RU2544264C1 - Способ газоанализа природного газа - Google Patents
Способ газоанализа природного газа Download PDFInfo
- Publication number
- RU2544264C1 RU2544264C1 RU2013142763/28A RU2013142763A RU2544264C1 RU 2544264 C1 RU2544264 C1 RU 2544264C1 RU 2013142763/28 A RU2013142763/28 A RU 2013142763/28A RU 2013142763 A RU2013142763 A RU 2013142763A RU 2544264 C1 RU2544264 C1 RU 2544264C1
- Authority
- RU
- Russia
- Prior art keywords
- spectrum
- gas
- raman
- components
- ghg
- Prior art date
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Изобретение относится к области аналитического приборостроения и предназначено для качественного и количественного анализа природного газа (ПГ). Способ включает облучение газа линейно поляризованным монохроматическим лазерным излучением и одновременную регистрацию m спектров спонтанного комбинационного рассеяния (СКР) эталонных газовых компонентов, входящих в состав ПГ, причем для них дополнительно регистрируется интегральная интенсивность облучающего лазерного излучения Ii, i=1..m, а величины относительных концентраций компонентов анализируемого ПГ из его спектра СКР определяются по формуле, в которую входят вклады спектров СКР эталонных газовых компонентов в зарегистрированный спектр СКР ПГ, вычисленные с помощью метода наименьших квадратов. При этом из спектра, зарегистрированного многоканальным фотоприемником, используются диапазоны 300-2500 см-1 и 3400-3750 см-1. Изобретение обеспечивает упрощение определения и повышение точности. 2 ил.
Description
Изобретение относится к области аналитического приборостроения и предназначено для качественного и количественного анализа природного газа (ПГ).
Химический состав ПГ существенно различается в зависимости от его месторождения. Наряду с этим изменяется его теплотворная способность, а следовательно, и стоимость. По этой причине определение с высокой степенью точности состава ПГ является для предприятий, занимающихся его добычей и транспортировкой весьма актуальной задачей.
Вместе с тем, количественный анализ ПГ является одной из сложнейших задач газоанализа по причине большого количества компонентов, входящих в его состав, а также значительного разброса величин их концентраций.
Наиболее распространенным методом определения химического состава ПГ, на сегодняшний день, является хроматографический анализ [Бузановский В.А., Овсепян А.М. Информационно-измерительные системы состава и свойств природного газа // Территория Нефтегаз, 2007, №8, с.36-43]. Основными недостатками данного метода являются необходимость иметь газ-носитель (например, He или Ar) для осуществления газохроматографического разделения, длительное время проведения анализа, а также деградация со временем характеристик основных узлов (детекторов, колонок) и связанная с этим необходимость в периодической поверке градуировки прибора.
Кроме того, известен способ, основанный на лазерной абсорбционной спектроскопии [RU 2441219, 27.01.2012]. Данный способ свободен от недостатков хроматографического анализа, однако имеет ряд собственных. В первую очередь к ним относится необходимость предварительной информации о составе анализируемого газа, а также необходимость иметь несколько лазеров, работающих в различных диапазонах длин волн, что в итоге приведет к существенному удорожанию газоанализатора. Кроме того, данным способом невозможно определить концентрацию гомоядерных молекул, входящих в состав ПГ (например, N2, H2 и т.д.), определение содержания которых принципиально важно.
Наиболее близким по принципу действия является способ анализа, основанный на использовании спектроскопии спонтанного комбинационного рассеяния света (СКР) [Бажанов Ю.В. и др. Количественный анализ газовых сред методом спектроскопии комбинационного рассеяния света // Аналитика и контроль, 1998, №3-4, с.65-74]. Основным его преимуществом является отсутствие расходных материалов, а также контроль всех молекулярных составляющих природного газа с помощью одного лазера с фиксированной длиной волны. Суть данного метода заключается в облучении анализируемого ПГ линейно поляризованным монохроматическим излучением и одновременной регистрации его спектра СКР в диапазоне 0-4200 см-1, куда попадают полосы всех молекул. Далее процесс сводится к следующему. Составляется система уравнений
, где j - номер спектрального компонента, k - номер пиксела,
- вклад j-го компонента в интенсивность, регистрируемую k-м пикселом, dj - коэффициент, сочетающий в себе сечение рассеяния j-го компонента σj и аппаратную функцию пропускания оптических элементов, n - абсолютная концентрация молекул того сорта, частоте колебаний которого соответствует данная спектральная компонента, ik - интенсивность, зарегистрированная k-м пикселом,
- величина фона, J - интенсивность возбуждающего излучения. Данная система избыточна, поскольку имеет число уравнений, равное общему числу пикселов, и число неизвестных, равное полному числу компонент природного газа N. Поэтому из нее выделяют подсистему с N уравнениями, каждое из которых соответствует пикселу, регистрирующему максимум одной из спектральных линий. Интенсивность возбуждающего излучения исключается путем перехода к относительным концентрациям и нормировке их суммы на 100%.
Основным недостатком данного подхода является необходимость в знании сечений рассеяния σj компонентов на выбранных пикселях с очень высокой точностью, что является весьма нетривиальной задачей. Помимо этого, ввиду малого количества уравнений, в данном способе не удается корректно учесть случайные флуктуации световых сигналов (например, дробовой шум), вследствие чего точность анализа является низкой.
Задачей, на решение которой направлено изобретение, является создание способа газоанализа природного газа, основанного на спектроскопии СКР, устойчивого к световым флуктуациям сигналов и не требующего информации о сечениях комбинационного рассеяния его компонентов. Технический результат - упрощение процедуры и повышение точности газоанализа природного газа.
Указанный результат достигается тем, что, как и в прототипе, происходит облучение природного газа линейно поляризованным монохроматическим излучением и производится одновременная регистрация его спектра СКР в диапазоне 0-4200 см-1. Но, в отличие от прототипа, до регистрации спектров СКР анализируемых образцов ПГ однократно регистрируются m спектров СКР эталонных газовых компонентов, входящих в состав ПГ, причем для них дополнительно регистрируется интегральная интенсивность облучающего лазерного излучения Ii, i=1..m, а величины относительных концентраций компонентов анализируемого ПГ из его спектра СКР определяются по формуле
, где a i - вклады спектров СКР эталонных газовых компонентов
в зарегистрированный спектр СКР ПГ Jpix, вычисленные с помощью метода наименьших квадратов из системы уравнений
(pix соответствует номерам элементов используемого многоканального фотоприемника, обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1), Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре, определяемая из соотношения
, где k - коэффициент Больцмана, Pi, Ti - соответственно давление и температура эталонного газа i в кювете при регистрации его спектра СКР, Zi (Pi, Ti) - коэффициент сжимаемости газа i при давлении Pi и температуре Ti.
Предлагаемый способ основан на том, что зарегистрированная интенсивность сигнала СКР от компонента i линейно зависит от концентрации молекул данного типа в анализируемом объеме и интенсивности возбуждающего (облучающего) лазерного излучения. Вместе с тем, сигналы СКР в многокомпонентных газовых средах, накладываясь друг на друга, обладают свойством аддитивности. Другими словами, суммарный зарегистрированный спектр СКР представляет собой сумму спектров СКР отдельных компонентов. Т.е. для случая многоканальной регистрации имеет место система уравнений
, соответственно, решив которую, можно найти вклады спектров СКР отдельных компонентов a i в итоговый спектр СКР и, следовательно, концентрации всех молекулярных составляющих анализируемой газовой среды. Очевидно, что данная система является переопределенной и ее решение целесообразно проводить методом наименьших квадратов, в результате чего помимо значений a i возможно получить и случайные погрешности для данных величин. Однако для решения задачи определения компонентного состава ПГ данным способом необходимо один раз заранее зарегистрировать спектры СКР эталонных компонентов, на которые будет раскладываться полученный спектр СКР ПГ. Стоит отметить, что согласно [ГОСТ 31371.7-2008] основными составляющими ПГ, требующими контроля, являются: метан, этан, пропан, н-бутан, изо-бутан, н-пентан, изо-пентан, неопентан, гексан, азот, кислород, углекислый газ, пары воды. Таким образом оценки содержания данных компонентов достаточно для определения требуемых характеристик ПГ (теплота сгорания, плотность и т.п.).
Стоит отметить, что абсолютно все лазеры, используемые для возбуждения в газах СКР, имеют нестабильность мощности по времени, которая, как правило, варьируется в пределах 1-15%. В этой связи целесообразным является контроль мощности излучения при регистрации спектров СКР эталонных компонентов. Кроме того, для осуществления высокоточных измерений необходимо учитывать степень неидеальности газов. По этой причине абсолютная концентрация молекул в эталонном газе i должна определяться по формуле
, где k - коэффициент Больцмана, Pi, Ti - давление и температура эталонного газа в кювете при регистрации его спектра СКР, Zi (Pi, Ti) - коэффициент его сжимаемости при давлении Pi и температуре Ti. Стоит отметить, что Zi (Pi, Ti) является табличной величиной и может быть взята из [ГОСТ 31369-2008. Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава].
В свою очередь для повышения точности измерений a i в систему решаемых уравнений должны входить только те уравнения, для которых спектральный диапазон составляет 300-2500 см-1 и 3400-3750 см-1. Данное обстоятельство обуславливается тем фактом, что преобладающим компонентом в природном газе является метан, содержание которого составляет 80-95%. В свою очередь все углеводороды в спектре СКР имеют интенсивные полосы в области 2500-3400 см-1. Однако несмотря на это использование данной области спектра приводит к увеличению погрешностей вычисления ввиду выделения слабых полос тяжелых углеводородов на фоне очень интенсивных полос метана в этой области. Оставшиеся части спектра (250-2500 см-1 и 3400-3750 см-1) вполне подходят для анализа, так как здесь располагаются полосы всех основных компонентов природного газа, в т.ч. паров воды (3652 см-1), и при этом интенсивность полосы ν2 (1534 см-1) молекулы метана не преобладает в явном виде над интенсивностями полос других молекул природного газа.
На фиг.1 изображена схема устройства для осуществления предлагаемого способа (1 - лазер, 2 - светоделительная пластина, 3 - фотоприемник, 4 - линза, 5 - кювета для напуска газа, 6 - манометр, 7 - измеритель температуры, 8 - ловушка лазерного излучения, 9 - объектив для сбора рассеянного света, 10 - светофильтр, 11 - спектральный прибор, 12 - электронный блок управления). На фиг.2 изображен спектр СКР ПГ в области 700-1900 см-1, а также вклады его отдельных компонентов в итоговый спектр СКР.
Способ осуществляется следующим образом. До проведения анализов образцов ПГ единоразово осуществляется регистрация спектров СКР отдельных компонентов природного газа i. Для этой цели возбуждающее линейно поляризованное излучение от лазера 1 попадает на светоделительную пластину 2, которая направляет часть излучения на фотоприемник 3, определяющий интегральную мощность излучения Ii в течение времени регистрации одного спектра. В свою очередь основная часть лазерного излучения фокусируется линзой 4 в центр кюветы 5, заполненной эталонным газовым компонентом i. Давление Pi и температура Ti газа в кювете контролируется манометром 6 и измерителем температуры 7 соответственно. Прошедшее сквозь кювету лазерное излучение поглощается ловушкой 8, а рассеянное излучение из центра кюветы под углом 90 градусов к возбуждающему излучению собирается объективом 9 и направляется сквозь светофильтр 10, ослабляющий свет на частоте лазерного излучения, на вход спектрального прибора 11, осуществляющего одновременную регистрацию спектра СКР в диапазоне 0-4200 см-1. Далее зарегистрированный спектр СКР эталонного газового компонента вместе с данными о его давлении и температуре при регистрации, а также с данными о соответствующей интегральной мощности возбуждающего излучения направляется в память электронного блока управления и согласно соотношению
, где k - коэффициент Больцмана, Zi (Pi, Ti) - коэффициент сжимаемости газа i при давлении Pi и температуре Ti, вычисляется Ni - величина абсолютной концентрации молекул сорта i в его эталонном спектре. Данная процедура поочередно осуществляется для всех компонентов природного газа.
После этого в кювету напускается анализируемый ПГ, проводится аналогичным образом регистрация его спектра СКР, за исключением того что не контролируется его давление, температура и мощность возбуждающего излучения. В электронном блоке управления величины относительных концентраций компонентов анализируемого ПГ из его спектра СКР определяются по формуле
, где a i - вклады спектров СКР эталонных газовых компонентов
в зарегистрированный спектр СКР ПГ Jpix, вычисленные с помощью метода наименьших квадратов из системы уравнений
, где pix соответствует номерам элементов используемого многоканального фотоприемника, обеспечивающих регистрацию спектра в диапазонах 300-2500 см-1 и 3400-3750 см-1.
За счет большого количества используемых уравнений предлагаемый способ является устойчивым к световым флуктуациям сигналов, а также к появлению новых компонентов в составе ПГ. Также стоит отметить, что данный способ, в отличие от прототипа, не требует учета уровня фона, поскольку фон в зарегистрированном спектре СКР ПГ, как и сигналы СКР, будет полностью компенсироваться вкладами от других компонентов. Кроме того, при использовании предлагаемого способа нет необходимости определять конструктивные параметры газоанализатора (угол сбора рассеянного излучения, спектральный коэффициент пропускания). Однако необходимо только, чтобы спектры эталонных газов и спектр газовой смеси были зарегистрированы при одной и той же настройке используемого СКР-газоанализатора.
Таким образом, применение предлагаемого способа газоанализа природного газа значительно упрощает процедуру его анализа, способствует ее автоматизации, а также обеспечивает высокую точность измерений.
Claims (1)
- Способ газоанализа природного газа (ПГ), включающий его облучение линейно поляризованным монохроматическим лазерным излучением и одновременную регистрацию его спектра спонтанного комбинационного рассеяния (СКР) многоканальным фотоприемником в диапазоне 0-4200 см-1, отличающийся тем, что до регистрации спектров СКР анализируемых образцов ПГ регистрируют m спектров СКР эталонных газовых компонентов, входящих в состав ПГ, причем для них дополнительно регистрируют интегральную интенсивность облучающего лазерного излучения Ii, i=1...m, а величины относительных концентраций компонентов анализируемого ПГ из его спектра СКР определяются по формуле
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013142763/28A RU2544264C1 (ru) | 2013-09-19 | 2013-09-19 | Способ газоанализа природного газа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013142763/28A RU2544264C1 (ru) | 2013-09-19 | 2013-09-19 | Способ газоанализа природного газа |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2544264C1 true RU2544264C1 (ru) | 2015-03-20 |
RU2013142763A RU2013142763A (ru) | 2015-03-27 |
Family
ID=53286508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013142763/28A RU2544264C1 (ru) | 2013-09-19 | 2013-09-19 | Способ газоанализа природного газа |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2544264C1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2613200C1 (ru) * | 2015-11-20 | 2017-03-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) | Лазерный газоанализатор |
RU2688886C1 (ru) * | 2018-06-05 | 2019-05-22 | Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук | Способ газоанализа природного газа |
CN111562247A (zh) * | 2019-02-13 | 2020-08-21 | 中国石油天然气股份有限公司 | 硫化氢和二氧化碳在线分析装置及方法 |
RU2768242C1 (ru) * | 2021-03-09 | 2022-03-23 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ определения коэффициента сжимаемости газа |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0242926A1 (en) * | 1986-04-19 | 1987-10-28 | N.V. Nederlandse Gasunie | Method of determining a physical property of a medium |
RU2061224C1 (ru) * | 1993-07-05 | 1996-05-27 | Валерий Михайлович Волынкин | Лидар |
CN1467492A (zh) * | 2002-07-11 | 2004-01-14 | 中国科学院大连化学物理研究所 | 自发喇曼散射技术测量气体组分浓度的测试方法和系统 |
WO2009101659A1 (ja) * | 2008-02-13 | 2009-08-20 | Shikoku Research Institute Incorporated | ガス濃度遠隔計測方法および装置 |
RU2441219C1 (ru) * | 2010-07-19 | 2012-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) | Способ определения компонентного состава природного газа в реальном масштабе времени |
RU2492434C1 (ru) * | 2012-01-24 | 2013-09-10 | Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) | Многоканальный высокоэффективный кр-спектрометр |
-
2013
- 2013-09-19 RU RU2013142763/28A patent/RU2544264C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0242926A1 (en) * | 1986-04-19 | 1987-10-28 | N.V. Nederlandse Gasunie | Method of determining a physical property of a medium |
RU2061224C1 (ru) * | 1993-07-05 | 1996-05-27 | Валерий Михайлович Волынкин | Лидар |
CN1467492A (zh) * | 2002-07-11 | 2004-01-14 | 中国科学院大连化学物理研究所 | 自发喇曼散射技术测量气体组分浓度的测试方法和系统 |
WO2009101659A1 (ja) * | 2008-02-13 | 2009-08-20 | Shikoku Research Institute Incorporated | ガス濃度遠隔計測方法および装置 |
RU2441219C1 (ru) * | 2010-07-19 | 2012-01-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) | Способ определения компонентного состава природного газа в реальном масштабе времени |
RU2492434C1 (ru) * | 2012-01-24 | 2013-09-10 | Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук (ИМКЭС СО РАН) | Многоканальный высокоэффективный кр-спектрометр |
Non-Patent Citations (1)
Title |
---|
БАЖАНОВ Ю.В. и др. Количественный анализ газовых сред методом спектроскопии комбинационного рассеяния света. Аналитика и контроль, N3-4, 1998, с.65-74. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2613200C1 (ru) * | 2015-11-20 | 2017-03-15 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) | Лазерный газоанализатор |
RU2688886C1 (ru) * | 2018-06-05 | 2019-05-22 | Федеральное государственное бюджетное учреждение науки Институт мониторинга климатических и экологических систем Сибирского отделения Российской академии наук | Способ газоанализа природного газа |
CN111562247A (zh) * | 2019-02-13 | 2020-08-21 | 中国石油天然气股份有限公司 | 硫化氢和二氧化碳在线分析装置及方法 |
RU2768242C1 (ru) * | 2021-03-09 | 2022-03-23 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ определения коэффициента сжимаемости газа |
Also Published As
Publication number | Publication date |
---|---|
RU2013142763A (ru) | 2015-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | High-sensitivity gas detection with air-lasing-assisted coherent Raman spectroscopy | |
CN101819140B (zh) | 气态单质汞浓度的连续监测装置和方法 | |
CN106932378A (zh) | 一种基于拉曼光谱的炼厂酸性气成分的在线检测系统和方法 | |
US10557792B2 (en) | Spectral modeling for complex absorption spectrum interpretation | |
RU2544264C1 (ru) | Способ газоанализа природного газа | |
Christmann et al. | Correction of right-angle molecular fluorescence measurements for absorption of fluorescence radiation | |
Han et al. | On-line multi-component analysis of gases for mud logging industry using data driven Raman spectroscopy | |
CN113324973B (zh) | 一种结合光谱内标的多因素校正拉曼光谱定量分析方法 | |
Pironti et al. | Determination of the 13C/12C carbon isotope ratio in carbonates and bicarbonates by 13C NMR spectroscopy | |
Ribessi et al. | iHEART: a miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides | |
Chang et al. | Improved removal of volatile organic compounds for laser‐based spectroscopy of water isotopes | |
Mikkonen et al. | Detection of gaseous nerve agent simulants with broadband photoacoustic spectroscopy | |
Khannanov et al. | Analysis of natural gas using a portable hollow-core photonic crystal coupled Raman spectrometer | |
Petrov et al. | Multipass Raman gas analyzer for monitoring of atmospheric air composition | |
Rutherford et al. | Detection of paracetamol binding to albumin in blood serum using 2D-IR spectroscopy | |
Petrov et al. | Evaluation of the metrological characteristics of Raman analyzer of natural gas | |
Debus et al. | Long-term strategy for assessing carbonaceous particulate matter concentrations from multiple fourier transform infrared (FT-IR) instruments: influence of spectral dissimilarities on multivariate calibration performance | |
RU126136U1 (ru) | Анализатор состава природного газа | |
RU2688886C1 (ru) | Способ газоанализа природного газа | |
Herget et al. | Progress in the prototype development of a new multicomponent exhaust gas sampling and analyzing system | |
CN1467492A (zh) | 自发喇曼散射技术测量气体组分浓度的测试方法和系统 | |
Petrov et al. | Natural Gas Analysis Using Polarized Raman Spectroscopy | |
Schlüter et al. | Gas sensor for volatile anesthetic agents based on Raman scattering | |
Berezin et al. | UF6 enrichment measurements using TDLS techniques | |
Grishkanich et al. | SRS-lidar for 13C/12C isotops measurements environmental and food |