Nothing Special   »   [go: up one dir, main page]

RU2703714C1 - Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения - Google Patents

Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения Download PDF

Info

Publication number
RU2703714C1
RU2703714C1 RU2018146177A RU2018146177A RU2703714C1 RU 2703714 C1 RU2703714 C1 RU 2703714C1 RU 2018146177 A RU2018146177 A RU 2018146177A RU 2018146177 A RU2018146177 A RU 2018146177A RU 2703714 C1 RU2703714 C1 RU 2703714C1
Authority
RU
Russia
Prior art keywords
stack
tapes
unit
solder
generation
Prior art date
Application number
RU2018146177A
Other languages
English (en)
Inventor
Антон Викторович Маркелов
Original Assignee
Закрытое акционерное общество "СуперОкс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "СуперОкс" filed Critical Закрытое акционерное общество "СуперОкс"
Priority to RU2018146177A priority Critical patent/RU2703714C1/ru
Application granted granted Critical
Publication of RU2703714C1 publication Critical patent/RU2703714C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Изобретение относится к технологии получения длинномерных стеков из высокотемпературных сверхпроводящих лент (ВТСП) второго поколения, а более конкретно к установке для их получения, и может быть использовано в производстве токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д. Установка для изготовления длинномерные стеков из высокотемпературных сверхпроводящих лент второго поколения включает узел предварительного лужения основной ленты, разрезания ее на ленты заданной ширины и наматывание лент на отдельные катушки, узел предварительного формирования отдельных лент с катушек в стопку, узел протягивания стопки лент через ванну с флюсом, узел уплотнения и предварительного формирования поперечного сечения длинномерного стека, узел протягивания стека через паяльную ванну с припоем, узел окончательного контроля поперечного сечения стека, узел охлаждения стека до температуры ниже температуры плавления припоя, узел сматывания в катушку готового стека и механизм протягивания ленты через установку. Изобретение позволяет создавать установку изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения путем непрерывного пропускания подготовленной стопки высокотемпературных сверхпроводящих лент второго поколения через паяльную ванну. 6 з.п. ф-лы, 4 ил.

Description

Изобретение относится к технологии получения длинномерных стеков из высокотемпературных сверхпроводящих лент (ВТСП) второго поколения, а более конкретно, к установке для их получения, и может быть использовано в производстве токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.
Первые успехи в создании ВТСП-проводов были связаны с разработкой лет в серебряной оболочке на основе сверхпроводника Bi-Sr-Ca-Cu-O (BSCCO), получившими название лент первого поколения. Несколько позднее появилась технология производства лент 2-го поколения на основе сверхпроводников систем R-Ba-Cu-O (RBCO, R - редкоземельный элемент).
Технология производства таких лент представляет собой сложный процесс, опирающийся на знания в химии, физике, металлургии и других областях. В лентах 1-го поколения жилы ВТСП заключены в матрицу из серебра или сплава на его основе. Для создания лент 2-го поколения обычно применяют ленты-подложки (как правило, из сплавов на основе никеля), ВТСП-жила одна и представляет из себя тонкое покрытие на поверхности ленты. Буферных слоев несколько, один из них (Al2O3) наносится для предотвращения взаимодействия ВТСП и ленты. Другие буферные слои используют для того, чтобы создать и передать текстуру в сверхпроводник. Металлический защитный слой (как правило, из серебра) предохраняет ВТСП от взаимодействия с парами воды и углекислым газом, служит защитой от механических повреждений и от прямого контакта ВТСП с шунтирующим материалом (медь, нержавеющая сталь).
Основное преимущество лент 2-го поколения заключается в их высокой токонесущей способности в высоких магнитных полях при температуре жидкого азота.
Существует несколько альтернативных путей производства ВТСП-лент 2-го поколения, различающихся методами создания текстуры: осаждение, с ассистированием ионным пучком (IBAD), осаждение на наклонную подложку (ISD) и использование подложки с биаксиальной текстурой, получаемой с помощью прокатки и последующею рекристаллизационного отжига (RABiTS). Используемые методы нанесения функциональных слоев разделяют на химические и физические. Первые характеризуются более высокой скоростью осаждения и, как правило, более низкой стоимостью оборудования и более низкими эксплуатационными затратами. Вторые отличаются более высоким качеством получаемых слоев и меньшим количеством параметров процесса.
На базе ВТСП-провода создаются кабели, интегрируется оборудование для электроэнергетики, сверхсильные магниты, а совершенствование криогенных технологий уже позволяет осуществить разработки прототипов для нового поколения электродвижения, ветрогенерации, систем магнитного подвеса и накопителей энергии.
В настоящее время существуют следующие виды сильноточных токонесущих кабелей из ВТСП-лент:
- твистированный стек - ленты складываются в стопку и твистируются, или сначала вкладываются в кондуит, затем твистируются;
- ребель складывается из стрэндов, вырезаемых из ВТСП лент;
- намотка обмоток параллельными лентами ВТСП или стопками лент;
- кабель из лент ВТСП на гибком формере.
При изготовлении больших соленоидов сверхпроводниковых магнитов плоские катушки с лентами устанавливают друг на друга, что требует дополнительных соединений между катушками, дополнительных токовводов. С классическим проводом круглого сечения весь соленоид может быть намотан из одного отрезка провода без дополнительных ухищрений. Длинномерный стек, полученный на установке, предложенной авторами, представляет собой проводник, обладающий сверхпроводящими свойствами, в то же время позволяющий изготавливать, например, соленоид классическим образом.
Известен способ и устройство изготовления многожильного сверхпроводящего провода из Nb3Al, включающий пропускание композитного Nb/Al провода, состоящего из металлического Nb или сплава Nb и металлического Al, или сплава Al, через печь для нагрева до установленной температуры, пропускание нагретого композитного Nb/Al провода через печь для выдержки, пропускание композитного Nb/Al провода через охлаждающую часть и скручивание множества композитных Nb/Al проводов, которые пропущены через охлаждающую часть, причем все этапы осуществляют непрерывно при непрерывном перемещении композитного Nb/Al провода. (опубликованная заявка РФ 94 040892, 1996)
Известна установка для изготовления сверхпроводящего Nb3Al провода из композитного Nb/Al провода, содержащая средство подачи, перемещения для подачи и перемещения композитного провода, средство повышения температуры, которое размещено на пути перемещения и предназначено для нагрева композитного провода от комнатной температуры до установленной температуры при его перемещении, средство выдержки/удерживания, которое расположено на пути перемещения за средством повышения температуры и обеспечивающее выдержку/удерживание композитного провода, нагретого до установленной температуры, а также средство охлаждения, которое расположено на пути перемещения за средством выдержки/удерживания, обеспечивающее охлаждение композитного провода от установленной температуры до комнатной температуры, (опубликованная заявка РФ 94 040892, 1996)
Известен сверхпроводящий многослойный блок, включающий пакет из стопки сверхпроводящих листов, установленных один на другой и механически связанных друг с другом, где каждый лист выполнен из отрезков высокотемпературных сверхпроводящих лент второго поколения, уложенных в ряд и механически связанных друг с другом по длинным сторонам и способ его изготовления, (патент РФ 2579457, 2014)
Ни один из известных авторам способов и устройств не предусматривают получения длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения, сложенных в стопки. Как показали исследования авторов, такая конфигурация позволяет увеличить токонесущую способность единичной жилы. Узкие стеки (1 мм) также имеют практически изотропное сечение по сравнению с исходной лентой, что делает их гораздо более удобным проводником для изготовления токонесущих устройств.
Технической проблемой настоящего изобретения является создание установки для получения длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения. Известно, что форма исходной ленты накладывает определенные ограничения на изготавливаемые из нее изделия. Зачастую из-за этого не могут быть использованы отработанные технологии для изготовления кабелей. Стек, полученный на предложенной установке, совмещает в себе преимущества сверхпроводящей ленты и классического провода. Стек состоит из сверхпроводящих лент, поэтому обладает сверхпроводящими свойствами, и переносит ток без потерь. При этом в отличие от исходной ленты, стек имеет более изотропное сечение - почти такое, как классический медный проводник.
Технический результат изобретения состоит в создании установки изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения путем непрерывного пропускания подготовленной стопки высокотемпературных сверхпроводящих лент второго поколения через паяльную ванну.
Для достижения указанного технического результата предложена установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения, включающая узел предварительного лужения основной ленты, разрезания ее на ленты заданной ширины и наматывание лент на отдельные катушки, узел предварительного формирования отдельных лент с катушек в стопку, узел протягивания стопки лент через ванну с флюсом, узел уплотнения и предварительного формирования поперечного сечения длинномерного стека, узел протягивания стека через паяльную ванну с припоем, узел окончательного контроля поперечного сечения стека, узел охлаждения стека до температуры ниже температуры плавления припоя, узел сматывания в катушку готового стека и механизм протягивания ленты через установку.
Предпочтительно, что узел уплотнения и предварительного формирования отдельных лент в стопку представляет собой формер с пазом заданной ширины и подвижной прижимной пластины сверху.
Предпочтительно, что формер выполнен из тефлона.
Предпочтительно, что узел протягивания стека через паяльную ванну с припоем, содержит установленные на входе и выходе из ванны приспособления для удаления излишков припоя.
Предпочтительно, что узел окончательного контроля поперечного сечения стека представляет собой формер с пазом заданной ширины и подвижной прижимной пластины сверху.
Предпочтительно, что формер выполнен из тефлона.
Предпочтительно, что узел охлаждения стека до температуры ниже температуры плавления припоя содержит вентилятор.
Выполнение установки для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения в виде последовательно установленных узла предварительного лужения основной ленты, разрезания ее на ленты заданной ширины и наматывание лент на отдельные катушки, узла предварительного формирования отдельных лент с катушек в стопку, узла протягивания стопки лент через ванну с флюсом, узла уплотнения и предварительного формирования поперечного сечения длинномерного стека, узла протягивания стека через паяльную ванну с припоем, узла окончательного контроля поперечного сечения стека, узла охлаждения стека до температуры ниже температуры плавления припоя, узла сматывания в катушку готового стека и механизма протягивания ленты через установку позволяет получить узкие длинномерные стеки (1 мм), которые имеют практически изотропное сечение но сравнению с исходной лентой, что делает их гораздо более удобным проводником для изготовления токонесущих устройств.
Узел уплотнения и предварительного формирования отдельных лент в стопку и узел окончательного контроля поперечного сечения стека предпочтительно выполнены в виде формеров с пазом заданной ширины и подвижной прижимной пластиной сверху, хотя могут быть выполнены любым другим пригодным для этого случая образом.
Паяльная ванна с припоем содержит установленные на входе и выходе из ванны приспособления для удаления излишков припоя, выполненные в виде регулируемых щелей в стенках ванны, хотя могут быть выполнены любым другим пригодным для этого случая образом.
Предпочтительно материал формеров - тефлон, хотя может быть использован любой полимер с антиадгезионными и термостойкими свойствами.
Узел охлаждения стека до температуры ниже температуры плавления припоя содержит вентилятор, хотя узел может быть выполнен любым пригодным для этого случаем.
Схематично, установка показана на чертежах, где на фиг. 1 показан условно общий вид установки, на фиг. 2 - изображен формер, на фиг. 3 - внешний вид стека шириной 1 мм, на фиг. 4 - приведены вольтамперные характеристики стека и исходной ленты.
Как показано на фиг. 1 установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения содержит: узел предварительного лужения основной ленты, разрезания ее на ленты заданной ширины и наматывание лент на отдельные катушки 1 (показан условно), узел предварительного формирования отдельных лент в стопку 2 с помощью роликов 3 с катушек 4, узел протягивания стопки лент через ванну с флюсом 5, узел уплотнения и предварительного формирования поперечного сечения длинномерного стека, выполненный в виде формера 6, узел протягивания стека через паяльную ванну с припоем 7 и приспособлениями для удаления излишков припоя 8 и 9, узел окончательного контроля поперечного сечения стека, выполненный в виде формера 6, узел охлаждения стека до температуры ниже температуры плавления припоя 10, выполненный любым пригодным для этой цели способом, например, в виде вентилятора, узел сматывания в катушку готового стека 11 и механизм протягивания ленты через установку 12.(показан условно)
На фиг. 2 показан формер 6, с щелью для протягивания стека 13 и прижимной пластиной 14.
На фиг. 3 продемонстрирован общий вид изготовленного стека, график на фиг. 4 показывает сравнительные вольтамперные характеристики стека и исходной ленты.
Такая конфигурация стека позволяет увеличить токонесущую способность единичной жилы.
Предложенная установка работает следующим образом:
Высокотемпературная сверхпроводящая лента второго поколения подается в узел 1 предварительного лужения основной ленты (образование на поверхности ленты металлического слоя путем плавления низкотемпературного припоя, например ПОС61 толщиной 5-10 мкм с каждой стороны, затем ее разрезают на ленты заданной ширины и наматывают на отдельные катушки 4. В узле 2 предварительного формирования отдельных лент в стопку с помощью роликов 3 с катушек 4 формируют стопку из не менее 10 смоченных припоем лент, протягивают стопку через через ванну с флюсом (спиртовой раствор канифоли) узла 5 и через узел уплотнения и предварительного формирования поперечного сечения длинномерного стека, выполненный в виде формера 6, в котором стек проходит через щель 13, которую формируют путем прижимной пластины 14.
Затем, сформированный стек проходит через паяльную ванну с припоем узла 7 с (припой ПОС61 при температуре 200-220°С и скорости 50-150 м/ч) Излишки припоя удаляют с помощью приспособлений 8 и 9. Стек еще раз протягивают через формер 6
Затем в формере 6 узла окончательного контроля поперечного сечения стека, последний окончательно приобретает свою геометрию. Далее стек попадает в узел 10 охлаждения до температуры ниже температуры плавления припоя, затем сматывается на катушку.
Предложенная установка позволяет увеличить токонесущую способность единичной жилы проводов. Узкие стеки (1 мм) имеют практически изотропное сечение по сравнению с исходной лентой, что делает их гораздо более удобным проводником для изготовления токонесущих устройств. Токонесущая способность стеков примерно соответствует сумме критических токов исходных лент.

Claims (7)

1. Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения, включающая узел предварительного лужения основной ленты, разрезания ее на ленты заданной ширины и наматывание лент на отдельные катушки, узел предварительного формирования отдельных лент с катушек в стопку, узел протягивания стопки лент через ванну с флюсом, узел уплотнения и предварительного формирования поперечного сечения длинномерного стека, узел протягивания стека через паяльную ванну с припоем, узел окончательного контроля поперечного сечения стека, узел охлаждения стека до температуры ниже температуры плавления припоя, узел сматывания в катушку готового стека и механизм протягивания ленты через установку.
2. Установка по п. 1, отличающаяся тем, что узел уплотнения и предварительного формирования отдельных лент в стопку представляет собой формер с пазом заданной ширины и подвижной прижимной пластины сверху.
3. Установка по п. 2, отличающаяся тем, что формер выполнен из тефлона.
4. Установка по п. 1, отличающаяся тем, что узел протягивания стека через паяльную ванну с припоем содержит установленные на входе и выходе из ванны приспособления для удаления излишков припоя.
5. Установка по п. 1, отличающаяся тем, что узел окончательного контроля поперечного сечения стека представляет собой формер с пазом заданной ширины и подвижной прижимной пластины сверху.
6. Установка по п. 5, отличающаяся тем, что формер выполнен из тефлона.
7. Установка по п. 1, отличающаяся тем, что узел охлаждения стека до температуры ниже температуры плавления припоя содержит вентилятор.
RU2018146177A 2018-12-25 2018-12-25 Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения RU2703714C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146177A RU2703714C1 (ru) 2018-12-25 2018-12-25 Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146177A RU2703714C1 (ru) 2018-12-25 2018-12-25 Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения

Publications (1)

Publication Number Publication Date
RU2703714C1 true RU2703714C1 (ru) 2019-10-22

Family

ID=68318369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146177A RU2703714C1 (ru) 2018-12-25 2018-12-25 Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения

Country Status (1)

Country Link
RU (1) RU2703714C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122641A (en) * 1978-03-16 1979-09-22 Furukawa Electric Co Ltd:The Soft solder joining apparatus for strip
US20040069526A1 (en) * 1998-03-18 2004-04-15 Darmann Francis Anthony Superconducting tapes
US20040126610A1 (en) * 1998-03-18 2004-07-01 Rupeng Zhao Superconducting tapes
RU2579457C1 (ru) * 2014-12-25 2016-04-10 Закрытое акционерное общество "СуперОкс" (ЗАО "СуперОкс") Многослойный блок из сверхпроводящих лент и способ его получения
RU2662801C1 (ru) * 2017-07-06 2018-07-31 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ нанесения электроизоляционного полимерного покрытия на сверхпроводники второго поколения и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122641A (en) * 1978-03-16 1979-09-22 Furukawa Electric Co Ltd:The Soft solder joining apparatus for strip
US20040069526A1 (en) * 1998-03-18 2004-04-15 Darmann Francis Anthony Superconducting tapes
US20040126610A1 (en) * 1998-03-18 2004-07-01 Rupeng Zhao Superconducting tapes
RU2579457C1 (ru) * 2014-12-25 2016-04-10 Закрытое акционерное общество "СуперОкс" (ЗАО "СуперОкс") Многослойный блок из сверхпроводящих лент и способ его получения
RU2662801C1 (ru) * 2017-07-06 2018-07-31 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ нанесения электроизоляционного полимерного покрытия на сверхпроводники второго поколения и устройство для его осуществления

Similar Documents

Publication Publication Date Title
KR101079564B1 (ko) 신규 초전도 물품, 그 형성 및 사용 방법
CN110770925B (zh) 提高工程电流密度的高温超导导线
Ainslie et al. Numerical analysis of AC loss reduction in HTS superconducting coils using magnetic materials to divert flux
Shiohara et al. Present status and future prospect of coated conductor development and its application in Japan
US7980051B2 (en) Apparatus and method for producing composite cable
CN105009228B (zh) 超导导体的制造方法和超导导体
EP1733402A1 (en) Composite superconductor cable produced by transposing planar subconductors
JP2019509612A (ja) 第2世代超伝導フィラメント及びケーブル
JP2960481B2 (ja) 超電導体テープ中の渦電流の低減方法および超電導体装置
Ainslie Reducing AC losses in high-temperature superconducting coated-conductor wires towards more efficient superconducting electric power applications
RU2703714C1 (ru) Установка для изготовления длинномерных стеков из высокотемпературных сверхпроводящих лент второго поколения
US20070056158A1 (en) Method for manufacturing second-generation superconducting wire for transposition and superconducting coil manufactured using the same
US8156637B2 (en) Apparatus for forming HTS continuous conductor elements
JP2010238634A (ja) 酸化物超電導線材とその製造方法及びそれに用いる基板の製造装置
CN113284666B (zh) 一种多层封装超导换位电缆及成缆方法
JP7349128B2 (ja) 高温超伝導線材、その製造方法および製造装置
JP5695632B2 (ja) 酸化物超電導線材及びその製造方法並びに超電導コイル及び超電導ケーブル
JP4202173B2 (ja) 転位セグメントとその製造方法及びその製造装置並びに超電導応用機器
JP2004356046A (ja) Nb3Al化合物系超電導線材及びその製造方法、製造装置
Sasaoka et al. Study of a bi-system superconducting wire with an oxide barrier using the strand and formed method
Inada et al. AC transport losses for Ag-sheathed (Bi, Pb)-2223 tapes prepared by rectangular deformation process
CN117542576A (zh) 金属绝缘超导导体制备方法及超导导体
Tsuchiya et al. Nb3Al DEVELOPMENT IN JAPAN
JP2004063225A (ja) 転位超電導テープユニット及び超電導ケーブル
Hasegawa et al. Superconducting Properties of Bi 2 Sr 2 CaCu 2 O y Tape Prepared by the Continuous Heat Treatment Technique

Legal Events

Date Code Title Description
HE4A Change of address of a patent owner

Effective date: 20211209