SE520971C2 - Process for producing an etheric alcohol - Google Patents
Process for producing an etheric alcoholInfo
- Publication number
- SE520971C2 SE520971C2 SE9902954A SE9902954A SE520971C2 SE 520971 C2 SE520971 C2 SE 520971C2 SE 9902954 A SE9902954 A SE 9902954A SE 9902954 A SE9902954 A SE 9902954A SE 520971 C2 SE520971 C2 SE 520971C2
- Authority
- SE
- Sweden
- Prior art keywords
- propanediol
- process according
- trimethylolpropane
- oxetane
- acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyethers (AREA)
Abstract
Description
520 971 hydroxifunktionella karboxylsyror. Dessa esteralkoholer kan exemplifieras med det frekvent använda neopentylglykolhydroxipivalatet. 520,971 hydroxy-functional carboxylic acids. These ester alcohols can be exemplified by the frequently used neopentyl glycol hydroxypivalate.
För närvarande kommersiellt tillgängliga förfaranden för tillverkning av eteralkoholer bestående av två monomerenheter, av vilka minst en härleds från en trimetylol CI-Cg alkan och/eller en alkoxylerad trimetylol Cl-Cg alkan, har ett antal nackdelar, såsom begränsade kvantiteter tillgängliga som nämnda biprodukter, lågt utbyte vid till exempel företringar och komplexa kemiska processer och/eller upparbetningar, till exempel multipla reaktions- och/eller upparbetningssteg.Currently commercially available processes for the production of ether alcohols consisting of two monomer units, at least one of which is derived from a trimethylol C1-C8 alkane and / or an alkoxylated trimethylol C1-C8 alkane, have a number of disadvantages, such as limited quantities available as said by-products. low yield in, for example, etherifications and complex chemical processes and / or reprocessing, for example multiple reaction and / or reprocessing steps.
Föreliggande uppfinning tillhandahåller helt oväntat ett förfarande för tillverkning av en eteralkohol bestående av två monomerenheter av vilka minst en härleds från en trimetylol Cl-Cg alkan och/eller en alkoxylerad trimetylol Cl-Cg alkan, såsom ett etoxylat och/eller propoxylat erhållet vid reaktion mellan till exempel trimetylolpropan eller trimetyloletan och etylenoxid och/eller propylenoxid vid ett molförhållande nämnd trimetylol Cl-Cg alkan till nämnd oxid av 1:1 till 1:50, såsom 1:3 till 1:20.The present invention quite unexpectedly provides a process for the preparation of an ether alcohol consisting of two monomer units of which at least one is derived from a trimethylol C1-C8 alkane and / or an alkoxylated trimethylol C1-C8 alkane, such as an ethoxylate and / or propoxylate obtained by reaction between for example trimethylolpropane or trimethylolethane and ethylene oxide and / or propylene oxide at a molar ratio of said trimethylol C1-C8 alkane to said oxide of 1: 1 to 1:50, such as 1: 3 to 1:20.
Förfarandet enligt föreliggande uppfinning innefattar steget ringöppningsreaktion av minst en oxetan av en trimetylol Cl-Cg alkan eller en alkoxylerad trimetylol C1-Cg alkan, såsom en oxetan av trimetylolpropan, trimetyloletan eller nämnt etoxylat eller propoxylat av trimetylolpropan eller trimetyloletan, genom addition av minst en alkohol med en, företrädesvis två, eller flera hydroxylgrupper. Ringöppningsreaktionen utförs vid ett molförhållande nämnd oxetan till nämnd alkohol av 1:10 till 1:2, såsom 1:8 till 1:4, 1:6 till 1:3 eller 1:5 till 1:2, samt i närvaro av en katalytiskt effektiv mängd av minst en sur katalysator.The process of the present invention comprises the step of ring opening reaction of at least one oxetane of a trimethylol C1-C8 alkane or an alkoxylated trimethylol C1-C8 alkane, such as an oxetane of trimethylolpropane, trimethylolethane or said ethoxylate or propoxylate of trimethylolpropane or trimethyl of trimethyl with one, preferably two, or fl your hydroxyl groups. The ring-opening reaction is carried out at a molar ratio of said oxetane to said alcohol of 1:10 to 1: 2, such as 1: 8 to 1: 4, 1: 6 to 1: 3 or 1: 5 to 1: 2, and in the presence of a catalytic effective amount of at least one acid catalyst.
Nämnd alkohol är i vissa utföringsformer av förfarandet med fördel en 2- eller 2,2-substituerad 1,3-propandiol, såsom en 2-alkyl-, 2-hydroxialkyl-, 2-hydroxialkoxialkyl-, 2,2-dialkyl-, 2,2-dihydroxialkyl-, 2,2-dihydroxialkoxialkyl-, 2-alkyl-2-hydroxialky1- eller 2-alkyl-2-hydroxialkoxialkylsubstituerad 1,3-propandiol. Alkoxi är här företrädesvis etoxi med 2-50 kolatomer, propoxi med 3-60 kolatomer eller propoxietoxi med 5-50 kolatomer och alkyl är företrädesvis Cl - C18, såsom C; - C12 eller Cl - Cs alkanyl.Said alcohol is in certain embodiments of the process advantageously a 2- or 2,2-substituted 1,3-propanediol, such as a 2-alkyl-, 2-hydroxyalkyl-, 2-hydroxyalkoxyalkyl-, 2,2-dialkyl-, 2 , 2-dihydroxyalkyl, 2,2-dihydroxyalkoxyalkyl, 2-alkyl-2-hydroxyalkyl or 2-alkyl-2-hydroxyalkoxyalkyl substituted 1,3-propanediol. Alkoxy here is preferably ethoxy having 2-50 carbon atoms, propoxy having 3-60 carbon atoms or propoxyethoxy having 5-50 carbon atoms and alkyl is preferably C1 - C18 such as C; - C12 or C1-C8 alkanyl.
Föredragna 1,3-propandioler kan lämpligen exemplifieras med till exempel 2-metyl-1,3-propandiol, neopentylglykol, 2-butyl-2-etyl-1,3-propandiol, trimetyloletan, trimetylolpropan, trimetylolpropantrietoxylat och pentaerytritol.Preferred 1,3-propanediols can be suitably exemplified by, for example, 2-methyl-1,3-propanediol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanediol, trimethylolethane, trimethylolpropane, trimethylolpropane triethoxylate and pentaerythritol.
Ytterligare fördragna utföringsfonner av förfarandet innefattar dioler, såsom mono-, di-, tri- och polyetylen- och -propylenglykoler, så väl som monoalkoholer, såsom metanol, etanol och andra lägre alkoholer. 520 971 Eteralkoholen erhållen med förfarandet enligt föreliggande uppfinning är främst di-trimetylolpropan, det vill säga dimeren av trimetylolpropan, varvid nämnd oxetan är en oxetan av trimetylolpropan och nämnd lß-propandiol är trimetylolpropan (2-etyl-2-hydroximetyl- l ,3 -propandiol).Further preferred embodiments of the process include diols, such as mono-, di-, tri- and polyethylene and propylene glycols, as well as monoalcohols, such as methanol, ethanol and other lower alcohols. The ether alcohol obtained by the process of the present invention is mainly di-trimethylolpropane, i.e. the dimer of trimethylolpropane, wherein said oxetane is an oxetane of trimethylolpropane and said β-propanediol is trimethylolpropane (2-ethyl-2-hydroxym-2-ethyl-1-hydroxym-2-hydroxym propanediol).
Ringöppningsreaktionen i förfarandet enligt föreliggande uppfinning utförs företrädesvis vid en temperatur av 25-l50°C, såsom 50-l25°C, i närvara av minst en Brønstedsyra, såsom en svavelsyra och/eller en sulfonsyra, såsom metansulfonsyra och/eller p-toluensulfonsyra, och/eller i närvaro av minst en Lewissyra, såsom BF3, AlCl3 och/eller SnCl4, som sur katalysator. Brønstedsyror används främst då alkoholen väljs bland di-, tri- och polyalkoholer.The ring-opening reaction in the process of the present invention is preferably carried out at a temperature of 25-150 ° C, such as 50-125 ° C, in the presence of at least one Brønsted acid, such as a sulfuric acid and / or a sulfonic acid, such as methanesulfonic acid and / or p-toluenesulfonic acid. and / or in the presence of at least one Lewis acid, such as BF 3, AlCl 3 and / or SnCl 4, as acid catalyst. Tannic acids are mainly used when the alcohol is chosen from di-, tri- and polyalcohols.
Använd sur katalysator innefattar med fördel till exempel sulfonater, såsom alkansulfonat och haloalkansulfonat. Nämnda sulfonater kan exemplifieras med gruppen alkylsilylfluoroalkansulfonater, såsom trimetylsilyltrifluorometansulfonat. Sulfonater används företrädesvis då nämnd alkohol är en monoalkohol.Acid catalyst used advantageously includes, for example, sulfonates, such as alkane sulfonate and haloalkane sulfonate. Said sulfonates may be exemplified by the group of alkylsilyl orouroalkanesulfonates, such as trimethylsilyltriuromethanesulfonate. Sulfonates are preferably used when said alcohol is a monoalcohol.
Det förstås att den som är förfaren i tekniken utan ytterligare förklaring, genom att använda beskrivningen ovan, fullt ut kan tillgodogöra sig föreliggande uppfinning. Följande föredragna specifika utföringsforrner, skall därför betraktas som enbart illustrativa och inte på något sätt som begränsande för resterande beskrivning. I följande exempel l-9 visas utföringsforrner av föreliggande uppfinning varvid eteralkoholer med två monomerenheter, av vilka en härleds från trimetylolpropanoxetan, erhålls eventuellt tillsammans mindre mängder oligomerer med tre monomerenheter som biprodukter.It is understood that those skilled in the art without further explanation, by using the description above, may take full advantage of the present invention. The following preferred specific embodiments, therefore, are to be considered as illustrative only and not in any way limiting of the following description. The following Examples 1-9 show embodiments of the present invention in which ether alcohols having two monomer units, one of which is derived from trimethylolpropanoxetane, are optionally obtained together with minor amounts of oligomers having three monomer units as by-products.
Exempel 1 2,00 mol trimetylolpropanoxetan (TMPO) och 5,65 mol trimetylolpropan (TMP) satsades i en reaktionskolv och blandades vid 90°C. Temperaturen justerades sedan till 70°C. En katalytisk mängd (1 vikts-%) koncentrerad svavelsyra tillsattes. Reaktionsblandningen hölls vid 70°C i 1,5 timme och analyserades därpå med GLC. Erhållen produktblandning innefattade 3,82 mol trimetylolpropan, 0,58 mol di-trimetylolpropan och 0,07 mol tri-trimetylolpropan.Example 1 2.00 moles of trimethylolpropane oxetane (TMPO) and 5.65 moles of trimethylolpropane (TMP) were charged to a reaction flask and mixed at 90 ° C. The temperature was then adjusted to 70 ° C. A catalytic amount (1% by weight) of concentrated sulfuric acid was added. The reaction mixture was kept at 70 ° C for 1.5 hours and then analyzed by GLC. The resulting product mixture comprised 3.82 moles of trimethylolpropane, 0.58 moles of di-trimethylolpropane and 0.07 moles of tri-trimethylolpropane.
Exempel 2 1,13 mol trimetylolpropanoxetan (TMPO) och 6,34 mol trimetylolpropan (TMP) satsades i en reaktionskolv och blandades vid 90°C. Temperaturen justerades sedan till 70°C. En katalytisk mängd (l vikts-%) koncentrerad svavelsyra tillsattes. Reaktionsblandningen hölls vid 70°C i 1,5 timme och analyserades därpå med GLC. Erhållen produktblandning innefattade 4,11 mol trimetylolpropan och 0,34 mol di-trimetylolpropan. 520 971 4 Exempel 3 0,67 mol trimetylolpropanoxetan (TMPO) och 6,56 mol trimetylolpropan (TMP) satsades i en reaktionskolv och blandades vid 90°C. Temperaturen justerades sedan till 70°C. En katalytisk mängd (1 vikts-%) koncentrerad svavelsyra tillsattes. Reaktionsblandningen hölls vid 70°C i 1,5 timme och analyserades därpå med GLC. Erhållen produktblandning innefattade 5,45 mol trimetylolpropan och 0,24 mol di-trimetylolpropan.Example 2 1.13 moles of trimethylolpropane oxetane (TMPO) and 6.34 moles of trimethylolpropane (TMP) were charged to a reaction flask and mixed at 90 ° C. The temperature was then adjusted to 70 ° C. A catalytic amount (1% by weight) of concentrated sulfuric acid was added. The reaction mixture was kept at 70 ° C for 1.5 hours and then analyzed by GLC. The resulting product mixture contained 4.11 moles of trimethylolpropane and 0.34 moles of di-trimethylolpropane. Example 3 0.67 moles of trimethylolpropane oxetane (TMPO) and 6.56 moles of trimethylolpropane (TMP) were charged to a reaction flask and mixed at 90 ° C. The temperature was then adjusted to 70 ° C. A catalytic amount (1% by weight) of concentrated sulfuric acid was added. The reaction mixture was kept at 70 ° C for 1.5 hours and then analyzed by GLC. The resulting product mixture comprised 5.45 moles of trimethylolpropane and 0.24 moles of di-trimethylolpropane.
Exempel 4 1,48 mol trimetylolpropanoxetan (TMPO) och 6,10 mol trimetylolpropan (TMP) satsades i en reaktionskolv och blandades vid 90°C. Temperaturen justerades sedan till 23°C. En katalytisk mängd (1 vikts-%) koncentrerad svavelsyra tillsattes. Reaktionsblandningen hölls vid 23°C i 2 timmar och analyserades därpå med GLC. Erhållen produktblandning innefattade 5,01 mol trimetylolpropan, 0,44 mol di-trimetylolpropan och 0,03 mol tri-trimetylolpropan.Example 4 1.48 moles of trimethylolpropane oxetane (TMPO) and 6.10 moles of trimethylolpropane (TMP) were charged to a reaction flask and mixed at 90 ° C. The temperature was then adjusted to 23 ° C. A catalytic amount (1% by weight) of concentrated sulfuric acid was added. The reaction mixture was kept at 23 ° C for 2 hours and then analyzed by GLC. The resulting product mixture comprised 5.01 moles of trimethylolpropane, 0.44 moles of di-trimethylolpropane and 0.03 moles of trimimethylolpropane.
Exempel 5 609 mmol TMP smältes vid 90°C. Temperaturen justerades sedan till 70°C och en katalytisk mängd (0,7 mol-%) koncentrerad svavelsyra tillsattes. 153 mmol TMPO tillsattes droppvis, under kraftig omrörning och inom en timme, i två portioner. Efter en total tid av 1,5 timmes omröming kyldes blandningen och analyserades med GLC.Example 5 609 mmol TMP was melted at 90 ° C. The temperature was then adjusted to 70 ° C and a catalytic amount (0.7 mol%) of concentrated sulfuric acid was added. 153 mmol TMPO was added dropwise, with vigorous stirring and within one hour, in two portions. After a total time of 1.5 hours stirring, the mixture was cooled and analyzed by GLC.
Produktema i erhållen reaktionsblandning innefattade 494 mmol trimetylolpropan, 51 mmol di-trimetylolpropan och 34 mmol tri-trimetylolpropan.The products in the resulting reaction mixture included 494 mmol of trimethylolpropane, 51 mmol of di-trimethylolpropane and 34 mmol of tri-trimethylolpropane.
Exempel 6 609 mmol TMP smältes vid 90°C. Temperaturen justerades sedan till 70°C och en katalytisk mängd trimetylsilyltrifluorometansulfonat (0,4 mol-% TMSO3SCF3) tillsattes. 151 mmol TMPO tillsattes droppvis, under kraftig omröming och inom en timme, i två portioner. Efter en total tid av 1,5 timmes omröming kyldes blandningen och analyserades med GLC.Example 6 609 mmol TMP was melted at 90 ° C. The temperature was then adjusted to 70 ° C and a catalytic amount of trimethylsilyl trifluoromethanesulfonate (0.4 mol% TMSO 3 SCF 3) was added. 151 mmol TMPO was added dropwise, with vigorous stirring and within one hour, in two portions. After a total time of 1.5 hours stirring, the mixture was cooled and analyzed by GLC.
Produkterna i erhållen reaktionsblandning innefattade 471 mmol trimetylolpropan, 78 mmol di-trimetylolpropan och 32 mmol tri-tiimetylolpropan. 520 971 ?f}?:7í«§,äÉ:¥?= Exempel 7 34,6 mmol neopentylglykol smältes vid l35°C. En katalytisk mängd (0,5 mol-%) trimetylsilyltrifluorometansulfonat tillsattes. 8,6 mmol TMPO tillsattes droppvis, under kraftig omrörning och inom en timme, i två portioner. Efter en total tid av 2,5 timmars omrörning kyldes blandningen och analyserades med GLC.The products in the resulting reaction mixture included 471 mmol of trimethylolpropane, 78 mmol of di-trimethylolpropane and 32 mmol of tritimethylolpropane. Example 7 34.6 mmol of neopentyl glycol were melted at 35 ° C. A catalytic amount (0.5 mol%) of trimethylsilyl trifluoromethanesulfonate was added. 8.6 mmol TMPO was added dropwise, with vigorous stirring and within one hour, in two portions. After a total time of 2.5 hours of stirring, the mixture was cooled and analyzed by GLC.
Produkterna i erhållen reaktionsblandning innefattade (yt-%) 79% neopentylglykol, 14% neopentylglykol-trimetylolpropaneter och 4,9% av två olika neopentylglykol- trimetylolpropanetrar.The products of the resulting reaction mixture comprised (surface%) 79% neopentyl glycol, 14% neopentyl glycol trimethylolpropane ethers and 4.9% of two different neopentyl glycol trimethylolpropane ethers.
Exempel 8 80 mg trimetylsilyltrifluorometansulfonat tillsattes till 5 ml metanol. Temperaturen höjdes till försiktigt återflöde och 1,0 g TMPO tillsattes droppvis, under kraftig omrörning och inom en timme, i två portioner. Efter en total tid av 2 timmars omrörning kyldes blandningen och koncentrerades under vakuum. l,l g metyltrimetylolpropaneter erhölls med en renhet (GLC) av mer än 85%.Example 8 80 mg of trimethylsilyltriuromethanesulfonate were added to 5 ml of methanol. The temperature was raised to gentle reflux and 1.0 g of TMPO was added dropwise, with vigorous stirring and within one hour, in two portions. After a total time of 2 hours stirring, the mixture was cooled and concentrated in vacuo. 1.1 g of methyltrimethylolpropanether were obtained with a purity (GLC) of more than 85%.
Resultat från NMR-analys: IH NMR (DMSO-dóy ö(ppm) 4,2 (br, OH, 2H); 3,22 (s, CHgOH, 4H); 3,18 (s, MeO-, 3H); 3,10 (s, CH2O-, 2H); 1,19 (q, 2H); 0,75 (t, 3H) BC MVIR (DMSO-d6): ö(ppm) 73,46; 62,34; 59;46; 44,09; 22,52; 8,27 Exempel 9 30 mg trimetylsilyltrifluorometansulfonat tillsattes till 2,15 g monoetylenglykol. Temperaturen höjdes till 70°C och 1,0 g TMPO tillsattes droppvis, under kraftig omrörning och inom en timme, i två portioner. Efter en total tid av 2 timmars omröming kyldes blandningen och koncentrerades under vakuum.Results from NMR analysis: 1 H NMR (DMSO-d 6 O 6 (ppm) 4.2 (br, OH, 2H); 3.22 (s, CH 3 OH, 4H); 3.18 (s, MeO-, 3H); 3.10 (s, CH 2 O-, 2H); 1.19 (q, 2H); 0.75 (t, 3H) BC MVIR (DMSO-d 6): δ (ppm) 73.46; 62.34; 59 ; 46; 44.09; 22.52; 8.27 Example 9 30 mg of trimethylsilyl trifluoromethanesulfonate was added to 2.15 g of monoethylene glycol, the temperature was raised to 70 ° C and 1.0 g of TMPO was added dropwise, with vigorous stirring and within one hour, After two hours of total stirring, the mixture was cooled and concentrated in vacuo.
GC-MS(Cl) visade att erhållen reaktionsblandning bestod av (yt-%) 61% monoetylenglykol, 20-25% monoetylenglykol-trimetylolpropaneter samt 8,5 och 3,l% av tvâ olika trimera etrar.GC-MS (Cl) showed that the resulting reaction mixture consisted of (surface%) 61% monoethylene glycol, 20-25% monoethylene glycol trimethylolpropanethers and 8.5 and 3.1% of two different trimer ethers.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9902954A SE520971C2 (en) | 1999-08-20 | 1999-08-20 | Process for producing an etheric alcohol |
PCT/SE2000/001558 WO2001014300A1 (en) | 1999-08-20 | 2000-08-09 | Process for production of an etheralcohol |
AU64876/00A AU6487600A (en) | 1999-08-20 | 2000-08-09 | Process for production of an etheralcohol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9902954A SE520971C2 (en) | 1999-08-20 | 1999-08-20 | Process for producing an etheric alcohol |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9902954D0 SE9902954D0 (en) | 1999-08-20 |
SE9902954L SE9902954L (en) | 2001-02-21 |
SE520971C2 true SE520971C2 (en) | 2003-09-16 |
Family
ID=20416711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9902954A SE520971C2 (en) | 1999-08-20 | 1999-08-20 | Process for producing an etheric alcohol |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU6487600A (en) |
SE (1) | SE520971C2 (en) |
WO (1) | WO2001014300A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE524174C2 (en) | 2000-11-14 | 2004-07-06 | Perstorp Specialty Chem Ab | Process for preparing a dendritic polyether |
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
RU2366642C2 (en) | 2003-07-15 | 2009-09-10 | Джи Ар Ти, Инк. | Hydrocarbons synthesis |
US20050171393A1 (en) | 2003-07-15 | 2005-08-04 | Lorkovic Ivan M. | Hydrocarbon synthesis |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7244867B2 (en) | 2004-04-16 | 2007-07-17 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
US20080275284A1 (en) | 2004-04-16 | 2008-11-06 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US20060100469A1 (en) | 2004-04-16 | 2006-05-11 | Waycuilis John J | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US20080188673A1 (en) * | 2005-03-24 | 2008-08-07 | Goldschmidt Gmbh | Ether Alcohol-Based Surfactants Having a Reduced Surface Tension and Use Thereof |
CA2641426C (en) | 2006-02-03 | 2015-06-09 | Grt, Inc. | Separation of light gases from halogens |
EP2457887A1 (en) | 2006-02-03 | 2012-05-30 | GRT, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
CN101765574A (en) | 2007-05-24 | 2010-06-30 | Grt公司 | Zone reactor incorporating reversible hydrogen halide capture and release |
FR2922206B1 (en) * | 2007-10-15 | 2012-08-31 | Seppic Sa | NOVEL COMPOUNDS PREPARED BY ADDITION OF OXETANE DERIVATIVE TO ALCOHOL, PROCESS FOR THEIR PREPARATION, THEIR USE AS NON-IONIC SURFACTANTS |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
NZ591207A (en) | 2008-07-18 | 2013-03-28 | Grt Inc | Continuous process for converting natural gas to liquid hydrocarbons |
JP5223748B2 (en) * | 2009-03-23 | 2013-06-26 | 三菱瓦斯化学株式会社 | Alcohol composition containing tritrimethylolpropane |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
EP2987780B1 (en) * | 2013-04-18 | 2019-10-02 | Mitsubishi Gas Chemical Company, Inc. | Polyol-ether compound and method for producing same |
US9108911B1 (en) | 2014-03-26 | 2015-08-18 | Oxea Bishop Llc | Process for the manufacture of di-TMP |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4988797B1 (en) * | 1989-03-14 | 1993-12-28 | Cationic polymerization of cyclic ethers | |
SE468714B (en) * | 1990-09-24 | 1993-03-08 | Perstorp Ab | PROCEDURES FOR THE PREPARATION OF DITRIMETHYLOLPROPAN |
-
1999
- 1999-08-20 SE SE9902954A patent/SE520971C2/en unknown
-
2000
- 2000-08-09 WO PCT/SE2000/001558 patent/WO2001014300A1/en active Application Filing
- 2000-08-09 AU AU64876/00A patent/AU6487600A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
SE9902954L (en) | 2001-02-21 |
AU6487600A (en) | 2001-03-19 |
WO2001014300A1 (en) | 2001-03-01 |
SE9902954D0 (en) | 1999-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE520971C2 (en) | Process for producing an etheric alcohol | |
US2782240A (en) | Ethers of polyoxyalkylene glycols | |
EP3051350B1 (en) | Alcoholic compound and method for producing alcoholic compound | |
EP0856515B1 (en) | Method of making acetals | |
JP2003502397A (en) | Production method of bisphenol alkoxylate | |
EP0021497A1 (en) | Synthesis of polyoxyalkylene glycol monoalkyl ethers | |
US6794547B2 (en) | Process for the synthesis of aryl alkyl monoethers | |
JPH01132554A (en) | Ether or polyglycol ether sulfonate and its production | |
JP2003183383A (en) | Manufacturing method of cyclic ether adduct of alcohol with less smell | |
CA1158675A (en) | Process for converting glycol dialkyl ether | |
JPH01223123A (en) | Production of terminal blocked polyglycol ether | |
EP0105487B1 (en) | Process for preparing polyacetal polymers and monomers employed therein | |
US3513189A (en) | Preparation of acetoacetic esters | |
KR100643730B1 (en) | Process for production of an oxetane | |
US3127450A (en) | Process for the preparation of ketals | |
JP2011105762A (en) | Method for preparing 1-hydroperoxy-16-oxabicyclo[10.4.0]hexadecane | |
US2500486A (en) | Preparation of mixed mercaptalacetals | |
KR101161845B1 (en) | Method of preparing alkene compound | |
US3940448A (en) | Formaldehyde-diaromatic ether reaction products | |
US20060116534A1 (en) | Process for manufacture of an allyl ether | |
EP0116712B1 (en) | Synthesis of hindered phenols | |
US4774344A (en) | 2,2-bis-phenol dioxolanes monomers | |
US20240228736A1 (en) | A Process for Preparing a Monoester of Terephthalic Acid and Its Derivatives | |
CA1049564A (en) | Process for the preparation of bis(hydroxyaryl) compounds | |
EP1740523B1 (en) | New 1-methoxy-2-phenyl ethenes for the preparation of 5-carboxaldehyde-2-3-dihydrobenzoxepines |