KR20210044686A - 두께 계측 장치 - Google Patents
두께 계측 장치 Download PDFInfo
- Publication number
- KR20210044686A KR20210044686A KR1020200118038A KR20200118038A KR20210044686A KR 20210044686 A KR20210044686 A KR 20210044686A KR 1020200118038 A KR1020200118038 A KR 1020200118038A KR 20200118038 A KR20200118038 A KR 20200118038A KR 20210044686 A KR20210044686 A KR 20210044686A
- Authority
- KR
- South Korea
- Prior art keywords
- thickness
- reference waveform
- light source
- wafer
- layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B49/00—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
- B24B49/02—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
- B24B49/04—Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0675—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0625—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0683—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/40—Caliper-like sensors
- G01B2210/48—Caliper-like sensors for measurement of a wafer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/65—Spatial scanning object beam
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
(과제) 피가공물의 두께를 용이하고 정밀하게 계측할 수 있는 두께 계측 장치를 제공한다.
(해결 수단) 척 테이블에 유지된 피가공물의 두께를 계측하는 두께 계측 장치로서, 복수의 회절 격자에 의해서 파장마다 분광된 광의 강도를 검출하고 분광 간섭 파형을 생성하는 복수의 이미지 센서와, 복수의 이미지 센서가 생성한 분광 간섭 파형으로부터 두께 정보를 출력하는 두께 출력 유닛을 포함한다. 두께 출력 유닛은, 복수의 두께에 대응한 분광 간섭 파형을 기준 파형으로서 기록한 기준 파형 기록부와, 복수의 이미지 센서가 생성한 복수의 분광 간섭 파형과 기준 파형 기록부에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형으로부터, 각 분광 간섭 파형에 대응한 두께를 결정하는 두께 결정부를 포함한다.
(해결 수단) 척 테이블에 유지된 피가공물의 두께를 계측하는 두께 계측 장치로서, 복수의 회절 격자에 의해서 파장마다 분광된 광의 강도를 검출하고 분광 간섭 파형을 생성하는 복수의 이미지 센서와, 복수의 이미지 센서가 생성한 분광 간섭 파형으로부터 두께 정보를 출력하는 두께 출력 유닛을 포함한다. 두께 출력 유닛은, 복수의 두께에 대응한 분광 간섭 파형을 기준 파형으로서 기록한 기준 파형 기록부와, 복수의 이미지 센서가 생성한 복수의 분광 간섭 파형과 기준 파형 기록부에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형으로부터, 각 분광 간섭 파형에 대응한 두께를 결정하는 두께 결정부를 포함한다.
Description
본 발명은, 척 테이블에 유지된 피가공물의 두께를 계측하는 두께 계측 장치에 관한 것이다.
IC, LSI 등의 복수의 디바이스가 교차하는 복수의 분할 예정 라인에 의해서 구획되어서 표면에 형성된 웨이퍼는, 연삭 장치에 의해서 이면이 연삭되어 박화된 후, 다이싱 장치, 레이저 가공 장치에 의해서 개개의 디바이스 칩으로 분할되고, 분할된 디바이스 칩은 휴대 전화, 컴퓨터 등의 전기 기기에 이용된다.
웨이퍼의 이면을 연삭하는 연삭 장치는, 웨이퍼를 유지하는 척 테이블과, 상기 척 테이블에 유지된 웨이퍼를 연삭하는 연삭 휠을 회전 가능하게 구비한 연삭 유닛과, 상기 척 테이블에 유지된 웨이퍼의 두께를 계측하는 계측 장치로 대략 구성되어 있어, 웨이퍼를 원하는 두께로 가공할 수 있다.
그리고, 두께를 계측하는 계측 장치는, 프로버를 웨이퍼의 연삭면에 접촉시켜서 웨이퍼의 두께를 계측하는 접촉 타입의 것을 이용하면 연삭면에 상처를 낸다고 하는 문제가 있다는 점에서, 웨이퍼의 연삭면에서 반사한 광과, 웨이퍼를 투과하여 반대면에서 반사한 광에 의해 형성되는 분광 간섭 파형에 의해서 두께를 계측하는 비접촉 타입의 계측 장치가 사용되고 있다(예컨대 특허 문헌 1을 참조).
그러나, 분광 간섭 파형과 파형 함수에 의해 파형 해석을 실시하는 것에 의해서 두께를 계측하는 경우, 상기 분광 간섭 파형에 대해서, 푸리에 변환 이론 등에 의한 파형 해석을 실행하여 신호 강도 파형을 구할 필요가 있고, 웨이퍼가 얇아짐에 따라, 피크값에 기초하여 두께 정보를 얻을 때의 정밀도가 저하한다고 하는 문제가 있다. 또한, 피가공물을 구성하는 재질이 상이한 경우는, 분광 간섭 파형의 파형 형상이 재질마다 다르고, 적절한 파형 해석을 실시하는 것은 곤란하다. 특히, 복수의 재질에 의해서 적층되는 복합 웨이퍼인 경우, 분광 간섭 파형은, 각 층에 있어서 반사하여 합성된 복귀광에 기초하여 형성되기 때문에, 개개의 층의 두께를 검출하는 것이 곤란하다고 하는 문제가 발생했다.
또한, 예컨대, LN 기판의 하면에 비교적 얇은 예컨대 3 μm 이하의 SiO2 가 적층되어 있는 2 층 구조의 웨이퍼를 분광 간섭 파형에 의한 계측 장치로 계측하면 계측 장치를 구성하는 회절 격자에 의해서 복수의 간섭광이 형성되어, LN 기판의 상면으로부터 반사한 광과, LN 기판의 하면으로부터 반사한 반사광과의 간섭파에 의해서 생성되는 LN 기판의 두께 정보와, LN 기판의 상면으로부터 반사한 광과, SiO2 막의 하면으로부터 반사한 반사광과의 간섭파에 의해서 생성되는 「LN 기판 + SiO2 막」의 두께 정보가 합성되어 LN 기판의 두께만을 검출할 수 없다고 하는 문제가 있다.
또한, 웨이퍼를 구성하는 한쪽 층의 평면 방향에 있어서 2 종류 이상의 디바이스가 형성되어 있으면, 디바이스를 구성하는 소재에 의해서 간섭파가 상이하고, 정확한 두께를 계측할 수 없다고 하는 문제가 있다.
따라서, 본 발명의 목적은, 피가공물의 두께를 용이하고 정밀하게 계측할 수 있는 두께 계측 장치를 제공하는 것이다.
본 발명에 의하면, 척 테이블에 유지된 피가공물의 두께를 계측하는 두께 계측 장치로서, 백색광을 출사하는 광원과, 상기 척 테이블에 유지된 피가공물에 대해서 상기 광원이 출사한 백색광을 집광하는 복수의 집광기와, 상기 광원과 상기 집광기를 연통하는 복수의 제1 광로와, 상기 복수의 제1 광로에 배치되고, 상기 척 테이블에 유지된 상기 피가공물로부터 반사한 반사광을 복수의 제2 광로에 분기하는 복수의 광 분기부와, 상기 복수의 제2 광로에 배치된 복수의 회절 격자와, 상기 복수의 회절 격자에 의해서 파장마다 분광된 광의 강도를 검출하고 분광 간섭 파형을 생성하는 복수의 이미지 센서와, 상기 복수의 이미지 센서가 생성한 분광 간섭 파형으로부터 두께 정보를 출력하는 두께 출력 수단을 포함하고, 상기 집광기는, 상기 피가공물의 측정 영역을 분담하도록 배치된 복수의 fθ 렌즈와, 상기 각 fθ 렌즈에 대응하여 배치되는 복수의 스캐너를 포함하고, 상기 두께 출력 수단은, 복수의 두께에 대응한 분광 간섭 파형을 기준 파형으로서 기록한 기준 파형 기록부와, 상기 복수의 이미지 센서가 생성한 복수의 분광 간섭 파형과 상기 기준 파형 기록부에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형으로부터, 각 분광 간섭 파형에 대응하는 두께를 결정하는 두께 결정부를 포함하는 두께 계측 장치가 제공된다.
바람직하게는, 상기 기준 파형 기록부는, 피가공물을 구성하는 소재에 따라 기준 파형을 기록한 재질별 기준 파형 기록부를 복수 구비하고, 상기 두께 출력 수단의 상기 두께 결정부는, 상기 이미지 센서가 생성한 분광 간섭 파형과 상기 기준 파형 기록부가 복수 구비하고 있는 상기 재질별 기준 파형 기록부에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형이 속하는 상기 재질별 기준 파형 기록부를 선정한다.
피가공물은 적어도 A 층과 B 층을 포함하여 구성되는 복합 웨이퍼이다. 바람직하게는, 복수의 재질로 된 피가공물은 적어도 A 층과 B 층을 포함하여 구성되고, B 층은, 평면 방향으로 복수의 재질로 구성된 복합 웨이퍼이다. 바람직하게는, 상기 광원은, SLD 광원, ASE 광원, 슈퍼컨티뉴엄 광원, LED 광원, 할로겐 광원, 크세논 광원, 수은 광원, 메탈 할라이드 광원 중 어느 하나로부터 선택할 수 있다.
바람직하게는, 상기 두께 계측 장치는, 가공 장치에 배치되어 있다.
본 발명의 두께 계측 장치에 의하면, 피가공물의 두께를 용이하고 정밀하게 계측할 수 있고, 또한, 복수 층의 구조로 된 피가공물이어도, 각 층의 소재에 따라 두께를 고정밀로 계측할 수 있다.
또한, 본 발명의 두께 계측 장치를 구비한 가공 장치에 의하면, 피가공물의 두께를 용이하고 정밀하게 계측할 수 있고, 또한, 복수 층의 구조로 된 피가공물이어도, 각 층의 소재에 따라 두께를 고정밀로 계측할 수 있고, 피가공물을 원하는 두께로 효율적으로 가공할 수 있다.
도 1은 본 발명 실시형태의 두께 계측 장치가 배치된 연삭 장치의 전체 사시도이다.
도 2는 도 1에 기재된 두께 계측 장치에 배치된 광학계의 대략을 나타내는 블럭도이다.
도 3은 도 2에 나타내는 두께 계측 장치에 의해서 웨이퍼의 두께를 계측할 때의 웨이퍼와 fθ 렌즈의 관계를 나타내는 평면도이다.
도 4는 도 1에 나타내는 두께 계측 장치에 배치된 재질별 기준 파형 기록부의 대략을 나타내는 개념도이다.
도 5(a)는 이미지 센서에 의해서 검출되는 광 강도 신호에 의해서 생성되는 분광 간섭 파형의 일례, 도 5(b)는 (a)에 나타내는 분광 간섭 파형과 일치하는 기준 파형을 대조하고, 두께를 결정하는 양태를 나타내는 개념도이다.
도 6은 도 1에 나타내는 두께 계측 장치에 배치된 두께 기록부의 개념도이다.
도 7(a)는 이미지 센서에 의해서 검출되는 광 강도 신호에 의해서 생성되는 분광 간섭 파형의 다른 예, 도 7(b)는 도 7(a)에 나타내는 분광 간섭 파형과 일치하는 기준 파형을 대조하고, 두께를 결정하는 양태를 나타내는 개념도이다.
도 2는 도 1에 기재된 두께 계측 장치에 배치된 광학계의 대략을 나타내는 블럭도이다.
도 3은 도 2에 나타내는 두께 계측 장치에 의해서 웨이퍼의 두께를 계측할 때의 웨이퍼와 fθ 렌즈의 관계를 나타내는 평면도이다.
도 4는 도 1에 나타내는 두께 계측 장치에 배치된 재질별 기준 파형 기록부의 대략을 나타내는 개념도이다.
도 5(a)는 이미지 센서에 의해서 검출되는 광 강도 신호에 의해서 생성되는 분광 간섭 파형의 일례, 도 5(b)는 (a)에 나타내는 분광 간섭 파형과 일치하는 기준 파형을 대조하고, 두께를 결정하는 양태를 나타내는 개념도이다.
도 6은 도 1에 나타내는 두께 계측 장치에 배치된 두께 기록부의 개념도이다.
도 7(a)는 이미지 센서에 의해서 검출되는 광 강도 신호에 의해서 생성되는 분광 간섭 파형의 다른 예, 도 7(b)는 도 7(a)에 나타내는 분광 간섭 파형과 일치하는 기준 파형을 대조하고, 두께를 결정하는 양태를 나타내는 개념도이다.
이하, 본 발명 실시형태의 두께 계측 장치, 및 상기 두께 계측 장치를 구비한 연삭 장치의 실시형태에 관해서 첨부 도면을 참조하면서 상세하게 설명한다.
도 1에는, 본 실시형태와 관련되는 두께 계측 장치(8)를 구비한 연삭 장치(1)의 전체 사시도, 및 본 실시형태의 두께 계측 장치(8)에 의해 두께가 계측되는 피가공물로서의 웨이퍼(10)가 나타나 있다. 도 1에 나타내는 웨이퍼(10)는, 예컨대, 제1 층(10A)(A 층), 및 제2 층(10B)(B 층)이 다른 재질에 의해서 형성된 복합 웨이퍼이다.
도면에 나타내는 연삭 장치(1)는, 장치 하우징(2)을 구비하고 있다. 이 장치 하우징(2)은, 대략 직육면체 형상의 메인부(21)와, 메인부(21)의 후단부에 설치되어 상방으로 연장되는 직립벽(22)을 가지고 있다. 직립벽(22)의 전면에는, 연삭 유닛으로서의 연삭 유닛(3)이 상하 방향으로 이동 가능하게 장착되어 있다.
연삭 유닛(3)은, 이동 베이스(31)와, 이동 베이스(31)에 장착된 스핀들 유닛(4)을 구비하고 있다. 이동 베이스(31)는, 직립벽(22)에 배치된 한 쌍의 안내 레일과 슬라이딩 가능하게 결합하도록 구성되어 있다. 이와 같이 직립벽(22)에 설치된 한 쌍의 상기 안내 레일에 슬라이딩 가능하게 장착된 이동 베이스(31)의 전면에는, 전방으로 돌출한 지지부를 통해 연삭 유닛으로서의 스핀들 유닛(4)이 장착된다.
스핀들 유닛(4)은, 스핀들 하우징(41)과, 스핀들 하우징(41)에 회전 가능하게 배치된 회전 스핀들(42)과, 회전 스핀들(42)을 회전 구동하기 위한 구동원으로서의 서보 모터(43)를 구비하고 있다. 스핀들 하우징(41)에 회전 가능하게 지지된 회전 스핀들(42)은, 일단부(도 1에 있어서 하단부)가 스핀들 하우징(41)의 하단으로부터 돌출하여 배치되어 있고, 하단부에는 휠 마운트(44)가 설치되어 있다. 그리고, 이 휠 마운트(44)의 하면에 연삭 휠(5)이 장착된다. 이 연삭 휠(5)의 하면에는 복수의 세그먼트로 구성된 연삭 지석(51)이 배치되어 있다.
도시된 연삭 장치(1)는, 연삭 유닛(3)을 상기 한 쌍의 안내 레일을 따라서 상하 방향으로 이동시키는 연삭 유닛 이송 기구(6)를 구비하고 있다. 이 연삭 유닛 이송 기구(6)는, 직립벽(22)의 앞쪽에 배치되어 실질상 수직으로 연장되는 수나사 로드(61), 수나사 로드(61)를 회전 구동하기 위한 구동원으로서의 펄스 모터(62)를 구비하고, 이동 베이스(31)의 뒷면에 구비된 수나사 로드(61)와 나사 결합하는 도시하지 않는 베어링 부재 등으로 구성된다. 이 펄스 모터(62)가 정회전하면 이동 베이스(31)와 함께 연삭 유닛(3)이 하강하고, 펄스 모터(62)가 역회전하면 이동 베이스(31)와 함께 연삭 유닛(3)이 상승한다.
상기 장치 하우징(2)의 메인부(21)에 웨이퍼(10)를 유지하는 척 테이블로서의 척 테이블 기구(7)가 배치되어 있다. 척 테이블 기구(7)는, 척 테이블(71)과, 척 테이블(71)의 주위를 덮는 커버 부재(72)와, 커버 부재(72)의 전후에 배치된 벨로우즈 수단(73, 74)을 구비하고 있다. 척 테이블(71)은, 그 상면(유지면)에 웨이퍼(10)를 도시하지 않는 흡인 수단을 작동함으로써 흡인 유지하도록 구성되어 있다. 또한, 척 테이블(71)은, 도시하지 않는 회전 구동 수단에 의해서 회전 가능하게 구성되고, 도시하지 않는 척 테이블 이동 수단에 의해서 도 1에 나타내는 피가공물 재치 영역(70a)과 연삭 휠(5)과 대향하는 연삭 영역(70b)과의 사이(화살표 X로 나타내는 X축 방향)에서 이동한다.
또한, 상술한 서보 모터(43), 펄스 모터(62), 도시하지 않는 척 테이블 이동 수단 등은, 도시하지 않는 제어 수단에 의해 제어된다. 또한, 웨이퍼(10)는, 도시된 실시형태에 있어서는 외주부에 결정 방위를 나타내는 노치가 형성되어 있고, 웨이퍼(10)의 제1 층(10A)(A 층)이 형성된 표면 측에 보호 부재로서의 보호 테이프(14)가 점착되고, 이 보호 테이프(14) 측이 하방을 향하여 척 테이블(71)의 상면(유지면)에 유지된다.
두께 계측 장치(8)는, 계측 하우징(8A)을 구비하고 있고, 도면에 도시한 바와 같이 장치 하우징(2)을 구성하는 직육면체 형상의 메인부(21)의 상면에 있어서, 척 테이블(71)이 피가공물 재치 영역(70a)으로부터 연삭 영역(70b)까지의 사이를 이동하는 경로 도중의 측방에 배치되고, 척 테이블(71)이 피가공물 재치 영역(70a)과 연삭 영역(70b)까지의 사이를 이동하는 영역에 있어서 이동 가능하게 배치되며, 척 테이블(71) 상에 유지되는 웨이퍼(10)의 두께를 상방으로부터 조사하는 백색광에 의해서 계측할 수 있도록 배치되어 있다. 계측 하우징(8A)의 선단부의 하면에는, 바로 아래에 위치되는 척 테이블(71)을 바라보고, 두께 계측용의 백색광을 집광하여 조사하는 2 개의 집광기(81, 91)가 갖춰져 있다. 집광기(81, 91)는, 계측 하우징(8A)과 함께 도면 중 화살표(Y)로 나타내는 방향(Y축 방향)으로 도시하지 않는 구동 수단에 의해 왕복 이동 가능하게 구성되어 있다. 계측 하우징(8A)에 수용된 두께 계측 장치(8)를 구성하는 광학계에 대해서, 도 2를 참조하면서 더욱 상세하게 설명한다.
도 2에 도시한 바와 같이, 두께 계측 장치(8)를 구성하는 광학계는, 척 테이블(71)을 향해서 조사하는 넓은 파장 영역의 백색광을 발하는 광원(8B)을 구비하고 있다. 광원(8B)으로부터 발생한 광은, 제1 광학계(80) 측과, 제2 광학계(90) 측으로 유도된다.
도 2를 참조하면서, 우선, 제1 광학계(80)에 대해 이하에 설명한다. 광원(8B)으로부터 발생된 광은, 제1 광로(80a)로 유도되고 제1 광로(80a)를 역행하는 반사광을 제2 광로(80b)로 유도하는 광 분기부(82)와, 제1 광로(80a)를 지나 연통된 백색광이, 콜리메이션 렌즈(83)에 의해서 평행광이 되고, 반사 미러(84)에 의해서 광로가 변경되며, 두께 출력 수단(100)으로부터의 제어 신호에 의해서 제어되는 스캐너(85)에 유도된다. 스캐너(85)는, 예컨대 갈바노 미러에 의해서 구성되고, 제1 광로(80a)의 백색광은, 스캐너(85)에 의해서 광로가 도면 중 화살표(R1)로 나타내는 소정의 방향으로 변경된다. 상기 백색광은, 집광기(81)를 구성하는 경통에 유지된 fθ 렌즈(81A)에 유도되고, 척 테이블(71) 상의 웨이퍼(10) 상에서 적절하게 집광 위치가 변경된다. 또한, 스캐너(85)는, 상기한 갈바노 미러로 한정되지 않고, 폴리곤 미러, 레조넌트 스캐너 등에 의해 구성할 수도 있다.
광원(8B)은, 예컨대, 백색광을 발하는 할로겐 램프를 이용할 수 있다. 또한, 본 발명에서 말하는 「백색광을 발하는 광원」이란, 일반적으로 가시광선으로 불리는 400 nm ~ 800 nm 의 파장의 광을 포함하여 조사하는 광원이고, 상기한 할로겐 램프로 한정되는 것은 아니다. 광원(8B)으로서는, 예컨대, 백색광을 발할 수 있는 일반적으로 알려진 SLD 광원, ASE 광원, 슈퍼컨티뉴엄 광원, LED 광원, 크세논 광원, 수은 광원, 메탈할라이드 광원 등의 주지의 광원으로부터 적절하게 선택할 수 있다. 광 분기부(82)는, 편파 유지 파이버 커플러, 편파 유지 파이버 서큘레이터, 싱글 모드 파이버 커플러, 싱글 모드 파이버 커플러 서큘레이터 등을 이용할 수 있다.
광 분기부(82)에 의해서 분기된 제2 광로(80b)의 경로 상에는, 콜리메이션 렌즈(86), 회절 격자(87), 집광 렌즈(88), 및 이미지 센서(89)가 배치되어 있다. 콜리메이션 렌즈(86)는, 척 테이블(71)에 유지된 웨이퍼(10)로 반사하여 제1 광로(80a)를 역행하고 광 분기부(82)로부터 제2 광로(80b)에 유도된 반사광을 평행광으로 형성한다. 회절 격자(87)는, 콜리메이션 렌즈(86)에 의해서 평행광으로 형성된 상기 반사광을 회절하고, 각 파장에 대응하는 회절광을, 집광 렌즈(88)를 통해 이미지 센서(89)에 보낸다. 이미지 센서(89)는, 수광 소자를 직선형으로 배열한, 이른바 라인 이미지 센서이며, 회절 격자(87)에 의해서 회절된 반사광의 파장마다의 광의 강도를 검출하여 광 강도 신호를 두께 출력 수단(100)에 보낸다. 또한, 광원(8B)으로부터 광 분기부(82)를 경유하여 집광기(81)까지 도달하는 제1 광로(80a) 중, 광원(8B)로부터 콜리메이션 렌즈(83)까지 도달하는 광로 및 광 분기부(82)로부터 이미지 센터(89)에 이르는 제2 광로(80b)의 일부는, 광파이버에 의해서 구성된다.
그 다음에, 도 2를 참조하면서, 이제 한쪽의 제2 광학계(90)에 대해 이하에 설명한다. 또한, 제2 광학계(90)는, 제1 광학계(80)와 대략 동일한 구성을 갖추고 있고, 각 구성의 상세한 설명에 대해서는 적절하게 생략한다.
광원(8B)으로부터 발생된 광은, 제2 광학계(90) 측에 배치된 제1 광로(90a)에 유도되고, 제1 광로(90a)를 역행하는 반사광을 제2 광로(90b)로 유도하는 광 분기부(92)와, 제1 광로(90a)를 지나 연통된 백색광이, 콜리메이션 렌즈(93)에 의해서 평행광이 되고, 반사 미러(94)에 의해서 광로가 변경되며, 두께 출력 수단(100)으로부터의 제어 신호에 의해서 제어되는 스캐너(95)에 유도된다. 스캐너(95)에 의해서 광로가 도면 중 화살표(R2)로 나타내는 소정의 방향으로 변경되는 백색광은, 집광기(91)에 유지된 fθ 렌즈(91A)에 유도되어서, 척 테이블(71) 상의 웨이퍼(10) 상에서 적절하게 집광 위치가 변경되어서, 백색광이 원하는 위치에 집광된다.
광 분기부(92)에 의해서 분기된 제2 광로(90b)의 경로 상에는, 콜리메이션 렌즈(96), 회절 격자(97), 집광 렌즈(98), 및 이미지 센서(99)가 배치되어 있다. 콜리메이션 렌즈(96)는, 척 테이블(71)에 유지된 웨이퍼(10)에서 반사하여 제1 광로(90a)를 역행하여 광 분기부(92)로부터 제2 광로(90b)에 유도된 반사광을 평행광으로 형성한다. 회절 격자(97)는, 콜리메이션 렌즈(96)에 의해서 평행광으로 형성된 상기 반사광을 회절하고, 각 파장에 대응하는 회절광을, 집광 렌즈(98)를 통해 이미지 센서(99)에 보낸다. 이미지 센서(99)는, 수광 소자를 직선형으로 배열한, 이른바 라인 이미지 센서이며, 회절 격자(97)에 의해서 회절된 반사광의 파장마다의 광의 강도를 검출하여 광 강도 신호를 두께 출력 수단(100)에 보낸다.
상기한 설명으로부터 이해되는 바와 같이, 본 실시형태의 두께 계측 장치(8)는, 백색광을 발하는 광원(8B)을 구비하고, 척 테이블(71)에 유지된 웨이퍼(10)에 대해서 광원(8B)이 발생한 백색광을 집광하는 2 개의 집광기(81, 91)와, 광원(8B)과 집광기(81, 91)를 연통하는 2 개의 제1 광로(80a, 90a)와, 2 개의 제1 광로(80a, 90a)에 배치되어 척 테이블(71)에 유지된 웨이퍼(10)로부터 반사한 반사광을 2 개의 제2 광로(80b, 90b)에 분기하는 2 개의 광 분기부(82, 92)와, 2 개의 제2 광로(80b, 90b)에 배치된 2 개의 회절 격자(87, 97)와, 2 개의 회절 격자(87, 97)에 의해서 파장마다 분광된 광의 강도를 검출하고 분광 간섭 파형을 생성하는 2 개의 이미지 센서(89, 99)와, 2 개의 이미지 센서(89, 99)가 생성한 분광 간섭 파형으로부터 두께 정보를 출력하는 두께 출력 수단(100)을 구비하고, 또한, 2 개의 집광기(81, 91)의 각각 fθ 렌즈(81A, 91A)가 배치되어 있다. 집광기(81), 및 집광기(91)는, 각각 배치된 fθ 렌즈(81A)와 fθ 렌즈(91A)에 의해서, 웨이퍼(10) 상의 측정 영역을 분담하도록 설정되어 있다. 이 점에 대해서, 도 3을 참조하면서, 이하에 설명한다.
도 3에는, 척 테이블(71) 상에 유지된 웨이퍼(10)의 상방에 fθ 렌즈(81A, 91A)가 위치된 상태의 평면도가 나타나고 있다. 본 실시형태에 있어서 웨이퍼(10)의 두께를 계측할 때에는, 웨이퍼(10)를 척 테이블(71)과 함께 화살표(R3)로 나타내는 방향으로 회전시키면서, 2 개의 fθ 렌즈(81A, 91A)로부터 백색광을 조사하여 두께 계측을 실시한다. 여기서, 도면에 도시한 바와 같이, 2 개의 fθ 렌즈(81A, 91A)는, 웨이퍼(10)의 중심에서 본 반경 방향에 있어서, fθ 렌즈(81A, 91A)의 중심이 일치하지 않게 어긋난 위치로 설정되어 있다.
스캐너(85, 95)를 구동하여 fθ 렌즈(81A, 91A)로부터 웨이퍼(10)에 대해서 백색광을 조사하는 경우, fθ 렌즈(81A, 91A)로부터 백색광을 원하는 위치에 조사하기 위해서 사용되는 영역은, 집광기(81, 91)의 경통을 포함한 외측의 무효 영역(81B, 91B)을 제외한 중앙의 영역이다. 따라서, 웨이퍼(10)의 전역에, fθ 렌즈(81A, 91A)를 통해 백색광을 조사하여 웨이퍼(10)의 두께를 계측하는 경우는, 웨이퍼(10)의 내측의 영역(L1)에의 백색광의 조사를 fθ 렌즈(81A)에 분담시키고, 웨이퍼(10)의 외측 영역(L2)에의 백색광의 조사를 fθ 렌즈(91A)에 분담시킨다. 보다 구체적으로는, 상기한 것처럼, 웨이퍼(10)를 R3 으로 나타내는 방향으로 회전시키면서, 스캐너(85)에 의해서 백색광을 R1로 나타내는 방향으로 주사하고, 스캐너(95)에 의해서 백색광을 R2 로 나타내는 방향으로 주사한다. 이와 같이, 웨이퍼(10) 상의 측정 영역을 분담하도록 fθ 렌즈(81, 91)를 배치하고, fθ 렌즈(81, 91)에 대응하여 배치된 스캐너(85, 95)의 구동과 웨이퍼(10)의 화살표(R3)에의 회전을 조합함으로써, 웨이퍼(10) 상의 전(全) 영역에 대해서 백색광을 조사할 수 있다.
도 2로 돌아가 설명을 계속하면, 두께 출력 수단(100)은, 컴퓨터에 의해 구성되고, 제어 프로그램에 따라서 연산 처리하는 중앙 연산 처리장치(CPU)와, 제어 프로그램 등을 저장하는 리드 온리 메모리(ROM)와, 검출한 검출값, 연산 결과 등을 일시적으로 저장하기 위한 기록 및 판독 가능한 램(RAM)과, 입력 인터페이스, 및 출력 인터페이스를 구비하고 있다(상세한 것에 대한 도시는 생략함).
두께 출력 수단(100)은, 이미지 센서(89, 99)로부터 보내진 파장마다의 광 강도 신호에 기초하여 분광 간섭 파형을 생성하고, 상기 분광 간섭 파형은 일단 도시하지 않는 RAM 에 기억된다. 두께 출력 수단(100)에는, 또한, 상기 분광 간섭 파형에 기초하여 웨이퍼(10)의 두께를 결정하는 두께 결정부(110)와, 복수의 두께에 대응한 분광 간섭 파형을 기준 파형으로서 기록한 기준 파형 기록부(120)가 구비되어 있다. 두께 결정부(110)에는, 이미지 센서(89, 99)에 의해 검출되어 상기 RAM 에 기억된 상기 분광 간섭 파형과, 기준 파형 기록부(120)에 기록된 기준 파형을 대조하는 대조부(112)가 구비되고, 척 테이블(71)에는, 척 테이블(71)의 X 좌표(도면 중 좌우 방향), Y 좌표(도면에 대해 수직인 방향)를 검출하는 위치 검출 수단(75)이 구비되어 있다. 스캐너(85, 95)는, 위치 검출 수단(75)에 의해서 검출되는 척 테이블(71)의 좌표 위치에 따라 그 구동이 제어되고, fθ 렌즈(81A, 91A)로부터 조사되는 백색광의 위치가 정확하게 제어된다. 두께 결정부(110)에 의해서 결정된 두께 정보는, 위치 검출 수단(75)에 의해서 검출되는 척 테이블(71)에 유지된 웨이퍼(10)의 X 좌표, Y 좌표에 대응시켜서, 두께 기록부(130)에 기록된다. 두께 기록부(130)에 기억된 두께 정보는, 적절하게 표시 수단(140)에 출력할 수 있다. 또한, 본 실시형태의 두께 결정 수단(100)은, 연삭 장치(1)의 제어를 실시하는 각종의 제어 프로그램을 구비한 도시하지 않는 제어 수단 내에 구성된다.
도 4를 참조하면서, 기준 파형 기록부(120)에 대해 보다 구체적으로 설명한다. 기준 파형 기록부(120)는, 예컨대, 피가공물을 구성하는 재질에 따라 기준 파형을 기록한 재질별 기준 파형 기록부(122a ~ 122l)를 구비하고 있다. 재질별 기준 파형 기록부(122a)에는, Si(실리콘) 웨이퍼의 두께(μm)와 Si 웨이퍼에 대해서 두께 계측 장치(8)의 집광기(81, 91)로부터 백색광을 조사했을 경우에, 이미지 센서(89, 99)에 의해서 검출되는 광 강도 신호에 기초하여 생성되는 분광 간섭 파형의 기준 파형이 그 두께에 따라 기록되어 있다. 마찬가지로, 재질별 기준 파형 기록부(122b)에는, LN(니오브산 리튬) 웨이퍼의 두께(μm)와 분광 간섭 파형의 기준 파형이, 재질별 기준 파형 기록부(122c)에는, GaN(질화 갈륨) 웨이퍼의 두께(μm)와 분광 간섭 파형의 기준 파형이, 재질별 기준 파형 기록부(122d)에는, SiO2 (이산화 규소) 웨이퍼의 두께(μm)와 분광 간섭 파형의 기준 파형이 기록되어 있다. 또한, 상기한 재질별 기준 파형 기록부(122a ~ 122d)는, 단일의 재질로 된 웨이퍼에 대응하여 기준 파형을 기록한 것이고, 설명의 형편상, 일부 데이터가 생략되어 있다.
기준 파형 기록부(120)에는, 상기한 단일의 재질에 대응하여 기준 파형이 기록되는 재질별 기준 파형 기록부(122a ~ 122d)에 더해, 피가공물인 웨이퍼가 상이한 재질에 의해서 복수의 층(제1 층(상층), 제2 층(하층))을 구비한 복합 웨이퍼인 경우를 상정한 재질별 기준 파형 기록부(122k, 122l)를 구비하고 있다.
도 4 중의 재질별 기준 파형 기록부(122k)는, 제1 층이 A 층(LN)이며, 제2 층이 B 층(SiO2 층)이고, 집광기(81, 91)로부터 백색광을 집광하여 조사했을 경우에 생성되는 분광 간섭 파형의 기준 파형이, A 층, 및 B 층의 두께마다 형성된 매트릭스 표에 기록되어 있다. 상기 매트릭스 표는, 횡축이 A 층의 두께(μm), 종축이 B 층의 두께(μm)에 대응하여 기준 파형이 기록되고, 상기 기준 파형에 기초하여 A 층, 및 B 층의 두께를 개별적으로 결정하는 것이 가능하다. 또한, 재질별 기준 파형 기록부(122l)는, 제1 층이 C 층(LN)이며, 제2 층이 D 층(GaN)이고, 재질별 기준 파형 기록부(122k)와 마찬가지로, 집광기(81, 91)로부터 백색광을 조사했을 경우에 생성되는 분광 간섭 파형의 기준 파형이, C 층, 및 D 층의 두께마다 형성된 매트릭스 표에 기록되어 있다. 도 4에서는, 기준 파형 기록부(120)에 대해서 2 개의 복합 웨이퍼에 관한 재질별 기준 파형 기록부(122k, 122l)가 구비되어 있는 것이 나타나 있지만, 또한 다른 재질의 조합으로 된 복합 웨이퍼를 상정한 재질별 기준 파형 기록부를 기록하게 해 두는 것도 가능하다. 또한, 기준 파형 기록부(120)에 기록되는 기준 파형은, 컴퓨터에 의한 연산에 의한 이론 파형으로서 구하는 것이 가능하다.
본 실시형태와 관련되는 연삭 장치(1), 및 두께 계측 장치(8)는 대략 상기한 바와 같은 구성을 구비하고 있고, 이하에, 연삭 장치(1)에 대해서 배치된 두께 계측 장치(8)를 이용하여 웨이퍼(10)의 두께를 계측하는 실시형태에 대해 설명한다.
우선, 연삭 가공을 실시할 때에, 오퍼레이터는, 연삭 장치(1)의 조작 패널을 이용하여, 웨이퍼(10)의 목표 마무리 두께를 설정한다. 도 1에 도시한 바와 같이, 웨이퍼(10)의 표면 측에 보호 테이프(14)를 점착하고, 피가공물 재치 영역(70a)에 위치된 척 테이블(71) 상에 보호 테이프(14) 측을 아래로 하여 재치한다. 그리고, 도시하지 않는 흡인 수단을 작동하는 것에 의해서 웨이퍼(10)를 척 테이블(71) 상에 흡인 유지한다. 척 테이블(71) 상에 웨이퍼(10)를 흡인 유지했다면, 도시하지 않는 이동 수단을 작동하여, 척 테이블(71)을, 피가공물 재치 영역(70a) 측으로부터, X축 방향에 있어서의 화살표(X1)로 나타내는 방향으로 이동하여 두께 계측 장치(8)의 바로 아래에 위치시킨다. 그리고, 두께 계측 장치(8)를 화살표(Y)로 나타내는 방향으로 이동하고, 두께 계측 장치(8)의 집광기(81, 91)의 fθ 렌즈(81A, 91A)를, 도 3에 기초하여 설명한 바와 같이, 웨이퍼(10)의 내측 영역(L1) 및 외측 영역(L2) 상에 위치시키고, 척 테이블(71)에 유지된 웨이퍼(10)의 두께 계측 위치에 위치시킨다. 또한, 이 두께 계측 위치에 척 테이블(71)을 위치시키는 것은, 연삭 가공을 실시하기 전, 실시의 도중, 실시 후이고, 임의의 타이밍에 두께 계측의 실시가 가능하다.
웨이퍼(10)를 두께 계측 장치(8)의 바로 아래에 위치시켰다면, 두께 출력 수단(100)의 지시 신호에 의해, 광원(8B)에 의해 발진된 백색광을 집광기(81, 91)에 의해서 집광하고, 스캐너(85, 95)에 의해서 백색광의 집광 위치를 R1, R2 의 방향으로 주사하면서 웨이퍼(10)에 조사한다. 그 때, 척 테이블(71)과 함께 웨이퍼(10)를 미리 정해진 회전 속도로 1 회전시킨다. 여기서, 이미지 센서(89, 99)로부터의 각각의 광 강도 신호에 기초하여, 복수의 분광 간섭 파형이 생성된다. 도 5(a)에는, 척 테이블(71)에 유지된 웨이퍼(10) 상의 (X1, Y1) 좌표에 있어서 백색광이 조사되고, 이미지 센서(99)에 의해서 생성된 분광 간섭 파형(W1)이 나타나 있다. 이와 같이 분광 간섭 파형(W1)이 생성되었다면, 두께 출력 수단(100)의 RAM 에 기록하고, 두께 결정부(110)의 대조부(112)에 의해서, RAM 에 기억된 분광 간섭 파형(W1)과, 기준 파형 기록부(120)의 각 재질별 기준 파형 기록부(122a ~ 122l)에 기록된 기준 파형을 대조한다. 그 결과, 분광 간섭 파형(W1)과 파형 및 위상이 일치하는 기준 파형(Wa)이, 도 5(b)에 나타내는 기준 파형 기록부(120) 중의 재질별 기준 파형 기록부(122k)에 속한다고 판정되고, 재질별 기준 파형 기록부(122k)가 선정된다. 즉, 웨이퍼(10)의 제1 층(10A)(A 층)이 LN(니오브산 리튬)이며, 제2 층(10B)(B 층)이 SiO2 층인 2개의 층으로 된 복합 웨이퍼인 것, (X1, Y1) 좌표에 있어서의 제1 층(10A)의 두께(TA1)가 4.00 μm 이며, 제2 층(10B)의 두께(TB1)가 0.27 μm 인 것이 결정된다.
상기한 바와 같이, 척 테이블(71)을 회전시키면서, 스캐너(85, 95)에 의해서 백색광의 집광 위치를 R1, R2 의 방향으로 주사함으로써, 웨이퍼(10)의 전 영역에 걸쳐, 백색광이 조사되고, 웨이퍼(10)의 전영역((X1, Y1) ~ (Xn, YJ))에 걸쳐 각 좌표 위치에 대응한 제1 층(10A)의 두께(TA1 ~ TAn), 및 제2 층(10B)의 두께(TB1 ~ TBn)가 계측된다. 계측된 두께 정보는, 척 테이블(71) 상에서 정의되는 XY 좌표((X1, Y1) ~ (Xn, YJ))와 함께, 도 6에 나타내는 두께 기록부(130)에 기록되고, 필요에 따라서 표시 수단(140)에 표시된다. 이와 같이 하여, 두께 기록부(130)에 웨이퍼(10)의 전 영역의 두께가 기록되었다면, 필요에 따라서, 웨이퍼(10)가 연삭 가공에 의해서 원하는 두께에 이르고 있는지, 혹은, 균일한 두께로 가공되어 있는지 등이 평가된다. 상기한 두께의 계측이 연삭 가공의 도중에 있는 경우는, 척 테이블(71)이 연삭 휠(5)과 대향하는 연삭 영역(70b)으로 이동되어서, 미리 정해진 두께만 연삭 가공이 실시된다.
상기한 실시형태의 두께 계측 장치(8)는, 이미지 센서(89, 99)가 검출한 광 강도 신호에 기초하여 생성된 분광 간섭 파형과 기준 파형 기록부(120)에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형으로부터 두께를 결정하는 두께 결정부(110)를 구비하고, 기준 파형 기록부(120)는, 피가공물을 구성하는 재질에 따라 기준 파형을 기록한 재질별 기준 파형 기록부를 복수(122 a ~ 122l) 구비하고 있는 것에 의해, 피가공물을 구성하는 재질에 따라 정밀하게 두께를 계측할 수 있다. 또한, 2 층 이상의 구조로 된 피가공물이어도, 각 층에 있어서의 재질에 따라 개별적으로 두께를 고정밀로 계측할 수 있다. 또한, 상기한 실시형태에서는, 집광기가, 피가공물의 측정 영역을 분담하도록 배치된 소직경의 2 개의 fθ 렌즈(81A, 91A)와, 각 fθ 렌즈에 대응하여 배치되는 2 개의 스캐너(85, 95)로 구성됨으로써, 대직경이고 중량이 있는 고가의 fθ 렌즈를 사용하지 않고, 웨이퍼(10)의 반경보다 소직경이고 경량인 저가의 fθ 렌즈를 사용할 수 있고, 웨이퍼(10) 전면의 두께를 저비용으로 효율 좋게 계측할 수 있다.
본 발명에 의하면, 상기한 실시형태로 한정되지 않고, 여러 가지 변형예가 제공된다. 예컨대, 상기한 실시형태의 두께 계측 장치(8)는, 제1 광학계(80)와, 제2 광학계(90)를 구비하는 것에 의해, 2 개의 집광기(81, 91)와, 2 개의 제1 광로(80a, 90b)와, 2 개의 제2 광로(80b, 90b)로 분기하는 2 개의 광 분기부(82, 92)와, 2 개의 회절 격자(87, 97)와, 2 개의 이미지 센서를 구비하도록 했지만, 본 발명은 이것으로 한정되지 않고, 웨이퍼(10)의 사이즈에 맞추어, 3 개 이상의 광학계를 구비하도록 해도 좋다. 예컨대, 도 3에 도시한 바와 같이, 웨이퍼(10)보다 큰 웨이퍼(10')(점선으로 나타냄)의 두께를 계측하는 경우는, 웨이퍼(10')의 사이즈에 맞추어, 두께 계측 장치(8)에 대해, 제1 광학계(80), 제2 광학계(90)와 동일한 구성이 되는 제3 광학계를 배치하고, 2 개의 fθ 렌즈(81A, 91A)에 더해 웨이퍼(10')의 최외주의 영역(L3)에 대응하는 3 번째의 fθ 렌즈(B)(점선으로 나타냄)를 배치하고, 이 fθ 렌즈(B)를 사용하여, 백색광을 R4로 나타내는 방향으로 주사 하면서 조사하여 영역(L3)의 두께를 계측하도록 해도 좋다.
또한, 상기한 실시형태에서는, 웨이퍼(10)가, 제1 층(10A), 제2 층(10B)으로 된 복합 웨이퍼인 경우에 두께를 계측하는 예를 나타냈지만, 본 발명은 이것으로 한정되지 않고, 단일의 재질로 된 피가공물(웨이퍼)의 두께도 계측할 수 있다. 도 7(a)에는, 단일의 재료로 된 웨이퍼 상에 백색광이 조사되고, 이미지 센서(89)(또는 이미지 센서(99))에 의해서 생성된 분광 간섭 파형(W2)이 나타나 있다. 이와 같이 분광 간섭 파형(W2)이 생성되었다면, 두께 출력 수단(100)의 RAM 에 기록하고, 두께 결정부(110)의 대조부(112)에 의해서, RAM 에 기억된 분광 간섭 파형(W2)과, 기준 파형 기록부(120)의 각 재질별 기준 파형 기록부(122a ~ 122l)에 기록되어 있는 기준 파형을 대조한다. 그 결과, 분광 간섭 파형(W2)과 파형 및 위상이 일치하는 기준 파형(Wb)이, 도 7(b)에 나타내는 기준 파형 기록부(120) 중의 재질별 기준 파형 기록부(122b)에 속한다고 판정되고, 재질별 기준 파형 기록부(122b)가 선정된다. 즉, 백색광이 조사된 웨이퍼가 단일의 소재이며 LN 기판으로 된 것이 확인된다. 이와 같이 두께 결정부(110)에 의해서, 분광 간섭 파형(W2)의 형상과 재질 기준 파형 기록부(122b)에 속하는 기준 파형(Wb)이 일치한다고 판단되었을 경우는, 재질별 기준 파형 기록부(122b)에 있어서, 그 기준 파형(Wb)이 기록된 위치에 대응하는 두께(20 μm)를 웨이퍼(10)의 두께로서 결정하고, 두께 출력 수단(100)으로부터 표시 수단(140)에 출력하고 RAM 에 기억할 수 있다.
또한, 상기한 실시형태에서는, 웨이퍼(10)의 제1 층(10A)(A 층)이 LN(니오브산 리튬)이며, 제2 층(10B)(B 층)이 SiO2 층인 2 층으로 된 복합 웨이퍼인 경우에, 웨이퍼(10)의 두께를 각 층마다 계측한 예를 나타냈지만, 예컨대, 제2 층(10B)(B 층)이, 평면 방향으로 2 종류 이상의 재질로 구성된 복합 웨이퍼여도 좋다. 예컨대, 도 3에 나타내는 웨이퍼(10) 상의 영역(L1)에 있어서는 제1 층(10A)이 LN(니오브산 리튬)이며, 제2 층(10B)이 SiO2 층인 2 층으로 된 복합 웨이퍼이며, 또한, 웨이퍼(10) 상의 영역(L2)에 있어서는, 제1 층(10A)이 LN(니오브산 리튬)이고, 제2 층(10B)이 GaN(질화 갈륨)인 복합 웨이퍼의 두께의 계측을 본 실시형태의 두께 계측 장치(8)에 의해서 계측할 수도 있다. 그 경우는, 웨이퍼(10) 상의 영역(L1)에 대해서 제1 광학계(80)에 배치된 집광기(81)에 의해서 백색광을 조사했을 때에 이미지 센서(89)가 생성한 분광 간섭 파형에 기초하여 재질별 기준 파형 기록부(122k)가 참조되고, 제1 층(10A), 및 제2 층(10B)의 두께가 계측되고, 웨이퍼(10) 상의 영역(L2)에 대해서 제2 광학계(90)에 배치된 집광기(91)에 의해서 백색광을 조사했을 때에 이미지 센서(99)가 생성한 분광 간섭 파형에 기초하여 재질별 기준 파형 기록부(122l)가 참조되어서, 제1 층(10A), 및 제2 층(10B)의 두께가 계측된다.
상기한 실시형태에서는, 두께 계측 장치(8)를 연삭 장치(1)에 배치한 예를 나타냈지만, 본 발명은 이것으로 한정되지 않고, 두께 계측 장치(8)를 연삭 장치(1)와는 독립한 장치로 해도 좋다.
1 : 연삭 장치
2 : 장치 하우징
21 : 메인부
22 : 직립벽
3 : 연삭 유닛
31 : 이동 베이스
4 : 스핀들 유닛
41 : 스핀들 하우징
42 : 회전 스핀들
5 : 연삭 휠
51 : 연삭 지석
6 : 연삭 유닛 이송 기구
7 : 척 테이블 기구
71 : 척 테이블
8 : 두께 계측 장치
8A : 계측 하우징
8B : 광원
80 : 제1 광학계
80a : 제1 광로
81 : 집광기
81A : fθ 렌즈
82 : 광 분기부
83 : 콜리메이션 렌즈
84 : 반사 미러
85 : 스캐너
86 : 콜리메이션 렌즈
87 : 회절 격자
88 : 집광 렌즈
89 : 이미지 센서
90 : 제2 광학계
90a : 제1 광로
91 : 집광기
91A : fθ 렌즈
92 : 광 분기부
93 : 콜리메이션 렌즈
94 : 반사 미러
95 : 스캐너
96 : 콜리메이션 렌즈
97 : 회절 격자
98 : 집광 렌즈
99 : 이미지 센서
10 : 웨이퍼
14 : 보호 테이프
100 : 두께 출력 수단
110 : 두께 결정부
112 : 대조부
120 : 기준 파형 기록부
130 : 두께 기록부
140 : 표시 수단
2 : 장치 하우징
21 : 메인부
22 : 직립벽
3 : 연삭 유닛
31 : 이동 베이스
4 : 스핀들 유닛
41 : 스핀들 하우징
42 : 회전 스핀들
5 : 연삭 휠
51 : 연삭 지석
6 : 연삭 유닛 이송 기구
7 : 척 테이블 기구
71 : 척 테이블
8 : 두께 계측 장치
8A : 계측 하우징
8B : 광원
80 : 제1 광학계
80a : 제1 광로
81 : 집광기
81A : fθ 렌즈
82 : 광 분기부
83 : 콜리메이션 렌즈
84 : 반사 미러
85 : 스캐너
86 : 콜리메이션 렌즈
87 : 회절 격자
88 : 집광 렌즈
89 : 이미지 센서
90 : 제2 광학계
90a : 제1 광로
91 : 집광기
91A : fθ 렌즈
92 : 광 분기부
93 : 콜리메이션 렌즈
94 : 반사 미러
95 : 스캐너
96 : 콜리메이션 렌즈
97 : 회절 격자
98 : 집광 렌즈
99 : 이미지 센서
10 : 웨이퍼
14 : 보호 테이프
100 : 두께 출력 수단
110 : 두께 결정부
112 : 대조부
120 : 기준 파형 기록부
130 : 두께 기록부
140 : 표시 수단
Claims (5)
- 척 테이블에 유지된 피가공물의 두께를 계측하는 두께 계측 장치로서,
백색광을 출사하는 광원과,
상기 척 테이블에 유지된 피가공물에 대해서 상기 광원이 출사한 백색광을 집광하는 복수의 집광기와,
상기 광원과 상기 집광기를 연통하는 복수의 제1 광로와,
상기 복수의 제1 광로에 배치되고, 상기 척 테이블에 유지된 상기 피가공물로부터 반사한 반사광을 복수의 제2 광로에 분기하는 복수의 광 분기부와,
상기 복수의 제2 광로에 배치된 복수의 회절 격자와,
상기 복수의 회절 격자에 의해서 파장마다 분광된 광의 강도를 검출하고 분광 간섭 파형을 생성하는 복수의 이미지 센서와,
상기 복수의 이미지 센서가 생성한 분광 간섭 파형으로부터 두께 정보를 출력하는 두께 출력 수단
을 구비하고,
상기 집광기는, 상기 피가공물의 측정 영역을 분담하도록 배치된 복수의 fθ 렌즈와,
상기 각 fθ 렌즈에 대응하여 배치되는 복수의 스캐너를 포함하고,
상기 두께 출력 수단은, 복수의 두께에 대응한 분광 간섭 파형을 기준 파형으로서 기록한 기준 파형 기록부와,
상기 복수의 이미지 센서가 생성한 복수의 분광 간섭 파형과 상기 기준 파형 기록부에 기록된 기준 파형을 대조하여 파형이 일치한 기준 파형으로부터, 각 분광 간섭 파형에 대응한 두께를 결정하는 두께 결정부
를 포함하는 것인, 두께 계측 장치. - 제1항에 있어서, 상기 기준 파형 기록부는, 상기 피가공물을 구성하는 소재에 따라 기준 파형을 기록한 재질별 기준 파형 기록부를 복수 포함하고,
상기 두께 출력 수단의 상기 두께 결정부는, 상기 이미지 센서가 생성한 분광 간섭 파형과 상기 기준 파형 기록부가 복수 포함하고 있는 상기 재질별 기준 파형 기록부에 기록된 기준 파형을 대조하여, 파형이 일치한 기준 파형이 속하는 상기 재질별 기준 파형 기록부를 선정하는 것인, 두께 계측 장치. - 제1항 또는 제2항에 있어서, 상기 피가공물은 적어도 A 층과 B 층을 포함하여 구성되는 복합 웨이퍼인 것인, 두께 계측 장치.
- 제1항 또는 제2항에 있어서, 복수의 재질로 된 상기 피가공물은 적어도 A 층과 B 층을 포함하고, 상기 B 층은, 평면 방향으로 복수의 재질로 구성된 복합 웨이퍼인 것인, 두께 계측 장치.
- 제1항 또는 제2항에 있어서, 상기 광원은, SLD 광원, ASE 광원, 슈퍼컨티뉴엄 광원, LED 광원, 할로겐 광원, 크세논 광원, 수은 광원, 메탈할라이드 광원 중 어느 하나인 것인, 두께 계측 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019188426A JP7358185B2 (ja) | 2019-10-15 | 2019-10-15 | 厚み計測装置、及び厚み計測装置を備えた加工装置 |
JPJP-P-2019-188426 | 2019-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210044686A true KR20210044686A (ko) | 2021-04-23 |
Family
ID=75155675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200118038A KR20210044686A (ko) | 2019-10-15 | 2020-09-15 | 두께 계측 장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11845158B2 (ko) |
JP (1) | JP7358185B2 (ko) |
KR (1) | KR20210044686A (ko) |
CN (1) | CN112665510A (ko) |
DE (1) | DE102020212956B4 (ko) |
TW (1) | TWI843904B (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD954567S1 (en) * | 2019-06-25 | 2022-06-14 | Ebara Corporation | Measurement jig |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021916A (ja) | 2010-07-15 | 2012-02-02 | Disco Abrasive Syst Ltd | 厚み検出装置および研削機 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07128035A (ja) | 1993-10-29 | 1995-05-19 | Nikon Corp | 水平位置検出装置 |
JP3756723B2 (ja) | 1999-07-27 | 2006-03-15 | 松下電工株式会社 | プリント配線板の加工方法 |
US6900900B2 (en) | 2000-11-16 | 2005-05-31 | Process Diagnostics, Inc. | Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements |
JP2002176240A (ja) * | 2000-12-07 | 2002-06-21 | Shibuya Kogyo Co Ltd | ビアホール加工方法及びその装置 |
TW569368B (en) | 2001-11-14 | 2004-01-01 | Tokyo Electron Ltd | Substrate inspecting apparatus, coating and developing apparatus, and substrate inspecting method |
CN1784588B (zh) * | 2003-03-06 | 2011-07-13 | 齐戈股份有限公司 | 使用扫描干涉测量形成复杂表面结构的轮廓以及对其表征 |
JP4144389B2 (ja) | 2003-03-14 | 2008-09-03 | オムロン株式会社 | 光学式膜計測装置 |
KR100532553B1 (ko) * | 2003-03-25 | 2005-12-01 | 두산디앤디 주식회사 | 반도체 웨이퍼 표면연마공정의 엔드포인트 검출방법 및 그장치 |
US7483147B2 (en) | 2004-11-10 | 2009-01-27 | Korea Advanced Institute Of Science And Technology (Kaist) | Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer |
US7420691B2 (en) * | 2005-12-22 | 2008-09-02 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for measuring interfacial positions, method and apparatus for measuring layer thickness, and method and apparatus for manufacturing optical discs |
DE102006034604A1 (de) * | 2006-07-24 | 2008-01-31 | Jenoptik Laser, Optik, Systeme Gmbh | Optisches System zur Oberflächenvermessung |
US8670128B2 (en) | 2009-02-02 | 2014-03-11 | Kobe Steel, Ltd. | Profile measuring apparatus |
JP5443180B2 (ja) * | 2010-01-13 | 2014-03-19 | 株式会社ディスコ | 厚み検出装置および研削機 |
JP5576135B2 (ja) * | 2010-02-05 | 2014-08-20 | 株式会社日立ハイテクノロジーズ | パターン検査方法及びその装置 |
JP2014098555A (ja) * | 2011-03-09 | 2014-05-29 | Panasonic Corp | リサイクル樹脂判定装置、及び、リサイクル樹脂材料の製造装置 |
US8961804B2 (en) | 2011-10-25 | 2015-02-24 | Applied Materials, Inc. | Etch rate detection for photomask etching |
US8817273B2 (en) * | 2012-04-24 | 2014-08-26 | Nanometrics Incorporated | Dark field diffraction based overlay |
US20140067319A1 (en) * | 2012-08-29 | 2014-03-06 | Kabushiki Kaisha Toshiba | Measuring method, non-transitory computer readable recording medium and measuring apparatus |
JP6071042B2 (ja) * | 2012-10-25 | 2017-02-01 | 株式会社東京精密 | 寸法測定装置 |
US9679823B2 (en) * | 2013-03-15 | 2017-06-13 | Applied Materials, Inc. | Metric for recognizing correct library spectrum |
KR101886919B1 (ko) | 2016-06-16 | 2018-09-11 | 한국표준과학연구원 | 영상분광광학계를 이용한 다층막 구조물의 두께와 형상 측정장치 및 측정방법 |
JP6730124B2 (ja) | 2016-08-01 | 2020-07-29 | 株式会社ディスコ | 厚み計測装置 |
CN116689948A (zh) * | 2017-10-25 | 2023-09-05 | 株式会社尼康 | 加工装置及加工方法 |
DE102018114860A1 (de) | 2018-06-20 | 2019-12-24 | Precitec Optronik Gmbh | Vorrichtung und Verfahren zur optischen Vermessung eines Messobjekts |
-
2019
- 2019-10-15 JP JP2019188426A patent/JP7358185B2/ja active Active
-
2020
- 2020-09-15 KR KR1020200118038A patent/KR20210044686A/ko active Search and Examination
- 2020-10-07 US US17/065,225 patent/US11845158B2/en active Active
- 2020-10-08 TW TW109135002A patent/TWI843904B/zh active
- 2020-10-12 CN CN202011084697.7A patent/CN112665510A/zh active Pending
- 2020-10-14 DE DE102020212956.8A patent/DE102020212956B4/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021916A (ja) | 2010-07-15 | 2012-02-02 | Disco Abrasive Syst Ltd | 厚み検出装置および研削機 |
Also Published As
Publication number | Publication date |
---|---|
TWI843904B (zh) | 2024-06-01 |
US20210107112A1 (en) | 2021-04-15 |
DE102020212956A1 (de) | 2021-04-15 |
CN112665510A (zh) | 2021-04-16 |
DE102020212956B4 (de) | 2023-11-02 |
US11845158B2 (en) | 2023-12-19 |
JP7358185B2 (ja) | 2023-10-10 |
TW202117830A (zh) | 2021-05-01 |
JP2021063716A (ja) | 2021-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102718546B1 (ko) | 두께 계측 장치, 및 두께 계측 장치를 구비한 연삭 장치 | |
US11168977B2 (en) | Thickness measuring apparatus | |
CN111380472B (zh) | 厚度测量装置 | |
CN107796314B (zh) | 测量装置 | |
CN110966944B (zh) | 厚度测量装置 | |
CN111430254B (zh) | 厚度测量装置 | |
JP2018036212A (ja) | 厚み計測装置 | |
JP2018063148A (ja) | 計測装置 | |
TWI808288B (zh) | 厚度量測裝置 | |
TW201816358A (zh) | 厚度測量裝置 | |
KR20210037535A (ko) | 레이저 가공 장치 | |
KR20210044686A (ko) | 두께 계측 장치 | |
TW202328636A (zh) | 厚度計測裝置 | |
JP2023100410A (ja) | 計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination |