,係從RAM22讀出音調圖資料301,根據 所讀出的資料,而依從切換部205所賦予的指示,把音調圖 顯示於顯示器24(步驟S5、S6)。在此、音調圖之顯示形態, -20- .200812545 係依從切換部2 0 5所賦予的指示而變更。而針對被作成並顯 示的音調圖將於後述。 其次、脈波處理部206係根據音調圖來執行腱29除外之 固形物的處理(步驟S 7)’在固形物除外的處理中,係根據在 S 3 a所獲得的音調圖資訊,特定在壓力感測器陣列1 1中之位 於固形物上的壓力感測器26,而被特定的壓力感測器26除 外的剩下之壓力感測器26,係被候補選爲位在橈骨動脈27 上的壓力感測器26。 9 其次、脈波處理部206係從位於橈骨動脈27上的壓力感 測器26之候補,執行把位於撓骨動脈27上的壓力感測器26 選爲最佳通道的處理(步驟S 8)。有關此最佳通道選擇處理之 詳細係詳述於專利文獻2之日本國專利公開2004-222847號 公報中,在此係簡單地說明。 音調圖資料3 01,係針對各壓力感測器26,包含有由該壓 力感測器26檢測的脈壓信號所表示之直流成分和交流成分 之資料。CPU20係將直流成分位準成爲一定臨限値以上的所 ® 有壓力感測器26特定爲未位在徺骨動脈27上。然後CPU20 係把所特定的壓力感測器26除外所剩下的壓力感測器26視 爲是位於榛骨動脈27上的壓力感測器之候補。然後從此候 補之中,直流成分之位準更低,且交流成分之位準更高的壓 力感測器26選爲最佳通道。 其次,脈波處理部206因爲根據從對應所選擇的最佳通道 之壓力感測器26輸入的壓力資訊而檢測脈波,所以算出基 於推壓腕帶1 3的推壓位準之變動量,再將算出的變動量與 -21 - 200812545 可檢測脈波的規定變動量作比較(步驟S9)。比較結果,若算 出的變動量滿足規定變動量則判定滿足用以脈波檢測的腕 帶壓力條件(步驟S 10爲是),而若未能滿足時則透過控制電 路1 7,利用加壓泵1 4 一邊繼續對推壓腕帶1 3加壓一邊反覆 步驟S3a〜S 10之處理,直到滿足腕帶壓力條件爲止。 在滿足腕帶壓力條件時(步驟S 1 0爲是),調整加壓泵1 4 使得推壓腕帶1 3對壓力感測器陣列1 1的推壓位準可成爲脈 波檢測用之最佳位準(步驟S 11)。此調整之詳細係記載於專 利文獻2之日本國專利公開2004-222847號公報,在此省略 其詳細。 在針對推壓腕帶1 3做最佳壓力調整之下,被選爲最佳通 道的壓力感測器26所輸出的壓力資訊,亦即橈骨動脈27脈 波之波形資料,係藉由多工器12、A/D轉換器19及通信電 路18而轉送於脈波處理部206(步驟S12)。 脈波處理部206係受理波形資料,根據所受理的波形資料 做脈波檢測。在受理波形資料並判定結束脈波檢測之規定條 件成立以前係反覆步骤S 1 2之脈波資料轉送處理。此外、根 據所受理的波形資料之脈波檢測處理係按照公知之順序,所 以在此省略其詳細。 在脈波檢測結束之規定條件成立時(步驟S13爲是)、CPU20 係透過切換閥16而驅動負壓泵15般地作控制(步驟S 14)。 藉此而解除壓力感測器陣列11對手腕之推壓狀態,一連串 之脈波檢測處理係結束。 脈波處理部206,係將既檢測脈波之資訊輸出於記憶體控 -22- 200812545 制部203。記憶體控制部203,係將被賦予的資訊作爲脈波 資訊302儲存在RAM22。顯示控制部202,係從RAM22讀出 脈波資訊302,將讀出的脈波資訊302藉由顯示器24輸出到 外部。又、脈波之資訊,係被用於利用脈波處理部206來算 出AI(增加率索引;Augmentation Index),也可使算出的AI 輸出於顯示器24。 在此、針對於步驟S3a、步驟S5(S6)作成(顯示)的音調圖 作說明。 • 第1 1圖係根據作成的音調圖資料3 0 1之顯示的一例子, 顯示與壓力感測器陣列1 1之壓力感測器26之排列方向賦予 關連的。第1 2圖係表示脈波測定之狀態。在第1 2圖將患者 之測定部位碰撞感測器單元1之推壓面40而於推壓狀態 中,在隔著推壓面40之排列有壓力感測器陣列1 1之感測器 26的方向且爲含有與徺骨動脈27大致正交(交叉)方向的平 面(爲假想之面,未圖示)之一方側係有患者之視點,而另一 方側有操作者之視點。亦即操作者係如第1 2圖所示,假定 ® 是位在與患者相對的位置。 參照第1 1圖,音調圖作成部204作成的音調圖資料30 1, 係壓力感測器陣列1 1之壓力感測器26各自與該壓力感測器 26輸出的脈壓信號所指的位準賦予關連所成的資料。顯示控 制部202,係從RAM22讀出音調圖資料301,根據讀出的資 料顯示如第1 1圖的圖表。該圖表係將脈壓位準取爲縱軸 V J,使壓力感測器2 6之排列對應於橫軸HJ。然後,將原點 0作爲圖表之標繪開始點,從A側之壓力感測器26到B側 -23 - 200812545 之壓力感測器2 6爲止依排列的次序,將各壓力感測器2 6 lif 出的脈壓信號所指的位準連續標繪之圖表。因此,相對於橫 軸Η〗,在原點0側有‘ Α’文字CH,而在原點〇相反側則 是‘ Β’文字CH附予關連來顯示。文字CH係與印刷在框體 1 00的標記6 1文字一致。因而、患者或操作者,成爲能夠附 予對應標繪之開始點或終了點,與壓力感測器陣列1 1排列 .之一方端與另一方端之壓力感測器26之輸出。第11圖之音 調圖係表示從切換部205賦予的指示係指患者視點時之顯示 ❿ 例。 又,在從切換部205賦予的指示是指操作者視點時,第} ! 圖之音調圖,係於橫軸HJ方向將原點〇作爲圖表標繪之開 始點,從B側之壓力感測器26到A側之壓力感測器26爲止, 按排列的次序,將各壓力感測器26輸出的脈壓信號所;指的 位準顯示爲連續標繪的圖表。亦即顯示控制部202,係根據 從RAM22讀出的音調圖資料301,顯示使第1 1圖之音調圖 反轉者。 Φ 具體而言,係以是通過已將位於壓力感測器陣列1 1中央 Μ的壓力感測器26之輸出位準標繪的音調圖上之點的軸、 且正交於橫軸HJ的軸MJF爲中心而成爲將第11圖之音調圖 反轉於橫軸HJ方向的圖表。在此時,對橫軸HJ在原點〇側 顯示有‘Β’文字CH,而原點0相反側顯示有‘Α’之文字 CH。 在此係使用了文字CH,但只要壓力感測器陣列1 1之排列 的一方端和另一方端的壓力感測器26之輸出是可附予對應 -24- 200812545 的話’則也能以數値、圖形等之圖樣來取代文字。又、雖然 顯不了在兩端對應的文字4 A ’和‘ B ’雙方,但是僅顯示一 方端之文字亦可。 因此、如第12圖,在患者以顯示器2 4之畫面朝向自己般 地配置著顯示單元3的狀態來作測定時,藉由操作患者開關 2 3 A,可以顯示第11圖所示的患者視點之音調圖。因而,患 者係可確認連同音調圖一起顯示的文字CH之‘ A’ 、以及 和印刷在感測器單元1之框體1 00上的標記6 1或62之顯示 φ 文字‘呈一致的A ’ ,都是位在患者之左側,而‘ B,之文 字都是位在患者之右側。因而,一邊看音調圖變化一邊移動 感測器單元1時,可防止移動操作方向之錯誤/ 又、與第1 2圖之患者夾著感測器單元1而相對的操作者 爲了確認音調圖,係以使顯示器24之畫面朝向自己般地變 更顯示單元3之配置而操作操作者開關23B。依此,可使第 1 1圖所示的音調圖反轉顯示而顯示操作者視點之音調圖。因 此、操作者係可確認連同音調圖一起顯示的文字 CH之 ® ‘A’ 、以及和印刷在感測器單元1之框體100上的標記61 或62之顯示文字呈一致的‘ A’ ,都是位在操作者之右側, 且可確認‘ B ’之文字都是位在操作者之左側。因而,一邊 看音調圖變化一邊移動感測器單元1時,可以防止移動操作 方向之錯誤。 (對話顯示) 在本實施形態中,也可以作成將操作感測器單元1沿著槽 9滑移的方向顯示成對話來引導患者或操作者。爲了顯示對 -25- 200812545 話,係使用RAM22之患者用顯示資料(a側)及側)3〇3及 3 05以及操作者用顯示資料(A側)及(B側)304及306。 第1 3圖係表示分別對操作者視點和患者視點作顯示的音 調圖之例子、以及對話E1和E2。於第13圖中,在操作者 視點及患者視點之音調圖上,除了該音調圖以外,還顯示有 標記63,其依顯示控制部202而指示該音調圖是與操作者視 點及患者視點之任一對應。 對話顯示部207,係透過記憶體控制部203讀出音調圖 Φ 301,解析所讀出的音調圖資料301,根據解析結果判定是否 爲最佳的音調圖。在此’所謂最佳的音調圖所說的是、如第 11圖中對應於音調圖中央位置Μ之値是指峰値那樣的音調 圖。換言之,於推壓面40被推壓於測定部位的狀態下、壓 力感測器陣列1 1中央之壓力感測器26是位於橈骨動脈27 上時,如第11圖那樣的最佳音調圖係被測定。依據第11圖 之音調圖,於測定部位以徺骨動脈27爲中心,可一眼就確 認其周圍之脈壓分布狀況。 ® 對話顯示部207係判定指示音調圖資料30 1之峰値的壓力 感測器26是否爲位於壓力感測器陣列1 1中央的壓力感測器 2 6。在判定其非位於中央的壓力感測器2 6時,依顯示控制 部202而顯示錯誤訊息之對話。亦即,顯示嚮導(guidance) 以便移動操作感測器單元1在可獲得最佳音調圖的位置上。 具體而言、對話顯示部207,係依從自切換部205陚予的 開關23A和23B操作之別的信號,而指示顯示控制部202顯 示操作者視點或患者視點之對話E 1或E2。顯示控制部202 -26- 200812545 係將基於被賦予之指示的資料,透過記憶體控制部203而從 RAM22讀出,並依既讀出的資料而將對話E1或£2顯示於顯 示器24。具體的顯示例係表示於第14圖。 作爲對話E2之具體例,第14圖(A)係表示基於操作者視 點者’而第14圖(B)係基於患者視點者。於最佳音調圖未被 測定時,係藉由對話來引導將感測器單元1滑動操作的移動 方向而使壓力感測器陣列1 1中央之壓力感測器26位置於橈 骨動脈27上。 • 例如’依對話顯示部207,在第1 3圖的操作者視點之音調 圖峰値被檢測出是隔著第1 1圖之軸M;[而位在原點0之相反 側時’對話顯示部207係指示顯示控制部202而顯示操作者 用顯示資料(B側)306,所以顯示控制部202係根據該指示, 透過記憶體控制部203而讀出操作者用顯示資料(B側)306 並顯示於顯示部24。根據操作者用顯示資料(B側)306而顯 示第14圖(A)之對話,使感測器單元1移動於標記61或62 所指示的‘ B ’側般地利用感測器單元1之圖樣與其操作方 ^ 向(―)一起進行引導。 又’在第1 3圖患者視點之音調圖峰値是被檢測出是隔著 第11圖之軸M〗而位在原點〇側時,同樣地、對話顯示部 207係指示顯示控制部2〇2顯示患者用顯示資料(B側)3〇5, 所以顯示控制部202係根據該指示,透過記憶體控制部203 而讀出患者用顯示資料(B側)305並顯示於顯示器24。根據 患者用顯示資料(B側)305而顯示第14圖之(B)的對話,且使 感測器單元1移動於標記61或62所指示的‘ B ’側般地利 -27- 200812545 用感測器單元1之圖樣與其操作方向(-> )一起進行引導。 因此、操作者或患者,係操作患者所穿戴的感應器單元1 而可知道被槽9所引導之移動方向。 又、在對話中、係於冒出的圓內,利用標記66和標記64 之棒狀標記的對合位置來報知應移動於哪個方向。被顯示的 棒狀標記,係與在用以收容感測器單元1的框體1 00上面以 不同顏色著色的棒狀標記一致,所以要滑動的方向能以棒狀 標記之顏色來賦予瞭解。 第15圖是與第13圖的場合相同,係顯示代替標記64而 設置標記65時之對話。所顯示之標記65之數値排列次序(升 序或降序),係與被列印在用以收容感測器單元1的框體1 00 的上面之標記6 5的數値一致,所以可在要滑動的方向,在 標記66之數値上賦予瞭解。 (切換時之音調圖之顯示形態) 也可以是顯示控制部202把從被顯示的患者側(一方側)視 點所看到的音調圖變化(被切換)成從操作者側(另一方側)之 視點所看到的音調圖的過程中之、音調圖的形狀變化的狀態 予以顯示在顯示器24。 第16圖係顯示在操作開關23A和23B時,利用顯示控制 部202來切換音調圖顯示之形態的一個例子。因應於開關 23A既被操作的情況,於第1 6圖的上段之音調圖被顯示的 狀態中,在開關23B被操作而有指示要切換爲操作者視點的 場合,顯示控制部202,係使顯示中的音調圖以第11圖之軸 MJ爲中心漸漸地一邊旋轉於軸H〗之方向,——邊把直到成爲 -28 - 200812545 反轉狀態爲止的過程,進行間格移放,並模擬地示出要被顯 示的圖表之變化。藉由旋轉中之圖表狀態之間格移放,最終 係顯示下段之既反轉的音調圖,亦即操作者視點之音調圖。 在此切換指示乃係賦予操作顯示單元3之開關2 3 A或 23B ’但是也可將其取代,而改爲在感測器單元1設開關23a 和23B,再從感測器單元丨賦予。 又、在此、爲了賦予切換指示而設有2個開關23 A和23 B, 但是其中1個開關可以是,例如每次操作(按下)就可賦予操 # 作者視點/患者視點之切換指示用的雙向開關。又、也可作 成依轉動操作能變更顯示器24之方向,因應於轉動操作而 在操作者視點之音調圖和患者視點之音調圖之間作切換顯 不 ° 在以上的實施形態中,顯示單元3係利用通信方式從固定 台單元7受理由感測器單元1所檢測的脈壓資訊,但是受理 的方法並不受此所限。亦即,也可以是CPU20藉由外部I/F41 而從儲存著由感測器單元1所檢測的脈壓資訊之CD-ROM42 ^ 當中讀出脈波資訊而取得。 本發明中的脈波檢測裝置所執行的音調圖等之顯示方法 也可以作爲程式來提供。這樣的程式係爲,使記錄在附屬於 電腦的軟性磁碟片、CD-ROM、ROM、RAM及記憶卡等之電 腦可讀取的記錄媒體,提供作爲程式製品。或使之記錄在內 建於電腦的硬碟等的記錄媒體,提供程式者。又、也可以藉 由網路下載來提供程式。例如第1圖之構成中,在具備CPU20 而具有電腦機能的顯示單元3上,可使用CD-ROM42供給該 -29- 200812545 程式。CPU20係透過外部I/F41而讀出被儲存在CD-R〇M42 的程式並執行。 所提供的程式製品係安裝於硬碟等之程式儲存部而由 CPU讀出並執行。此外、程式製品係包含程式本身和記錄有 程式的記錄媒體。 此次所揭示的實施形態係全部事項僅爲例示,不應視爲限 制者。本發明之範圍並非如上述的說明乃係依申請專利範圍 所示,意圖包含與申請專利範圍均等之意義及範圍內的所有 ⑩ 變更。 【圖式簡單說明】 第1圖係有關本實施形態的脈波檢測裝置之硬體構成圖。 第2圖係有關本實施形態的血壓測定單元之硬體構成圖。 第3圖係有關本實施形態表示操作部之開關配置和感測器 單元和固定台之連接形態之圖。 第4圖係有關本實施形態表示脈波測定時之使用形態之 圖。 • 第5圖係有關本實施形態的脈波檢測裝置之機能構成圖。 第6圖(A)(B)(C)(D)(E)係有關本發明之實施形態表示感測 器單元之壓力感測器陣列構成之圖。 第7圖係表示第4圖之VII-VII線剖面之圖。 第8圖係有關本實施形態的感測器單元之框體側視圖。 第9圖(A)(B)係感測器單元之框體上視圖。 第10圖係有關本實施形態的處理流程圖。 第11圖係有關本實施形態的將音調圖與壓力感測器陣列 -30- 200812545 附予關連說明之圖。 第12圖係有關本實施形態指畫面朝向患者之狀態之圖。 第1 3圖係有關本實施形態表示輸出之一例之圖。 第14圖(A)(B)係有關本實施形態表示輸出之其他例圖。 第1 5圖係有關本實施形態表示輸出之另一其他例之圖。 第1 6圖係有關本實施形態表示音調圖之顯示切換中途之 表示例之圖。 【主要元件符號之說明】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse wave detecting device', particularly to a pulse wave detecting device for performing a positioning operation of a sensor for pulse wave detection. [Prior Art] When a pulse wave is used to measure a pulse wave of a subject (patient, etc.), a pressure wave (exit wave) that is pushed out from the heart is detected in the pulse wave to be measured, and The reflected pressure wave (reflected wave) at the end. Further, by measuring the pulse wave including the evoked wave and the reflected wave, the degree of hardening (aging) of the blood vessel of the subject can be known. Therefore, it is very important to measure the pulse wave because it can know the health status of the subject. A conventional pulse wave detecting device includes a sensor unit attached to a measurement site such as a wrist. At the time of meditation, the subject is optimally measured, even if the sensor unit moves to the position of the artery. The general position of the joint is manually operated, while the micro-adjustment actually determines the pulse position while discriminating the position of the artery. Such a pulse wave detecting device is disclosed, for example, in Japanese Patent Laid-Open Publication No. Hei. No. 2003-222847. The devices described in these documents have the function of displaying the final determined position as a tonogram and displaying it on the screen of the display unit. The tone map is used to indicate the distribution of pulse pressure detected by the pulse wave sensor of the sensor unit. In the micro adjustment, while moving the sensor unit while looking at the displayed tone map, the best position is explored. Patent Document 1: Japanese Patent Publication No. 2003-325463, No. 200812545, Patent Document 2, Japanese Patent Publication No. 2004-222847, and the like. In the device disclosed in Japanese Laid-Open Patent Publication No. 2004-222847, it is difficult to correspond to the direction in which the sensor unit mounted on the wrist moves in the direction of the arterial position indicated by the displayed tone map. That is, the subject only looks at the tone map, and it is difficult to judge whether the sensor unit should be moved in that direction. Further, the pulse wave device is mostly used in medical institutions, etc., but the tone map refers to the pulse pressure distribution according to the viewpoint of the subject worn by the sensor unit, or the pulse pressure distribution according to the viewpoint of the operator (doctor, etc.). There is no explicit display. Therefore, it is difficult for the subject or the measurer to clearly grasp from the tone map which direction the sensor unit should be moved. Accordingly, an object of the present invention is to provide a pulse wave detecting apparatus that performs switching display while viewing a graph direction indicating a pulse pressure distribution of a detected measurement site. Another object of the present invention is to provide a pulse wave detecting device that displays a moving direction of a pressure sensor array in response to a pulse pressure distribution of a detected portion to be detected. Means for Solving the Problem It is preferable that the display control unit displays the state of the graph during rotation. Preferably, the pressure sensor array is slidably operable in the alignment direction and detects the position in the arterial pressure sensor arrangement in accordance with the pulse pressure distribution indicated by the chart data of the chart making portion. Then, according to the detected position, the direction indication data indicating the direction in which the pressure sensor array should be slipped is displayed on the display unit. Preferably, the direction indication data indicates the direction in which the slip should be indicated depending on the viewpoint of the displayed graph. Preferably, the pressure sensor array is housed in the frame, and is slidably operated in the arrangement direction in the frame, and the surface of the frame is printed with a direction pattern indicating the slippage. The direction indicating material indicates a pattern indicating a direction corresponding to the direction of the slip in the direction in which the slip can be made. Preferably, the display control unit is attached with pressure data plotted on the Φ of the graph at the start or end point of the graph, and displays a pattern for indicating one side or the other side of the pressure sensor configured to output the pressure data. end. The pattern for indicating one end or the other end is identical to the pattern of the respective directions indicating that it can be printed on the frame, respectively. Preferably, the pressure sensor array is housed in the frame and is slidable in the frame in the direction of arrangement. A mark is printed on the outer surface of the pressure sensor array, and the opening portion of the frame from which the mark can be confirmed from the outside is formed in the direction of the slip. On the surface of the frame, a plurality of coloring marks of different colors ^ are printed around the opening. The display control unit indicates the direction to be slipped by displaying information indicating the matching position of the mark of the pressure sensor array and any one of the colored marks. Preferably, the pressure sensor array is housed in the housing and is slidable in the housing in the alignment direction. Marks are printed on the outside of the pressure sensor array. In the casing, an opening portion that can be confirmed from the outside is formed in the direction of slippage. And on the surface of the frame, a plurality of different characters or symbols 'display control unit are printed around the opening portion, by displaying the mark indicating the pressure sensor array 200812545 and a plurality of different characters or symbols. A mark or text that matches the position of the position indicates the direction in which it should be slipped. Preferably, the direction indicating data is in accordance with the viewpoint of the displayed chart, and the direction of the frame to be slipped is indicated by the pattern of the frame in which the pressure sensor array is seen from the viewpoint. According to another aspect of the present invention, a program product is provided for causing a computer to perform display in a pulse wave detecting device, the pulse wave detecting device having: a pressure sensor array having a face on which a plurality of pressure sensors are arranged, the face being The artery of the living body is pushed so that the direction in which the pressure sensor is arranged intersects with the artery; and the pressing portion presses the surface of the pressure sensor array against the artery, and is characterized by having the following. That is, the program product is such that the computer performs the following steps: starting from the pressure sensor at one end of the pressure sensor array pushed by the pressing portion, until the pressure sensor disposed at the other end, arranged in order The arrangement of the pressure sensors in the process, the steps of continuously plotting the pressure data outputted by the pressure sensors, and the chart data according to the steps of the charting, and controlling the display on the display unit step. In the display control step, any one of the following graphs corresponding to the switching instruction given by the outside is displayed on the display unit, wherein the graph refers to a viewpoint from one side of the plane in a state where the surface is pressed. The chart is viewed, and the plane is configured with a pressure sensor array and contains a direction that intersects the artery; and a chart as viewed from the other side of the plane. Preferably, in the step of controlling the display, in response to the switching instruction given from the outside, the graph is displayed on the display unit from the side view of the display, and the graph displayed as the view from the other side is switched to 200812545. Preferably, in the step of controlling the display, in a state in which the surface is pressed, a graph viewed from a viewpoint on one side of the plane is displayed, and the plane is provided with a pressure sensor array and contains The direction in which the arteries intersect, and in response to the transition indication, the display switches to a chart viewed from the other side view of the plane. Preferably, the pressure sensor array is capable of sliding operation in the alignment direction. Then, in the step of controlling the display, the pulse pressure distribution indicated by the chart data created by the step of creating the chart is used to detect the position of the pressure sensor located on the artery in the arrangement, and according to the detected position, Direction indicating data indicating that the pressure sensor array should be slipped is displayed on the display portion. According to still another aspect of the present invention, a display method in a pulse wave detecting device, the pulse wave detecting device includes: a pressure sensor array having a surface on which a plurality of pressure sensors are arranged; the surface is in a living body The artery is pushed so that the direction of arrangement of the pressure sensor intersects the artery; and the pressing portion pushes the surface of the pressure sensor array against the artery. The display method has the following features. That is, the display method causes the computer to perform the following steps: starting from the pressure sensor at one end of the pressure sensor array pushed by the pressing portion, until the pressure sensor disposed at the other end, arranged in order The arrangement of the pressure sensors in the process, the steps of continuously plotting the pressure data outputted by the pressure sensors, and the chart data according to the chart making steps, and controlling the display on the display unit step. In the display control step, any one of the following graphs corresponding to the externally assigned switching instruction is displayed on the display 200812545, wherein the graph refers to the viewpoint from one side of the plane in a state where the surface is pressed. The chart is viewed, and the plane is configured with a pressure sensor array and contains a direction that intersects the artery; and a chart as viewed from the other side of the plane. According to the invention, since the display of the display unit is displayed, the display of the current viewpoint is switched to the display function of the opposite (different) viewpoint, so that the graph corresponding to the direction of the graph can be displayed. Further, in the display unit, the direction in which the pressure sensor array should be moved can be indicated in the direction of the current viewpoint (see the direction of the graph). BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same symbol indicates that the same or the equivalent portion is indicated. Fig. 1 and Fig. 2 show the functional configuration of the pulse wave detecting device Z according to the present embodiment. Fig. 3 is a view showing the connection relationship between the respective units including the sensor unit and the fixed stage. Fig. 4 is a view showing a state in which the pulse wave detecting device is worn on a living body. Referring to Fig. 3 and Fig. 4, the pulse wave detecting device includes a sensor unit 穿戴 that is worn on the surface of the wrist for detecting a pulse wave of the wrist artery, and a fixed table 2 for fixing the wrist for detecting a pulse wave. And a display unit 3 for performing various processes including calculations for pulse wave detection and blood pressure measurement. In Fig. 3, the sensor unit 1 is housed in the housing 1 ,, and is shown in Fig. 4, and the sensor unit 1 is guided by the slot 9 (see Fig. 3). 1 The state of slipping to the outside while lying on the wrist. The fixed station 2 is built-in fixed station unit 7, fixed station unit 7 and sensor unit-10-. 200812545 yuan 1 is connected by a communication cable 5 and an air tube 6. Further, the wristband 52 and the display unit 3, which are worn at the blood pressure measurement site, are connected through the air tube 53. Here, the fixed station unit 7 and the display unit 3 are connected via a USB (Universal Serial Bus) cable 4 for communication, but can also be connected wirelessly. At the time of pulse wave detection, as shown in Fig. 4, the user places the wrist on the fixed position of the fixed table 2, and the sensor unit 1 is placed on the side surface of the artery of the wrist by the slipping method and the belt 8 is used. The frame 1 〇〇φ of the sensor unit 1 and the fixed table 2 are fastened, and the sensor unit 1 on the wrist is fixed without being removed. The measurement form is assumed to be three types using only the pulse wave measurement of the sensor unit 1, the blood pressure measurement using only the wristband 52, or the measurement of both. The sensor unit 1 for pulse wave detection is worn on the wrist, and the wristband 52 for blood pressure measurement is wound (worn) on the upper arm. The form of wearing is as follows. For example, when the sensor unit 1 is worn on the left wrist and the wristband 52 is worn on the right wrist, it is also possible to detect the pulse wave and the blood pressure in the left and right wrist portions at the same time. Alternatively, as shown in Fig. 4, the sensor unit 1 and the wristband 52 may be worn on the same wrist portion, and the blood pressure may be detected after the pulse wave detection. Referring to Fig. 1, the sensor unit 1 has pressure sensing in which a plurality of pressure sensors 26 are arranged in one direction on a pressing surface 40 described later by a semiconductor wafer made of a single crystal germanium or the like. Array 11, the plurality of pressure sensors 26 are composed of a plurality of diaphragms and resistance bridge circuits for detecting pulse pressure; the multiplexer 12 will be adapted to the plurality of pressure sensor arrays 1 The detected pulse voltage signals of the respective output of the pressure sensors 26 are selectively derived; and the wrist strap 13 is pushed, which is included in order to push the pressure sensor array 11 onto the wrist -11-. 200812545 Air bag that is pressurized and adjusted. The display unit 3 notifies the user of the tone map and the information for guiding the sliding direction of the sensor unit 1 as will be described later. The fixing table unit 7 includes a pressurizing pump 14 for pressurizing the internal pressure of the wristband (air bag) 13 (hereinafter referred to as a wristband pressure) and a vacuum pump 15 for decompressing the vacuum pump. a switching valve 16 for selectively switching one of the pressurizing pump 14 and the negative pump 15 to the air tube 6; the control circuit 17 for controlling the same; for communicating with the display unit 3 A communication circuit 18 to which the USB cable 4 is connected; and an A/D (Analog/Digital) converter 19 for converting an output signal derived from the sensor unit 1 to digital data. The CPU 3 (Central Processing Unit) 20 is configured to execute various processes including calculations for centrally controlling the pulse wave detecting device, and R〇M for storing data and programs for monitoring the pulse wave detecting device ( Read Only Memory 21 and RAM (Random Access Memory) 22; the operation unit 23 is operable to be externally operated to input various information; and the display 24 is used to detect pulse wave detection results and blood pressure measurement results, etc. Various information outputs are external LCD (Liquid Crystal Display), etc.; external ® I/F (Interface) 41; timing is now timed as a time data output timer 43; blood pressure measuring unit 50; communication circuit 71, by communication In the manner, the blood pressure measuring unit 50 and the CPU 20 are connected, and the communication I/F 72 is connected to the communication circuit 18 of the fixed station unit 7 and the CPU 20 via the USB cable 4. The external I/F 41 is equipped with a CD-ROM (Compact Disk-Read Only Memory) 42 for accessing the information of the installed CD-ROM 42. The blood pressure measuring unit 50 connects the wristband 52 worn on the upper arm through the air tube 53. -12- 200812545 In addition, the fixed stage unit 7 and the display unit 3 of the fixed table 2 are separately provided, but the two functions can be built in the fixed stage 2. In the case where it is built, the operation unit 23 and the display unit 24 can be externally operated or can be attached to the frame of the fixed table 2 as it is confirmed from the outside. Fig. 2 shows the configuration of the blood pressure measuring unit 50 and its associated portion. Referring to Fig. 2, the blood pressure measuring unit 50 includes a pressure sensor 504, and the capacity changes depending on the pressure built in the air bladder 51 of the wristband 52 (hereinafter referred to as "the wristband pressure"); the oscillating circuit 55, the oscillating frequency signal corresponding to the capacity 値 of the pressure sensor 54 is output to the communication circuit 71 by the I/F 60; the pump 56 and the valve 58 for adjusting the wristband pressure level; for driving the pump 56 a pump drive circuit 57; and a valve drive circuit 59 for adjusting the degree of switching of the valve 58. The air bag 51 and the pressure sensor 54, the pump 56, and the valve 58 are connected by an air tube 53. The I/F 60 converts the signal obtained from the oscillation circuit 55 into a pressure signal (a pressure pulse wave signal indicating a change in the volume of the artery), and outputs it to the communication circuit 71. The functional configuration of the pulse wave detecting device according to the embodiment will be described with reference to Fig. 5. The pulse wave detecting device includes a blood pressure calculating unit 20 1 for calculating a blood pressure measuring port described later, a display control unit 202 for controlling display of information and data on the display unit 24, and a data storage for controlling the memory (RAM 22). The read memory control unit 203, the tone map creation unit 204, inputs the pulse pressure information output from the pressure sensor 26 transmitted from the communication circuit 18, and creates a tone map based on the input information; the switching unit 205 instructs display The control unit 202 switches the display of the tone map of the display 24; the pulse wave processing unit 206 outputs the pulse pressure information output from the pressure sensor 26 transmitted from the communication circuit 18, and processes the pulse wave based on the input information. The dialog display control unit 207 instructs the display control unit 200812545 202 to display a predetermined dialog on the display 24. The function of the dialog display control unit 2〇7 is based on the fact that the position of the sensor unit 1 at the measurement site is not appropriate, in other words, when an error occurs, to display a predetermined dialogue. The RAM 22 stores: a blood pressure data 300 for indicating the blood pressure measurement (calculation) result data, and a tone map data 301 for indicating the tone map data created by the tone map creation unit 204; The pulse wave information 302 related to the pulse wave information obtained by 2〇6; and the patient display data (A side) and (B side) 3〇3 and 305, and the operation for indicating the dialogue data displayed on the display 24. Use the display data (human side) and (6 side) 3〇4 and 3〇6. Details of these materials 303 to 306 will be described later. In the above-described configuration, the blood pressure calculation unit 201 calculates the blood pressure (mmHg) according to a predetermined calculation formula based on the pressure signal input through the communication circuit 71 (the systolic blood pressure (syst〇Hc blood) Pressure) and the diastolic blood pressure of a relatively minimum blood pressure and pulse (beat/minute). The order of calculation is omitted because it can be applied to the conventional order provided in the past. In addition, the blood pressure 値, or the blood pressure 値 and the pulse number calculated as described above are also referred to as "blood pressure measurement". In the present embodiment, the blood pressure measurement is output to the memory control unit 203 for each blood pressure measurement. The memory control unit 203 stores the input blood pressure measurement 値 in the RAM 22 as the blood pressure data 300 corresponding to the time material (measurement time data) input from the timer 43. The display control unit 202 displays the blood pressure data 300 read from the RAM 22 on the display 24. Further, the display control unit 202 displays the current time data input from the timer 43 on the display 24. -14- 200812545 Referring to Figs. 1 and 3, the operation unit 23 includes switches 23A and 23B for instructing switching of the display form of the tone map in the display 24, and for instructing start and stop of the measurement. The switches 23C and 23D are operated. Fig. 6 shows the construction of the sensor unit 1. The cross-sectional structure of the wrist direction when the sensor unit 1 of Fig. 6(A) is worn across the wrist is shown in Fig. 6(B). Fig. 6(C) shows an enlarged view of a part of the dotted line frame of Fig. 6(B). Pushing the wristband 13 in Fig. 6(B) - the pressurized pump 14 and the negative pressure pump 15 • When the wristband pressure is adjusted, the pressure sensor is attached via a block formed of ceramic or resin. The array 1 1 is only free to move in an amount corresponding to the pressure level of the wristband as indicated by arrow 25 in Fig. 6(C). The pressure sensor array 11 is moved in the lower direction of the arrow 25 (wrist direction) and protrudes from the opening provided in advance by the frame 100 to be pressed against the wrist surface. As shown in FIGS. 6(D) and 6(E), the arrangement of the plurality of pressure sensors 26 of the pressure sensor array 11 corresponds to the artery when the sensor unit 1 is worn on the wrist. In a direction that is substantially orthogonal (intersecting), the length of the arrangement is at least longer than the diameter of the artery. When the pressure sensor 26 is pressed by the wristband pressure of the wristband 13, the pressure information of the pressure vibration wave (pulse pressure) generated from the artery and transmitted to the surface of the living body is output as a voltage signal. The pressure sensor 26 is of a prescribed size (5. 5mm X 8. The pressing surface 40 of 8 mm) is, for example, arranged in 40 pieces. The direction in which the grooves 9 for guiding the sliding direction of the sensor unit 1 in Fig. 6(A) extend corresponds to the direction in which the pressure sensors 26 of the pressure sensor array 11 are arranged. Fig. 7 is a cross-sectional view taken along line VII-VII of Fig. 4. In Fig. 7, the wristband pressure of the wristband 13 is fully decompressed by the negative pressure pump 15 (because it has -15-. 200812545 has a pressure level far below atmospheric pressure), so the pressure sensor array 11 is in a state of being housed in the casing 1 of the sensor unit 1 without contacting the wrist surface. In the present embodiment, at the time of pulse wave measurement, a tone map for indicating the pulse pressure distribution detected by the pressure sensor array 11 is displayed through the display 24. Therefore, the user can be informed of the direction in which the solid or the iliac artery 27 is located through the tone map. Through the tone map, the user can confirm the direction of the radial artery 27, that is, the direction in which the sensor unit 1 should be slid. The details of this report # will be described later. Here, the direction in which the needle slides the sensor unit 1 will be described. As described above, when the sensor unit 1 is worn on the wrist, the arrangement direction of the plurality of pressure sensors 26 corresponds to a direction substantially orthogonal (crossing) with the radial artery 27, and the sense of being guided by the groove 9. The slip direction of the detector unit 1 corresponds to the direction in which the pressure sensors 26 are arranged. Therefore, the sliding direction of the sensor unit 1 corresponds to a direction substantially orthogonal (intersecting) with the radial artery 27. Figs. 8 and 9 show marks 61 and 62 (arrows with characters 'A' and 'B,) printed on (printed) on the housing 100 of the sensor unit 1. The reference numeral 6 1 of Fig. 8 is attached to the side of the casing 100 accommodating the sensor unit 1, and the slidable movement guided by the groove 9 is identifiable from the side of the patient wearing the sensor unit 1 in the wrist state. The direction of operation is printed as —, —, while the arrows are attached and printed with text indicating the orientation ('A' and 'B'). Here, the direction of the slidable operation is represented by a combination of characters and arrows, but if the direction is indicated, other characters, numerals, graphics, and the like may be used. -1 6 - 200812545 When the state of the sensor unit 1 is worn on the wrist of the patient (refer to Fig. 4), the characters 'A of the markers 6 1 and 62 refer to the left side of the patient, and the text ' b, refers to The right side of the patient. Therefore, in the state in which the sensor unit 1 is worn, the sensor unit 1 is slid on the side of the character 'A', and the person (patient or operator) positioned on the patient side is to be slid to the left of the person. The operation of sliding the sensor unit 1 on the 'B' side of the text refers to the operation to be slid to the right of the person. Further, the state in which the sensor unit 1 is worn on the wrist of the patient (refer to the fourth Φ map), the person (operator) positioned at a position opposed to the patient across the sensor unit 1, marks 61 and 62 The text 'A' refers to the right side of the person (operator), and the text 'B' refers to the left side. Therefore, in the state in which the sensor unit 1 is worn, the person slides the sensor unit 1 on the side of the character 'A', which means that the sliding operation is on the right side of the person and slides on the side of the text 'B', which means sliding Operate to the left of its people. Although not shown in the figure, the frame 100 of the sensor unit 1 is printed on the side of the person (operator) on the position opposite to the patient across the sensor unit 1. Figure 8 shows the mark 6 1. ® Figure 9 (A) and (B) are marked 62 on the upper side of the housing 100 of the sensor unit 1 to accommodate the patient in the wrist state of the sensor unit 1, or the operator can confirm The ground is printed in the direction in which the guide sensor unit 1 is slid to the slot 9, and the arrows are printed with characters ('A' and 'B') that are printed with a single orientation. Further, as shown in Fig. 9 (A) and (B), an opening (window) 67 is formed in one portion of the upper surface of the casing 100. Further, a mark 66 is printed on the upper surface of the sensor unit 1. As the sensor unit 1 is guided and slipped by the slot 9, the mark 66 also moves -17-200812545 in the direction of the sliding opening. Here, referring to FIG. 9(A), a plurality of bar-shaped marks 64' are printed on one side of the casing 1'''''''''''''''' A bar-shaped mark 64 is also printed at a position corresponding to each of the bar-shaped marks. Each of the bar-shaped marks is colored with a different color, and the bar-shaped marks located at corresponding positions across the opening portion 67 are colored with the same color. Fig. 9(B) shows a mark 65 formed by printing a character (in this case 値) instead of the bar-shaped mark pattern of Fig. 9(A). The number 値 indicated by the reference numeral 65 is the same as the number of positions corresponding to the position corresponding to the opening 67. When the operation of the sensor unit 1 is slid by the guidance of the groove 9, the operation causes the mark 66 of the sensor unit 1 to be fitted to the bar mark of any one of the marks 64, or the number of any one of the marks 65.値 Location. The purpose of this operation will be described later. The processing sequence of this embodiment will be described in accordance with the flowchart of Fig. 10. The program according to the flowchart and the data referred to when the program is executed are stored in the ROM 21 or the RAM 22 in advance, and the CPU 20 executes the processing while referring to the data and reading the program. Further, it is assumed here that the display unit 3 is supplied with power to be in an operable state. First, the user turns ON the power switch (not shown) of the operation unit 23. In response to the ON operation, the CPU 20 instructs the control circuit 17 via the communication circuit 18 to switch the switching valve 16 to the negative pressure pump 15 side to drive the negative pressure pump 15 (step S1). Therefore, the control circuit 17 switches the switching valve 16 to drive the 200812545 dynamic negative pressure pump 15 in accordance with the instruction. When the negative pressure pump 15 is driven, the wristband pressure is transmitted through the switching valve 16 at a pressure lower than atmospheric pressure, so that the pressure sensor array 11 is moved in the upward arrow direction by the arrow 25 of Fig. 6(C). As a result, the pressure sensor array 11 can be prevented from being accidentally protruded to cause an erroneous action or malfunction. Thereafter, when the measurer wears the sensor unit 1 on the wrist as shown in FIG. 4 and turns on the start switch 23C of the operation unit 23, the control circuit 17 determines the pressure sensor array 1 with the instruction signal from the CPU 20. 1 Whether to move, that is, whether the sensor unit 1 has been slid along the sliding groove 9 to a position on the surface of the wrist (S2). A micro switch (not shown) for detecting slip is provided in the casing 1 of the sensor unit 1, and the control circuit 17 determines whether or not the pressure sensor array 1 1 is moved based on the detection signal of the micro switch. . When the movement is not determined (NO in step S2), the processing in step S1 is repeated. On the other hand, when it is determined that there is movement (YES in step S2), the control circuit determines whether or not the switch 23C is operated based on the operation signal given from the operation unit 23 (step S2a). If the result of the determination is that the switch 23C is not operated, that is, when the measurement is not instructed to start (NO in step S2a), the process returns to step S1, and thereafter, the process of steps S1 and S2 is repeated until the switch 23C is operated. . On the other hand, when the result of the determination in step S2a is that the switch 23C is operated, that is, when the measurement has been instructed to be turned on (YES in step S2a), the control circuit 17 switches the switching valve 16 to the side of the pressurizing pump 14 to The pressurizing pump 14 is driven (step S3). Accordingly, the pressure of the wristband is increased, and the pressure sensor array 11 is moved in the direction of the arrow below the arrow 25 of FIG. 6(C), and the pressure sensor array 11 is pushed against the surface of the wrist -19-200812545. . When the pressure sensor array 11 is pushed against the wrist surface (refer to FIG. 7), the pressure information of the voltage signal (information of the pulse pressure) is controlled by the respective pressure sensors 26 by the multiplexer 12. The data is converted to digital information by the A/D converter 19, and is supplied to the tone map creation unit 204 of the display unit 3 by the communication circuit 18. At this time, from the pressure sensor 26 at one end of the pressure sensor array 1 1 to the pressure sensor 26 at the other end, the pressure information is given to the tone map creation portion 204 in the order of its position. . Tone map creation Φ section 204 creates a tone map using the given digital information (pressure information), and outputs the created tone map data 301 to the memory control unit 203 (S3a). The memory control unit 203 stores the given data in the RAM 22. At this time, the switching unit 205 determines whether or not the display of the tone map is switched in any one of the operator's viewpoint and the patient's viewpoint based on the switching operation signal input from the operation unit 23 (step S4). Here, it is assumed in advance that the switch 23A or 23B is operated by the patient or the operator. Therefore, for example, when the switch 23A is operated in advance, the switching unit 205 instructs the display control unit 202 to display the tone map used for the patient viewpoint based on the switching operation signal input by the operation, but when the switch 23 B is operated in advance, The display control unit 202 is instructed to display the first map used by the operator's viewpoint based on the switching operation signal input by the operation. The display control unit 202 reads the tone map data 301 from the RAM 22, and displays the tone map on the display 24 in accordance with the instruction given from the switching unit 205 based on the read data (steps S5 and S6). Here, the display form of the tone map, -20- . 200812545 is changed according to the instruction given by the switching unit 205. The tone maps that are created and displayed will be described later. Next, the pulse wave processing unit 206 performs processing of the solid matter other than the 腱29 in accordance with the tone map (step S7)'. In the processing of the solid matter exclusion, it is specified based on the tone map information obtained at S3a. The pressure sensor 26 in the pressure sensor array 11 is located on the solid object, and the remaining pressure sensor 26, except for the specific pressure sensor 26, is candidately selected to be located in the radial artery 27 Pressure sensor 26 on. 9 Next, the pulse wave processing unit 206 performs a process of selecting the pressure sensor 26 located on the curved bone artery 27 as the optimal channel from the candidates of the pressure sensor 26 located on the radial artery 27 (step S8). . The details of this optimum channel selection process are described in detail in Japanese Patent Laid-Open Publication No. 2004-222847, the entire disclosure of which is hereby incorporated herein. The tone map data 3 01 is for each of the pressure sensors 26 and includes data of a DC component and an AC component represented by a pulse pressure signal detected by the pressure sensor 26. The CPU 20 is configured to have a DC component level of a certain threshold or more. The pressure sensor 26 is specifically positioned not on the radial artery 27. The CPU 20 then treats the remaining pressure sensor 26, except for the particular pressure sensor 26, as a candidate for a pressure sensor located on the radial artery 27. Then, from this candidate, the level of the DC component is lower, and the pressure sensor 26 having a higher level of the AC component is selected as the optimum channel. Next, the pulse wave processing unit 206 detects the pulse wave based on the pressure information input from the pressure sensor 26 corresponding to the selected optimal channel, and therefore calculates the fluctuation amount based on the pressing level of the pressing wrist band 13 . Then, the calculated fluctuation amount is compared with the predetermined fluctuation amount of the detectable pulse wave of -21 to 200812545 (step S9). As a result of the comparison, if the calculated fluctuation amount satisfies the predetermined fluctuation amount, it is determined that the wristband pressure condition for pulse wave detection is satisfied (YES in step S10), and if it is not satisfied, the control circuit 17 is used to pass the pressure pump. 1 4 While continuing to pressurize the wristband 1 3, repeat the processing of steps S3a to S 10 until the wristband pressure condition is satisfied. When the wristband pressure condition is satisfied (YES in step S1 0), the pressure pump 14 is adjusted so that the pressing position of the pressure wristband 13 against the pressure sensor array 1 1 can be the most used for pulse wave detection. Good level (step S11). The details of this adjustment are described in Japanese Laid-Open Patent Publication No. 2004-222847, the entire disclosure of which is hereby incorporated by reference. Under the optimal pressure adjustment for pushing the wristband 13, the pressure information output by the pressure sensor 26 selected as the optimal channel, that is, the waveform data of the 27-pulse wave of the radial artery, is multiplexed. The device 12, the A/D converter 19, and the communication circuit 18 are transferred to the pulse wave processing unit 206 (step S12). The pulse wave processing unit 206 receives the waveform data and performs pulse wave detection based on the received waveform data. The pulse wave data transfer processing of step S 1 2 is repeated before the waveform data is accepted and the predetermined condition for ending the pulse wave detection is established. Further, the pulse wave detecting processing based on the received waveform data is in a known order, and the details thereof are omitted here. When the predetermined condition of the end of the pulse wave detection is satisfied (YES in step S13), the CPU 20 drives the negative pressure pump 15 to control by the switching valve 16 (step S14). Thereby, the pressing state of the pressure sensor array 11 against the wrist is released, and a series of pulse wave detecting processing ends. The pulse wave processing unit 206 outputs information for detecting the pulse wave to the memory control unit -22-200812545. The memory control unit 203 stores the given information as the pulse wave information 302 in the RAM 22. The display control unit 202 reads the pulse wave information 302 from the RAM 22, and outputs the read pulse wave information 302 to the outside via the display 24. Further, the information of the pulse wave is used to calculate the AI (Augmentation Index) by the pulse wave processing unit 206, and the calculated AI can be output to the display 24. Here, a tone map created (displayed) in step S3a and step S5 (S6) will be described. • Fig. 1 is a diagram showing the arrangement of the pressure sensors 26 of the pressure sensor array 1 in accordance with an example of the display of the tone map data 301. Fig. 12 shows the state of pulse wave measurement. In the second embodiment, the measurement site of the patient collides with the pressing surface 40 of the sensor unit 1 in the pressed state, and the sensor 26 of the pressure sensor array 11 is arranged with the pressing surface 40 interposed therebetween. The direction of the patient is the one on the side of the plane (in the imaginary plane, not shown) that is substantially orthogonal (crossing) to the radial artery 27, and the other side has the viewpoint of the operator. That is, the operator is as shown in Fig. 2, assuming that the ® is in a position opposite to the patient. Referring to FIG. 1, the tone map data 30 generated by the tone map creation unit 204, the pressure sensor 26 of the pressure sensor array 11 and the pulse pressure signal output by the pressure sensor 26 are respectively referred to. To grant information to the relevant parties. The display control unit 202 reads the tone map data 301 from the RAM 22, and displays a graph as shown in Fig. 1 based on the read data. The graph takes the pulse pressure level as the vertical axis V J , and the arrangement of the pressure sensors 26 corresponds to the horizontal axis HJ. Then, the origin 0 is taken as the starting point of the graph, and the pressure sensors 2 are arranged in the order from the pressure sensor 26 on the A side to the pressure sensor 26 on the B side -23 - 200812545. 6 lif out the pulse pressure signal refers to the level of continuous plotting. Therefore, with respect to the horizontal axis ,, there is a ‘Α’ character CH on the origin 0 side, and a ‘Β’ character CH attached to the opposite side of the origin 〇 is displayed for correlation. The letter CH is the same as the mark 6 1 printed on the frame 100. Thus, the patient or operator becomes the starting point or end point that can be attached to the corresponding plot, aligned with the pressure sensor array 1 1 . The output of one of the square ends and the other end of the pressure sensor 26. The tone map of Fig. 11 indicates an example of display when the indication given from the switching unit 205 refers to the patient's viewpoint. Further, when the instruction given from the switching unit 205 refers to the operator's viewpoint, the tone map of the first map is the starting point of the graph in the horizontal axis HJ direction, and the pressure is sensed from the B side. From the 26 to the pressure sensor 26 on the A side, the pulse pressure signals output by the respective pressure sensors 26 are displayed in the order of arrangement as a continuously plotted graph. In other words, the display control unit 202 displays the tone map of the first map in reverse based on the tone map data 301 read from the RAM 22. Φ is specifically the axis of the point on the tone map which has been plotted on the output level of the pressure sensor 26 located at the center of the pressure sensor array 1 1 and is orthogonal to the horizontal axis HJ. The axis MJF is the center and is a graph in which the tone map of Fig. 11 is inverted in the horizontal axis HJ direction. At this time, the horizontal axis HJ displays the word "Β" on the origin 〇 side, and the word CH on the opposite side of the origin 0 indicates "Α". Here, the text CH is used, but as long as the output of the pressure sensor 26 of the arrangement of the pressure sensor array 11 and the output of the pressure sensor 26 of the other end can be attached to the corresponding -24-200812545, the number can also be counted. Graphics, graphics, etc. to replace the text. Further, although the characters 4 A ' and ' B ' corresponding to both ends are not displayed, only the characters of one side may be displayed. Therefore, as shown in Fig. 12, when the patient performs the measurement while the display unit 3 is placed on the screen of the display 24, the patient viewpoint shown in Fig. 11 can be displayed by operating the patient switch 2 3 A. Tone map. Therefore, the patient can confirm the 'A' of the character CH displayed together with the tone map, and the A' corresponding to the display φ text ' of the mark 6 1 or 62 printed on the frame 1 00 of the sensor unit 1 . Both are on the left side of the patient, and 'B, the text is on the right side of the patient. Therefore, when the sensor unit 1 is moved while looking at the change of the tone map, it is possible to prevent an error in the movement operation direction/and an operator who is opposed to the sensor unit 1 in the patient of the second aspect in order to confirm the tone map. The operator switch 23B is operated by changing the arrangement of the display unit 3 so that the screen of the display 24 changes toward the screen. Accordingly, the tone map shown in Fig. 1 can be reversely displayed to display the tone map of the operator's viewpoint. Therefore, the operator can confirm that the word 'A' of the character CH displayed together with the tone map and the 'A' corresponding to the display text of the mark 61 or 62 printed on the frame 100 of the sensor unit 1 are They are all on the right side of the operator and can be confirmed that the text of 'B' is on the left side of the operator. Therefore, when the sensor unit 1 is moved while watching the tone map change, it is possible to prevent the error of the moving operation direction. (Dialogue display) In the present embodiment, the patient or the operator may be guided by displaying the operation sensor unit 1 in a direction in which the sensor unit 1 slides along the groove 9. In order to display the pair -25-200812545, the patient display data (a side) and side of the RAM 22 are used 3〇3 and 3 05, and the operator display data (A side) and (B side) 304 and 306 are used. Fig. 13 shows an example of a tone map for displaying an operator viewpoint and a patient viewpoint, and dialogs E1 and E2. In Fig. 13, on the tone map of the operator's viewpoint and the patient's viewpoint, in addition to the tone map, a mark 63 is displayed, which is instructed by the display control unit 202 to indicate the tone map with the operator's viewpoint and the patient's viewpoint. Any correspondence. The dialog display unit 207 reads the tone map Φ 301 through the memory control unit 203, analyzes the read tone map data 301, and determines whether or not it is the optimum tone map based on the analysis result. Here, the so-called optimal tone map is referred to as a tone map corresponding to the central position of the tone map as shown in Fig. 11 . In other words, when the pressure sensor 40 is pressed against the measurement site and the pressure sensor 26 at the center of the pressure sensor array 1 1 is located on the radial artery 27, the optimal tone map as shown in Fig. 11 It was measured. According to the tone map of Fig. 11, the distribution of the pulse pressure around the iliac artery 27 at the measurement site can be confirmed at a glance. The dialog display unit 207 determines whether or not the pressure sensor 26 indicating the peak of the tone map data 30 1 is the pressure sensor 26 located at the center of the pressure sensor array 1 1 . When it is determined that it is not at the center of the pressure sensor 26, a dialog of an error message is displayed in accordance with the display control unit 202. That is, a GUI is displayed to move the operation sensor unit 1 at a position where the best tone map can be obtained. Specifically, the dialog display unit 207 instructs the display control unit 202 to display the dialogue E1 or E2 of the operator viewpoint or the patient viewpoint in accordance with another signal operated by the switches 23A and 23B fed from the switching unit 205. The display control unit 202-26-200812545 reads out the data based on the instruction given from the RAM 22 via the memory control unit 203, and displays the dialog E1 or £2 on the display 24 based on the data read. A specific display example is shown in Fig. 14. As a specific example of the dialogue E2, Fig. 14(A) shows the operator's viewpoint' and Fig. 14(B) shows the patient's viewpoint based on the patient's viewpoint. When the optimal tone map is not determined, the pressure sensor 26 in the center of the pressure sensor array 1 is positioned on the radial artery 27 by a dialogue to guide the direction of movement of the sliding operation of the sensor unit 1. • For example, according to the dialog display unit 207, the tone map peak of the operator's viewpoint in Fig. 3 is detected as being separated from the axis M of Fig. 1; [When the bit is on the opposite side of the origin 0, the dialog display is displayed. The display unit 202 instructs the display control unit 202 to display the operator display data (B side) 306. Therefore, the display control unit 202 reads the operator display data (B side) 306 via the memory control unit 203 based on the instruction. And displayed on the display unit 24. The dialog of FIG. 14(A) is displayed in accordance with the operator's display data (B side) 306, and the sensor unit 1 is moved to the 'B' side indicated by the mark 61 or 62. The pattern is guided along with its operator ^(). Further, in the case where the tone map peak of the patient viewpoint in Fig. 1 is detected to be on the origin 〇 side across the axis M of Fig. 11, the dialog display unit 207 instructs the display control unit 2 2 The patient display data (B side) 3〇5 is displayed. Therefore, the display control unit 202 reads the patient display data (B side) 305 through the memory control unit 203 and displays it on the display 24 based on the instruction. The dialogue of FIG. 14(B) is displayed according to the patient display data (B side) 305, and the sensor unit 1 is moved to the 'B' side indicated by the mark 61 or 62. -27-200812545 The pattern of the detector unit 1 is guided together with its operation direction (->). Therefore, the operator or the patient operates the sensor unit 1 worn by the patient to know the direction of movement guided by the slot 9. Further, in the dialogue, in the circle that is emerging, the position of the alignment of the bar-shaped marks of the mark 66 and the mark 64 is used to indicate which direction should be moved. The bar-shaped mark to be displayed coincides with the bar-shaped mark colored in a different color on the frame 100 for accommodating the sensor unit 1, so that the direction to be slid can be imparted with the color of the bar-shaped mark. Fig. 15 is a view showing a dialog when the mark 65 is provided instead of the mark 64, as in the case of Fig. 13. The order of the number of marks 65 displayed (ascending or descending order) is the same as the number of marks 65 printed on the upper surface of the frame 1 00 for housing the sensor unit 1, so The direction of the slide is given to the number of marks 66. (display form of the tone map at the time of switching) The display control unit 202 may change (switch) the tone map seen from the displayed patient side (one side) viewpoint from the operator side (the other side). The state in which the shape of the tone map changes during the tone map seen from the viewpoint is displayed on the display 24. Fig. 16 is a view showing an example of switching the display of the tone map by the display control unit 202 when the switches 23A and 23B are operated. In the state in which the switch 23A is operated, in the state in which the tone map of the upper stage of FIG. 6 is displayed, when the switch 23B is operated and there is an instruction to switch to the operator's viewpoint, the display control unit 202 causes the control unit 202 to The tone map in the display is gradually rotated in the direction of the axis H from the axis MJ of Fig. 11, and the process is performed until the state of -28 - 200812545 is reversed, and the cell is shifted and simulated. The change in the chart to be displayed is shown. By shifting between the states of the graphs in the rotation, the final reversed tone map, that is, the tone map of the operator's viewpoint, is displayed. Here, the switching instruction is given to the switch 2 3 A or 23B ' of the operation display unit 3, but it may be replaced, and instead the switches 23a and 23B are provided in the sensor unit 1, and then given from the sensor unit 丨. Here, in order to give a switching instruction, two switches 23 A and 23 B are provided, but one of the switches may be, for example, each time (pressing), the operator's viewpoint/patient viewpoint switching instruction may be given. The two-way switch used. Further, it is also possible to change the direction of the display 24 in accordance with the turning operation, and to switch between the tone map of the operator's viewpoint and the tone map of the patient's viewpoint in response to the turning operation. In the above embodiment, the display unit 3 The pulse pressure information detected by the sensor unit 1 is received from the fixed station unit 7 by means of communication, but the method of acceptance is not limited thereto. In other words, the CPU 20 may acquire the pulse wave information from the CD-ROM 42^ storing the pulse pressure information detected by the sensor unit 1 by the external I/F 41. The display method of the tone map or the like executed by the pulse wave detecting device in the present invention can also be provided as a program. Such a program is provided as a program product on a computer-readable recording medium recorded on a flexible disk, a CD-ROM, a ROM, a RAM, and a memory card attached to a computer. Or, it can be recorded on a recording medium such as a hard disk built on a computer to provide a programmer. Alternatively, the program can be provided by downloading from the Internet. For example, in the configuration of Fig. 1, the -29-200812545 program can be supplied to the display unit 3 having the computer function and having the CPU 20 using the CD-ROM 42. The CPU 20 reads out the program stored in the CD-R〇M42 through the external I/F 41 and executes it. The supplied program is installed in a program storage unit such as a hard disk and is read and executed by the CPU. In addition, the program product includes the program itself and a recording medium on which the program is recorded. All the matters disclosed in this embodiment are for illustrative purposes only and should not be considered as limiting. The scope of the present invention is not intended to be limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a hardware configuration of a pulse wave detecting device according to the present embodiment. Fig. 2 is a view showing a hardware configuration of a blood pressure measurement unit according to the present embodiment. Fig. 3 is a view showing the switch arrangement of the operation unit and the connection form of the sensor unit and the fixed table in the present embodiment. Fig. 4 is a view showing a form of use in the case of pulse wave measurement in the present embodiment. Fig. 5 is a view showing the functional configuration of the pulse wave detecting device of the present embodiment. Fig. 6(A)(B)(C)(D)(E) is a view showing the configuration of a pressure sensor array of a sensor unit according to an embodiment of the present invention. Fig. 7 is a view showing a cross section taken along line VII-VII of Fig. 4. Fig. 8 is a side view of the casing of the sensor unit of the embodiment. Figure 9 (A) (B) is a top view of the frame of the sensor unit. Fig. 10 is a flowchart showing the processing of this embodiment. Fig. 11 is a diagram showing the related description of the tone map and the pressure sensor array -30-200812545 in the present embodiment. Fig. 12 is a view showing a state in which the screen is oriented toward a patient in the present embodiment. Fig. 1 is a view showing an example of the output in the present embodiment. Fig. 14 (A) and (B) are diagrams showing another example of the output of the present embodiment. Fig. 15 is a view showing another example of the output of the present embodiment. Fig. 16 is a view showing an example of the display in the middle of display switching of the tone map in the present embodiment. [Description of main component symbols]
1 感 測 器 單 元 2 固 定 台 3 顯 示 單 元 10 印 字 部 11 壓 力 感 測 器 陣列 17 控 制 電 路 20 CPU 24 顯 示 器 27 橈 骨 動 脈 201 血 壓 算 出 部 202 顯 示 控 制 部 203 記 憶 體 控 制 部 204 音 S田 圖 作 成 部 205 切 換 部1 sensor unit 2 fixed table 3 display unit 10 printing unit 11 pressure sensor array 17 control circuit 20 CPU 24 display 27 radial artery 201 blood pressure calculation unit 202 display control unit 203 memory control unit 204 sound S field creation unit 205 switching department