Nothing Special   »   [go: up one dir, main page]

KR20170082917A - Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same - Google Patents

Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same Download PDF

Info

Publication number
KR20170082917A
KR20170082917A KR1020160002235A KR20160002235A KR20170082917A KR 20170082917 A KR20170082917 A KR 20170082917A KR 1020160002235 A KR1020160002235 A KR 1020160002235A KR 20160002235 A KR20160002235 A KR 20160002235A KR 20170082917 A KR20170082917 A KR 20170082917A
Authority
KR
South Korea
Prior art keywords
alkyl
formula
compound represented
alkoxy
aryl
Prior art date
Application number
KR1020160002235A
Other languages
Korean (ko)
Other versions
KR102086049B1 (en
Inventor
박종우
박하나
이시정
도상록
김석환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160002235A priority Critical patent/KR102086049B1/en
Publication of KR20170082917A publication Critical patent/KR20170082917A/en
Application granted granted Critical
Publication of KR102086049B1 publication Critical patent/KR102086049B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합 반응에서 높은 반응성을 나타낼 수 있을 뿐만 아니라 합성되는 올레핀 중합체의 내부 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있는 신규한 구조의 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법에 관한 것이다.The present invention relates to a metallocene compound having a novel structure capable of exhibiting high reactivity in the olefin polymerization reaction and easily controlling the properties such as the internal structure and mechanical properties of the synthesized olefin polymer, And to a process for preparing an olefin polymer using the catalyst composition.

Description

메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법{METALLOCENE COMPOUNDS, CATALYST COMPOSITIONS COMPRISING THE SAME, AND METHOD FOR PREPARING OLEFIN POLYMERS USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a metallocene compound, a catalyst composition containing the metallocene compound, and a process for producing the olefin polymer using the same. BACKGROUND ART [0002]

본 발명은 높은 활성을 가지면서도, 올레핀계 고분자의 미세 구조를 제어할 수 있는 신규한 구조의 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법에 관한 것이다.The present invention relates to a metallocene compound having a novel structure capable of controlling the microstructure of an olefin-based polymer while having high activity, a catalyst composition containing the metallocene compound, and a process for producing an olefin polymer using the metallocene compound.

기존의 폴리올레핀의 상업적 제조 과정에는 티타늄 또는 바나듐 화합물의 지글러-나타 촉매가 널리 사용되어 왔는데, 상기 지글러-나타 촉매는 높은 활성을 갖지만, 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓으며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있었다.Ziegler-Natta catalysts of titanium or vanadium compounds have been widely used for the commercial production of polyolefins. Although the Ziegler-Natta catalysts have high activity, they have a wide molecular weight distribution of the produced polymers because of their high activity, The uniformity of the composition is not uniform and there is a limit in ensuring desired physical properties.

이에 따라, 최근에는 티타늄, 지르코늄, 하프늄 등의 전이금속과 싸이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 개발되어 널리 사용되고 있다. 메탈로센 화합물은 일반적으로 알루미녹산, 보레인, 보레이트 또는 다른 활성화제를 이용하여 활성화시켜 사용한다. 예를 들어, 사이클로펜타다이에닐기를 포함한 리간드와 두 개의 시그마 클로라이드 리간드를 갖는 메탈로센 화합물은 알루미녹산을 활성화제로 사용한다. 이러한 메탈로센 촉매는 하나의 종류의 활성점을 가진 단일 활성점 촉매로 생성 중합체의 분자량 분포가 좁고 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도, 특히 공단량체의 반응성을 대폭 조절할 수 있는 장점이 있다. 다만, 메탈로센 촉매로 중합한 폴리올레핀은 녹는점이 낮고, 분자량 분포가 좁아 일부 제품에 응용할 경우, 압출부하 등의 영향으로 생산성이 현저히 떨어지는 등 현장적용이 어려운 문제가 있어 이와 관련된 폴리올레핀의 분자량 분포를 조절하려는 노력을 많이 해왔다.Recently, a metallocene catalyst in which a transition metal such as titanium, zirconium, or hafnium and a ligand containing a cyclopentadiene functional group are bonded has been developed and widely used. The metallocene compound is generally activated by using aluminoxane, borane, borate or other activator. For example, a metallocene compound having a ligand containing a cyclopentadienyl group and two sigma chloride ligands uses aluminoxane as an activator. These metallocene catalysts are single active site catalysts having one kind of active site. The molecular weight distribution of the produced polymer is narrow and the molecular weight, stereoregularity, crystallinity, especially reactivity of the comonomer can be greatly controlled depending on the structure of the catalyst and the ligand There is an advantage. However, since the polyolefin polymerized with the metallocene catalyst has a low melting point and a narrow molecular weight distribution, it is difficult to apply the polyolefin in a field where the productivity is remarkably decreased due to the influence of the extrusion load, I have done a lot of effort to adjust.

특히, 상술한 메탈로센 촉매의 문제점을 해결하기 위하여, 헤테로 원자를 포함하는 리간드 화합물이 배위된 메탈로센 화합물들이 다수 소개되었다. 이러한 헤테로 원자를 포함하는 메탈로센 화합물의 구체적인 예로는 질소 원자를 포함하는 사이클로펜타디에닐기를 갖는 아자페로센(azaferrocene) 화합물, 다이알킬아민과 같은 기능기가 부가적인 사슬로서 사이클로펜타다이에닐기과 연결된 구조의 메탈로센 화합물, 또는 피페리딘(piperidine)과 같은 고리 형태의 알킬아민 기능기가 도입된 티타늄(lV) 메탈로센 화합물 등을 들 수 있다. In particular, in order to solve the problems of the above-mentioned metallocene catalysts, many metallocene compounds coordinated with a ligand compound containing a hetero atom have been introduced. Specific examples of such a metallocene compound containing a hetero atom include an azaferrocene compound having a cyclopentadienyl group containing a nitrogen atom, a functional group such as a dialkylamine is connected to a cyclopentadienyl group as an additional chain Or a titanium (lV) metallocene compound into which a cyclic alkylamine functional group is introduced such as piperidine, and the like.

그러나, 이러한 모든 시도들 중에서 실제로 상업 공장에 적용되고 있는 메탈로센 촉매들은 몇몇에 불과한 수준이며, 보다 높은 활성을 가지면서도, 올레핀계 고분자의 미세 구조를 제어할 수 있는 안사-메탈로센 화합물에 대한 연구가 여전히 필요하다. However, among all of these attempts, the metallocene catalysts that are actually applied to commercial plants are only a few levels, and the anthra-metallocene compounds capable of controlling the microstructure of the olefinic polymer, Research is still needed.

본 발명은 높은 활성을 가지면서도, 올레핀계 고분자의 미세 구조를 제어할 수 있는 신규한 구조의 리간드 화합물과 메탈로센 화합물을 제공하기 위한 것이다.The present invention is to provide a ligand compound and a metallocene compound having a novel structure capable of controlling the microstructure of an olefin-based polymer while having high activity.

그리고, 본 발명은 상기 메탈로센 화합물을 포함하는 촉매 조성물을 제공하기 위한 것이다.The present invention also provides a catalyst composition comprising the metallocene compound.

또한, 본 발명은 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법을 제공하기 위한 것이다.The present invention also provides a process for producing an olefin polymer using the catalyst composition.

본 발명은, 하기 화학식 1로 표시되는 리간드 화합물을 제공한다.The present invention provides a ligand compound represented by the following general formula (1).

그리고, 본 발명은 하기 화학식 2로 표시되는 메탈로센 화합물을 제공한다.The present invention also provides a metallocene compound represented by the following general formula (2).

또한, 본 발명은 상기 메탈로센 화합물을 포함하는 촉매 조성물을 제공한다.The present invention also provides a catalyst composition comprising the metallocene compound.

이에 더하여, 본 발명은 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법을 제공한다.In addition, the present invention provides a process for preparing an olefin polymer using the catalyst composition.

이하 발명의 구체적인 구현예에 따른 리간드 화합물, 메탈로센 화합물, 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법에 관하여 보다 상세하게 설명하기로 한다.Hereinafter, a ligand compound, a metallocene compound, a catalyst composition, and a method for producing an olefin polymer using the same according to a specific embodiment of the present invention will be described in detail.

발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 리간드 화합물이 제공될 수 있다.According to one embodiment of the present invention, a ligand compound represented by the following formula (1) may be provided.

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서, In Formula 1,

R1은 C6-20 아릴 또는 C1-20 알킬로 치환된 C6-20 아릴이고,R 1 is a C 6-20 aryl substituted with C 6-20 aryl or C 1-20 alkyl,

R2는 C1-20 알콕시이고,R 2 is C 1-20 alkoxy,

R3는 C1-20 알킬이고,R 3 is C 1-20 alkyl,

R4는 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 4 is hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 alkyl silyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1- 20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,

A는 탄소, 실리콘 또는 게르마늄이고, A is carbon, silicon or germanium,

R5는 C1-20 알콕시로 치환된 C1-20 알킬이고, R 5 is C 1-20 alkyl substituted by C 1-20 alkoxy,

R6는 수소, C1-20 알킬 또는 C2-20 알케닐이다. R 6 is hydrogen, C 1-20 alkyl or C 2-20 alkenyl.

본 발명자들은, 상기 화학식 1의 리간드 화합물의 고유의 화학구조로 인하여, 이와 결합될 수 있는 전이금속 주위의 전자적/입체적 환경을 용이하게 제어할 수 있으며, 합성되는 폴리올레핀의 미세 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있는 메탈로센 촉매를 제공할 수 있음을 실험을 통하여 확인하였다. The present inventors have found that by virtue of the inherent chemical structure of the ligand compound of Formula 1, the electronic / stereoscopic environment around the transition metal that can be bonded thereto can be easily controlled, and the microstructure and mechanical properties of the synthesized polyolefin It is possible to provide a metallocene catalyst capable of easily controlling the characteristics of the catalyst.

상기 화학식1의 리간드 화합물은 2개의 인덴(indene)기가 탄소, 실리콘 또는 게르마늄 브릿지로 연결되는 가교 구조를 가지며, 특히, 인덴기의 특정 위치에 아릴기, 알킬기, 알콕시기 등과 같은 작용기를 도입한 것으로서, 상기 리간드 화합물은 올레핀 중합시 고활성을 나타낼 수 있으며, 분자량이 높고, 낮은 용융흐름지수(MFR)를 갖는 폴리올레핀을 제조할 수 있는 촉매를 제공할 수 있다.The ligand compound of formula (1) has a crosslinked structure in which two indene groups are connected by a carbon, silicon or germanium bridge. Particularly, a ligand compound having a functional group such as an aryl group, an alkyl group and an alkoxy group at a specific position of an indene group , The ligand compound can exhibit high activity upon olefin polymerization and can provide a catalyst capable of producing a polyolefin having a high molecular weight and a low melt flow index (MFR).

특히, 상기 일 구현예의 리간드 화합물은 인덴(indene)기의 특정 위치에 bulky group인 아릴기가 결합되어 있을 뿐만 아니라, 추가로 알킬기, 알콕시기가 결합되어, 전자주개효과(electron donating effect)를 강화하여 금속 주위의 전자밀도(electron density)를 증가시킬 수 있으며, 따라서 올레핀 중합시 고활성을 나타낼 수 있다. In particular, the ligand compound of this embodiment has a structure in which not only an aryl group which is a bulky group is bonded to a specific position of an indene group but also an alkyl group and an alkoxy group are combined to enhance an electron donating effect, It is possible to increase the electron density around the polymer and thus exhibit high activity in the polymerization of olefins.

또한, 상기 리간드 화합물은 2개의 인덴(indene)기를 연결하는 브릿지 그룹(bridge group)에 탄소수 1 내지 20의 알콕시로 치환된 탄소수 1 내지 20의 알킬기를 포함하여, 리간드 화합물을 포함하는 메탈로센 화합물의 담지 수율을 상승시킬 수 있으며, 촉매의 활성도 증가시킬 수 있다. In addition, the ligand compound includes a bridge group connecting two indene groups, and an alkyl group having 1 to 20 carbon atoms substituted with an alkoxy group having 1 to 20 carbon atoms to form a metallocene compound containing a ligand compound The yield of the supported catalyst can be increased, and the activity of the catalyst can be increased.

상기 화학식 1에서 정의된 각 치환기에 대하여 상세히 설명하면 다음과 같다.Each of the substituents defined in Formula 1 will be described in detail as follows.

상기 C1-20 알킬은 직쇄 또는 분지쇄의 알킬을 포함할 수 있고, 상기 C2-20 알케닐은 직쇄 또는 분지쇄의 알케닐을 포함할 수 있다.The C 1-20 alkyl may include straight chain or branched chain alkyl, and the C 2-20 alkenyl may include straight chain or branched chain alkenyl.

상기 아릴(aryl group)은 C6- 20 인 방향족 고리인 것이 바람직하며, 구체적으로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등이 있으나, 이에 한정되는 것은 아니다. The aryl group is preferably an aromatic ring having 6 to 20 carbon atoms. Specific examples thereof include phenyl, naphthyl, anthracenyl, pyridyl, dimethylanilinyl, and anisole. However, the aryl group is not limited thereto.

상기 알킬실릴, 알콕시실릴은 C1-20 알킬, C1-20 알콕시가 도입된 실릴 작용기를 의미하고, 실릴알킬, 실릴에테르는 실릴이 도입된 알킬, 에테르를 의미한다. The alkylsilyl and alkoxysilyl mean a silyl functional group introduced with C 1-20 alkyl or C 1-20 alkoxy, and the silylalkyl, silyl ether means an alkyl or ether in which silyl is introduced.

상기 알킬아릴은 C1- 20 의 직쇄 또는 분지쇄의 알킬이 1이상 도입된 아릴을 의미하고, 상기 아릴알킬은 C6-20 아릴이 1이상 도입된 직쇄 또는 분지쇄의 알킬을 의미한다.The alkylaryl means an aryl in which at least one C 1-20 linear or branched alkyl is introduced, and the arylalkyl means straight-chain or branched alkyl having at least one C 6-20 aryl introduced therein.

그리고, 할로겐기는 불소(F), 염소(Cl), 브롬(Br), 요오드(I)을 의미한다.The halogen group means fluorine (F), chlorine (Cl), bromine (Br) and iodine (I).

상기 일 구현예의 리간드 화합물에서, R1은 페닐 또는 C1-10 알킬로 치환된 페닐인 것이 바람직하다. In the ligand compounds of this embodiment, R 1 is preferably phenyl or phenyl substituted with C 1-10 alkyl.

그리고, 상기 R2는 메톡시인 것이 바람직하다. And R < 2 > is preferably methoxy.

또, 상기 R3는 C1-4 알킬인 것이 바람직하고, 터트-부틸인 것이 보다 바람직하다. It is preferable that R 3 is C 1-4 alkyl, and it is more preferably tert-butyl.

그리고, 상기 A는 실리콘인 것이 바람직하고, R5는 6-터트-부톡시-헥실, R6는 메틸인 것이 바람직하다. It is preferable that A is silicon, R 5 is 6-tert-butoxy-hexyl, and R 6 is methyl.

한편, 상기 화학식 1로 표시되는 리간드 화합물의 바람직한 예로, 하기 화합물을 들 수 있다:Preferable examples of the ligand compound represented by the above formula (1) include the following compounds:

Figure pat00002
,
Figure pat00003
,
Figure pat00002
,
Figure pat00003
,

Figure pat00004
,
Figure pat00005
Figure pat00004
,
Figure pat00005

상기 화학식 1로 표시되는 화합물은 하기 반응식 1과 같은 방법으로 합성할 수 있으나, 이에 한정되는 것은 아니다. 상기 화학식 1로 표시되는 화합물을 제조하는 방법은 후술하는 실시예에서 보다 구체화하여 설명한다. The compound represented by the formula (1) can be synthesized by the following reaction scheme 1, but is not limited thereto. The method for preparing the compound represented by the formula (1) will be described in more detail in the following examples.

[반응식 1][Reaction Scheme 1]

Figure pat00006
Figure pat00006

상기 단계 1은, 상기 화학식 3로 표시되는 화합물을 상기 화학식 4로 표시되는 화합물을 반응시켜 상기 화학식 1로 표시되는 화합물을 제조하는 단계이다. 상기 반응에 알킬리튬(예를 들어, n-부틸리튬)을 사용하는 것이 바람직하고, 반응 온도는 -200 내지 0℃, 보다 바람직하게는 -150 내지 0℃이다. 용매로는 톨루엔, THF 등을 사용할 수 있다. 이때 생성물에서 유기층을 분리한 후, 분리된 유기층을 진공 건조하고 과량의 반응물을 제거하는 단계를 더욱 수행할 수 있다.The step 1 is a step of reacting the compound represented by the formula 3 with the compound represented by the formula 4 to prepare the compound represented by the formula 1. It is preferable to use alkyllithium (for example, n-butyllithium) in the above reaction, and the reaction temperature is -200 to 0 占 폚, more preferably -150 to 0 占 폚. As the solvent, toluene, THF and the like can be used. At this time, the organic layer may be separated from the product, and then the separated organic layer may be vacuum dried and excess reactant may be removed.

상기 방법에 따라 제조된 화학식 1로 표시되는 화합물은, 금속과 킬레이트를 형성할 수 있는 리간드 화합물일 수 있다.The compound represented by formula (I) prepared according to the above method may be a ligand compound capable of forming a chelate with a metal.

한편, 발명의 또 다른 구현예에 따르면, 하기 화학식 2로 표시되는 메탈로센 화합물이 제공될 수 있다.According to another embodiment of the present invention, a metallocene compound represented by the following general formula (2) may be provided.

[화학식 2](2)

Figure pat00007
Figure pat00007

상기 화학식 2에서, In Formula 2,

R1은 C6-20 아릴 또는 C1-20 알킬로 치환된 C6-20 아릴이고,R 1 is a C 6-20 aryl substituted with C 6-20 aryl or C 1-20 alkyl,

R2는 C1-20 알콕시이고,R 2 is C 1-20 alkoxy,

R3는 C1-20 알킬이고,R 3 is C 1-20 alkyl,

R4는 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 4 is hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 alkyl silyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1- 20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,

A는 탄소, 실리콘 또는 게르마늄이고, A is carbon, silicon or germanium,

R5는 C1-20 알콕시로 치환된 C1-20 알킬이고, R 5 is C 1-20 alkyl substituted by C 1-20 alkoxy,

R6는 수소, C1-20 알킬 또는 C2-20 알케닐이고,R 6 is hydrogen, C 1-20 alkyl or C 2-20 alkenyl,

M은 4족 전이금속 화합물이고,M is a Group 4 transition metal compound,

X는 각각 독립적으로, 할로겐 또는 탄소수 1 내지 20의 알킬기이다. Each X independently represents a halogen or an alkyl group having 1 to 20 carbon atoms.

본 발명자들은 전이금속에 특정 구조의 리간드 화합물이 결합하고 있는 상기 화학식 2의 메탈로센 화합물의 화학 구조로 인하여, 상기 전이금속 주위의 전자적/입체적 환경을 용이하게 제어할 수 있으며, 합성되는 폴리올레핀의 미세 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있음을 실험을 통하여 확인하였다. The present inventors have found that the electronic / stereoscopic environment around the transition metal can be easily controlled owing to the chemical structure of the metallocene compound of Formula 2 wherein a ligand compound of a specific structure is bonded to the transition metal, Microstructure, mechanical properties, and the like can be easily controlled.

그리고, 상술한 바와 같이, 상기 화학식 2의 메탈로센 화합물은 2개의 인덴(indene)기가 탄소, 실리콘 또는 게르마늄 브릿지로 연결되는 가교 구조를 가지며, 특히, 인덴기의 특정 위치에 아릴기, 알킬기, 알콕시기 등과 같은 작용기를 도입한 것으로서, 상기 메탈로센 화합물은 올레핀 중합시 고활성을 나타낼 수 있으며, 특히 낮은 용융흐름지수(MFR)를 갖는 고분자량의 폴리올레핀을 제조할 수 있다. As described above, the metallocene compound of Formula 2 has a crosslinked structure in which two indene groups are connected by a carbon, silicon or germanium bridge. In particular, the metallocene compound of Formula 2 has an aryl group, An alkoxy group and the like, the metallocene compound can exhibit high activity in olefin polymerization and can produce a high molecular weight polyolefin having a low melt flow index (MFR).

그리고, 상술한 바와 같이, 상기 일 구현예의 메탈로센 화합물에서, R1은 페닐 또는 C1-10 알킬로 치환된 페닐인 것이 바람직하다. And, as described above, in the metallocene compound of this embodiment, R 1 is preferably phenyl or phenyl substituted with C 1-10 alkyl.

그리고, 상기 R2는 메톡시인 것이 바람직하다. And R < 2 > is preferably methoxy.

또, 상기 R3는 C1-4 알킬인 것이 바람직하고, 터트-부틸인 것이 보다 바람직하다. It is preferable that R 3 is C 1-4 alkyl, and it is more preferably tert-butyl.

그리고, 상기 A는 실리콘인 것이 바람직하고, R5는 6-터트-부톡시-헥실, R6는 메틸인 것이 바람직하다.It is preferable that A is silicon, R 5 is 6-tert-butoxy-hexyl, and R 6 is methyl.

또한, 상기 M은 지르코늄이고, X는 클로로인 것이 바람직하다. Further, it is preferable that M is zirconium and X is chloro.

한편, 상기 화학식 2로 표시되는 메탈로센 화합물의 바람직한 예로, 하기 화합물을 들 수 있다.On the other hand, preferred examples of the metallocene compound represented by the above formula (2) include the following compounds.

Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011

상기 화학식 2로 표시되는 메탈로센 화합물은 상술한 화학식 1의 리간드 화합물과 메탈로센 화합물을 반응시킴으로서 형성될 수 있다. 구체적으로, 상기 화학식 3로 표시되는 메탈로센 화합물은 하기 반응식 2와 같은 방법으로 합성할 수 있으나 이에 한정되는 것은 아니다. 상기 화학식 2로 표시되는 화합물을 제조하는 방법은 후술하는 실시예에서 보다 구체화하여 설명한다.The metallocene compound represented by Formula 2 may be formed by reacting the ligand compound of Formula 1 with a metallocene compound. Specifically, the metallocene compound represented by the formula (3) can be synthesized by a method similar to the following reaction scheme 2, but is not limited thereto. The method for preparing the compound represented by the above formula (2) will be described in more detail in the following examples.

[반응식 2][Reaction Scheme 2]

Figure pat00012
Figure pat00012

상기 단계 2는, 상기 화학식 1로 표시되는 화합물을 상기 화학식 5로 표시되는 화합물을 반응시켜 상기 화학식 2로 표시되는 화합물을 제조하는 단계이다. 상기 반응에 알킬리튬(예를 들어, n-부틸리튬)을 사용하는 것이 바람직하고, 반응 온도는 -200 내지 0℃, 보다 바람직하게는 -150 내지 0℃이다. 용매로는 에테르, 헥산 등을 사용할 수 있다. The step 2 is a step of reacting the compound represented by the formula 1 with the compound represented by the formula 5 to prepare the compound represented by the formula 2. It is preferable to use alkyllithium (for example, n-butyllithium) in the above reaction, and the reaction temperature is -200 to 0 占 폚, more preferably -150 to 0 占 폚. As the solvent, ether, hexane and the like can be used.

또한, 발명의 또 다른 구현예에 따르면, 상기 화학식 2로 표시되는 메탈로센 화합물과 조촉매를 포함하는 올레핀 중합용 촉매 조성물이 제공될 수 있다.According to another embodiment of the present invention, there can be provided a catalyst composition for olefin polymerization comprising the metallocene compound represented by Formula 2 and the cocatalyst.

상기 조촉매는 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 알킬알루미녹산을 사용할 수 있으며, 실리카, 실리카-알루미나, 유기알루미늄 화합물 등을 더 포함할 수도 있다. 이러한 조촉매를 사용할 경우에, 상기 화학식 3으로 표시되는 화합물의 금속 원소에 결합된 X가 알킬기, 예컨대 C1-20 알킬로 치환된 형태의 촉매로 사용될 수 있다. The cocatalyst is not particularly limited as it is customary in the art to which the present invention belongs, but alkyl aluminoxane may be preferably used, and silica, silica-alumina, organoaluminum compound and the like may be further included. When such a cocatalyst is used, the catalyst may be used in which X bonded to the metal element of the compound represented by Formula 3 is substituted with an alkyl group, for example, C 1-20 alkyl.

그리고, 상기 촉매 조성물은 상기 화학식 2로 표시되는 메탈로센 화합물; 및 조촉매; 이외에 용매를 더 포함할 수 있다. The catalyst composition may include a metallocene compound represented by Formula 2; And cocatalyst; In addition, a solvent may be further included.

상기 용매로는 올레핀 중합용 촉매 조성물에 사용 가능한 것으로 알려진 용매를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 같은 지방족 탄화수소 용매; 톨루엔, 자일렌, 벤젠과 같은 방향족 탄화수소 용매; 또는 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등을 사용할 수 있다. 상기 촉매 조성물 내에서 용매의 함량은 사용되는 촉매 조성물의 특성 및 적용되는 올레핀 중합체의 제조 공정의 조건 등에 따라서 적절히 조절할 수 있다.As the solvent, any solvent known to be usable in the catalyst composition for olefin polymerization may be used without limitation, for example, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene, xylene and benzene; Or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane or chlorobenzene. The content of the solvent in the catalyst composition may be appropriately controlled depending on the characteristics of the catalyst composition used and the conditions of the production process of the olefin polymer to be used.

그리고, 상기 올레핀 중합용 촉매는 담체에 담지된 촉매일 수 있다. 상기 담체는 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로 특별히 한정되지 않으나, 바람직하게는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1종 이상의 담체가 사용될 수 있다. The catalyst for olefin polymerization may be a catalyst supported on a support. The carrier may be any of those generally used in the technical field to which the present invention belongs, so that it is not particularly limited, but preferably at least one carrier selected from the group consisting of silica, silica-alumina and silica-magnesia may be used.

한편, 실리카와 같은 담체에 담지될 때에는 실리카 담체와 상기 화학식 2로 표시되는 화합물의 작용기가 화학적으로 결합하여 담지되므로, 올레핀 중합공정에서 표면으로부터 유리되어 나오는 촉매가 거의 없어서 슬러리 또는 기상 중합으로 폴리올레핀을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링 현상이 적게 나타날 수 있다. On the other hand, when supported on a support such as silica, since the silica carrier and the functional group of the compound represented by Chemical Formula 2 are chemically bonded and supported, there is almost no catalyst liberated from the surface in the olefin polymerization process, and thus polyolefin The fouling phenomenon of the wall surface of the reactor or the polymer particles tangling with each other may be small.

이러한 담체로는 바람직하게 고온에서 건조된 실리카, 실리카-알루미나 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분이 함유될 수 있다.As such a carrier, silica, silica-alumina and the like, which are dried at a high temperature, may be preferably used. These carriers are usually oxides such as Na 2 O, K 2 CO 3 , BaSO 4 and Mg (NO 3 ) 2 , A nitrate component may be included.

또한, 발명의 다른 구현예에 따르면, 상기 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조 방법이 제공될 수 있다. According to another embodiment of the present invention, there is also provided a process for producing a polyolefin comprising the step of polymerizing an olefin monomer in the presence of the catalyst composition.

상술한 바와 같이, 상기 화학식2의 메탈로센 화합물은 금속 주위의 전자적/ 입체적 환경을 용이하게 제어할 수 있어서, 합성되는 폴리올레핀의 내부 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있다.As described above, the metallocene compound of the above formula (2) can easily control the electronic / stereoscopic environment around the metal, so that the characteristics such as the internal structure and the mechanical properties of the synthesized polyolefin can be easily controlled.

상기 올레핀 단량체의 중합 반응은 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 사용되는 것으로 알려진 중합 공정을 제한 없이 사용할 수 있다. The polymerization reaction of the olefin monomer can be used without limitation, such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization slurry polymerization process, or an emulsion polymerization process, which is known to be used for polymerization of olefin monomers.

상기 메탈로센 화합물들과 조촉매를 사용하여 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 혼합하여 공중합할 수도 있다. 상기 폴리올레핀이 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공중합체를 구성하는 단량체는 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.Examples of olefin monomers that can be polymerized using the metallocene compounds and the cocatalyst include ethylene, alpha-olefin, cyclic olefin, etc., and diene olefin monomers or triene olefin monomers having two or more double bonds Can also be polymerized. Specific examples of the monomer include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, Butene, dicyclopentadiene, 1,4-butadiene, 1,4-butadiene, 1,3-butadiene, 1,3-butadiene, Pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene and the like. These two or more monomers may be mixed and copolymerized. When the polyolefin is a copolymer of ethylene and another comonomer, the monomer constituting the copolymer is selected from the group consisting of propylene, 1-butene, 1-hexene, 4-methyl- Or more of the comonomer.

여기서, 상기 폴리올레핀의 중합은 25 내지 500℃의 온도 및 1 내지 100 kgf/㎠의 압력 하에서 1 내지 24시간 동안 반응시켜 수행될 수 있다. 이때, 상기 중합 반응 온도는 25 내지 200℃가 바람직하고, 50 내지 100℃가 보다 바람직하다. 또한, 상기 중합 반응 압력은 1 내지 70 kgf/㎠가 바람직하고, 5 내지 40 kgf/㎠가 보다 바람직하다. 상기 중합 반응 시간은 1 내지 5시간이 바람직하다. Here, the polymerization of the polyolefin can be carried out by reacting at a temperature of 25 to 500 ° C and a pressure of 1 to 100 kgf / cm 2 for 1 to 24 hours. At this time, the polymerization reaction temperature is preferably 25 to 200 ° C, more preferably 50 to 100 ° C. The polymerization reaction pressure is preferably 1 to 70 kgf / cm 2, and more preferably 5 to 40 kgf / cm 2. The polymerization reaction time is preferably 1 to 5 hours.

상기 중합 공정은 수소 첨가 또는 미첨가 조건에 따라 최종적으로 생성되는 폴리머 제품의 분자량 범위를 조절할 수 있다. 특히, 수소를 첨가하지 않은 조건 하에서는 고분자량의 폴리올레핀을 제조할 수 있으며, 수소를 첨가하면 적은 양의 수소 첨가로도 저분자량의 폴리올레핀을 제조할 수 있다. 이때, 상기 중합 공정에 첨가되는 수소 함량은 반응기 조건 1 기압 하에서 0.07 L 내지 4 L 범위이거나, 또는 1 bar 내지 40 bar의 압력으로 공급되거나 올레핀 단량체 대비 수소 몰 함량 범위로 168 ppm 내지 8,000 ppm으로 공급될 수 있다.The polymerization process can control the molecular weight range of the finally produced polymer product according to the hydrogenation or not added conditions. In particular, a polyolefin having a high molecular weight can be produced under a condition that hydrogen is not added, and a low molecular weight polyolefin can be produced even with a small amount of hydrogen addition by adding hydrogen. At this time, the hydrogen content added to the polymerization process is 0.07 L to 4 L under 1 atm of the reactor condition, or is supplied at a pressure of 1 bar to 40 bar or in a range of 168 ppm to 8,000 ppm in terms of the molar amount of hydrogen relative to the olefin monomer .

본 발명에 따르면, 올레핀 중합 반응에서 높은 반응성을 나타낼 수 있을 뿐만 아니라 제조되는 올레핀 중합체의 내부 구조, 기계적 물성 등의 특성을 용이하게 조절할 수 있는 리간드 화합물, 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 상기 촉매 조성물을 이용한 올레핀 중합체의 제조 방법이 제공될 수 있다.According to the present invention, a ligand compound, a metallocene compound, a catalyst composition containing the metallocene compound and the like, which can easily exhibit high reactivity in the olefin polymerization reaction and can easily control the properties such as the internal structure and mechanical properties of the produced olefin polymer A method for producing an olefin polymer using the catalyst composition may be provided.

발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. The invention will be described in more detail in the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<< 실시예Example : 리간드 화합물 및 : A ligand compound and 메탈로센Metallocene 화합물의 합성> Synthesis of Compound &gt;

(1) 5-(tert-butyl)-6-methoxy-2-methyl-7-phenyl-1H-indene의 합성(1) Synthesis of 5- ( tert- butyl) -6-methoxy-2-methyl-7-phenyl- 1H- indene

Figure pat00013
Figure pat00013

7-Bromo-5-(tert-butyl)-6-methoxy-2-methyl-1H-indene (18.5mmol, 5.5g), phenylboronic acid (29mmol, 3.6g), sodium carbonate (59.4mmol, 6.3g), tetrakistriphenylphosphine palladium(0.87mmol, 1g)을 250mL RBF에 넣고 톨루엔(30mL), 에탄올(15mL), 물(15mL)을 넣었다. 그리고, 75℃로 미리 가열된 오일 배쓰에서 16시간 동안 교반하였다. 반응이 끝나면 rotary evaporator에서 에탄올을 모두 제거하고, 물과 헥산으로 work up하였다. 유기층을 모아 MgSO4로 건조하고 용매를 모두 제거하였다. 용매가 제거된 crude mixture를 silica gel short column 정제하여 5-(tert-butyl)-6-methoxy-2-methyl-7-phenyl-1H-indene (3.1g, 57%, colorless oil)을 수득하였다. 7-Bromo-5- (tert -butyl ) -6-methoxy-2-methyl-1 H -indene (18.5mmol, 5.5g), phenylboronic acid (29mmol, 3.6g), sodium carbonate (59.4mmol, 6.3g) , tetrakistriphenylphosphine palladium (0.87 mmol, 1 g) were placed in 250 mL RBF and toluene (30 mL), ethanol (15 mL) and water (15 mL) were added. Then, the mixture was stirred in an oil bath preheated to 75 캜 for 16 hours. When the reaction was complete, remove all of the ethanol from the rotary evaporator and work up with water and hexane. Combined organic layers were dried over MgSO 4 and remove all the solvent. The crude mixture was purified by silica gel short column to obtain 5- ( tert- butyl) -6-methoxy-2-methyl-7-phenyl- 1H- indene (3.1 g, 57%, colorless oil) .

1H NMR(500 MHz, CDCl3, 7.24 ppm): 1.45(9H, s), 2.07(3H, s), 3.13(2H, s), 6.45(1H, s), 7.23(1H, s), 7.35(1H, t), 7.44(2H, t), 7.49(2H, d) 1 H NMR (500 MHz, CDCl 3, 7.24 ppm): 1.45 (9H, s), 2.07 (3H, s), 3.13 (2H, s), 6.45 (1H, s), 7.23 (1H, s), 7.35 (1H, t), 7.44 (2H, t), 7.49 (2H, d)

(2) (6-(tert-butoxy)hexyl)bis(6-(tert-butyl)-5-methoxy-2-methyl-4-phenyl-1H-inden-1-yl)(methyl)silane 리간드의 합성Synthesis of (6- (tert-butoxy) hexyl) bis (6- (tert-butyl) -5-methoxy-2-methyl-4-phenyl-1H-inden-

Figure pat00014
Figure pat00014

5-(tert-butyl)-6-methoxy-2-methyl-7-phenyl-1H-indene (4.65mmol, 1.4g), CuCN (0.23mmol, 0.02g)을 50mL Schlenk flask에 넣고 아르곤 상태를 만들어 주었다. 아르곤 상태가 조성되면 무수 톨루엔(13.5mL), 무수 THF(1.5mL)를 넣고, -25℃로 냉각하였다. n-BuLi(2.5M in Hexane, 0.8mmol, 2.00mL)를 천천히 주입하고, 주입이 끝나면 실온으로 승온하여 3시간 동안 교반하였다. 교반이 끝나면, 다시 -25℃로 냉각하고 (6-(tert-butoxy)hexyl)dichloro(methyl)silane (2.32mmol, 0.63g)을 one shot으로 플라스크에 주입하고 16시간 동안 교반하였다. MTBE와 물로 work up하고 유기층을 모아 용매를 제거하였다. 그리고, 실리카 컬럼으로 (6-(tert-butoxy)hexyl)bis(6-(tert-butyl)-5-methoxy-2-methyl-4-phenyl-1H-inden-1-yl)(methyl)silane 리간드(1.3g, 71%, light yellow solid)를 수득하였다.Put 5- (tert -butyl) -6-methoxy -2-methyl-7-phenyl-1 H -indene (4.65mmol, 1.4g), CuCN (0.23mmol, 0.02g) in 50mL Schlenk flask made argon state gave. When the argon state was established, anhydrous toluene (13.5 mL) and anhydrous THF (1.5 mL) were added and cooled to -25 ° C. n- BuLi (2.5 M in Hexane, 0.8 mmol, 2.00 mL) was slowly poured into the flask. When the flask was completely poured into the flask, the flask was heated to room temperature and stirred for 3 hours. When stirring was completed, the mixture was cooled to -25 ° C again, and a 6- (tert-butoxy) hexyl dichloro (methyl) silane (2.32 mmol, 0.63 g) was poured into the flask with one shot and stirred for 16 hours. Work up with MTBE and water and collect organic layers to remove solvent. Hexane) bis (6- (tert-butyl) -5-methoxy-2-methyl-4-phenyl-1H-inden-1-yl) (methyl) silane ligand as a silica column (1.3 g, 71%, light yellow solid).

1H NMR(500 MHz, CDCl3, 7.24 ppm): {-0.07 (d), 0.04 (s) (3H)}, 0.40~1.50(10H, m), 1.15(9H, m), 1.42(18H, m), {1.88 (d), 2.06 (d) (6H)}, 3.21(6H, s), 3.25~3.52(2H, m), 6.29~6.43(2H, m), 7.31~7.49(12H, m) 1 H NMR (500 MHz, CDCl 3 , 7.24 ppm): {-0.07 (d), 0.04 (s) (3H)}, 0.40-1.50 (10H, m), 1.15 m), 1.88 (d), 2.06 (d) (6H)}, 3.21 (6H, s), 3.25-3.52 (2H, m), 6.29-6.43 (2H, m), 7.31-7.49 )

(3) (6-(tert-butoxy)hexyl)(methyl)silanyl-bis(6-(tert-butyl)-5-methoxy-2-methyl-4-phenyl-1-indenyl)zirconium dichloride 메탈로센 화합물의 합성(3) Synthesis of 6- (tert-butoxy) hexyl (methyl) silanyl-bis (6- tert -butyl) -5-methoxy-2-methyl-4-phenyl-1-indenyl) zirconium dichloride Synthesis of

Figure pat00015
Figure pat00015

t-Butylamine (88μL, 0.84mmol)을 아르곤하에 50mL Schlenk flask에 넣고 톨루엔(2mL)과 THF(68μL)를 주입하여 녹였다. 온도는 -30℃로 낮추고, n-BuLi(1.6M in Hexane, 0.53mL)를 가한 후 3시간 동안 교반하였다. t-Butylamine (88 μL, 0.84 mmol) was dissolved in toluene (2 mL) and THF (68 μL) in a 50 mL Schlenk flask under argon. The temperature was lowered to -30 ° C, n- BuLi (1.6M in Hexane, 0.53mL) was added, and the mixture was stirred for 3 hours.

그리고, 다른 Schlenk flask에 ZrCl4(THF)2 (289mg, 0.77mmol)를 아르곤하에서 가하고, 톨루엔(1mL)을 넣고 슬러리 상태에서 교반하였다. 온도를 -30℃로 낮추고 교반하였다. 그리고, 위에서 만들어진 Li-t-butylamide를 cannula를 통해 ZrCl4(THF)2 가 들어있는 플라스크로 투입하고 톨루엔(1mL)으로 세척하여 넣어준 후 상온에서 3시간동안 교반하였다. Then, ZrCl 4 (THF) 2 (289 mg, 0.77 mmol) was added to another Schlenk flask under argon, toluene (1 mL) was added, and the mixture was stirred in a slurry state. The temperature was reduced to -30 &lt; 0 &gt; C and stirred. Then, Li-t-butylamide prepared above was added to a flask containing ZrCl 4 (THF) 2 through a cannula, washed with toluene (1 mL), and stirred at room temperature for 3 hours.

그리고, 또 다른 Schlenk flask에 상기 (1)에서 제조한 리간드 화합물(600mg, 0.77mmol)을 아르곤하에서 넣고 톨루엔(1.2mL)과 THF(0.12mL)를 넣어 녹였다. 온도를 -30℃로 낮추고 n-BuLi(1.6M in Hexane, 1.0mL)를 가한 후 상온에서 3시간 동안 교반하였다. 상온에서 교반 후 온도를 -30℃로 낮추고 위에서 만들어진 ZrCl3(THF)2NHtBu 용액을 cannula를 통해 투입하였다. 투입이 종료된 후 온도를 상온으로 높여 밤새 교반하였다. 반응이 종결된 후 반응물을 여과하여 고체를 제거하고 0℃로 냉각하였다. 이 용액에 HCl(2M in ethylether, 0.38mL)을 가하고 온도를 높여 2시간 동안 상온에서 교반하였다. 반응이 종결된 후 감압 건조하였다. 얻어진 고체에 pentane을 가한 후 여과하여 녹지 않는 물질을 제거하고 얻어진 pentane용액을 냉장고에 보관하여 재결정하였다. 침전물을 여과하여 오렌지색의 고체 (6-(tert-butoxy)hexyl)(methyl)silanyl-bis(6-(tert-butyl)-5-methoxy-2-methyl-4-phenyl-1-indenyl)zirconium dichloride (126mg, 17%)를 수득하였다.Then, another ligand compound (600 mg, 0.77 mmol) prepared in the above (1) was added to another Schlenk flask under argon, and toluene (1.2 mL) and THF (0.12 mL) were dissolved therein. The temperature was lowered to -30 ° C and n- BuLi (1.6 M in Hexane, 1.0 mL) was added, followed by stirring at room temperature for 3 hours. After stirring at room temperature, the temperature was lowered to -30 ° C and the above-prepared solution of ZrCl 3 (THF) 2 NHtBu was injected through the cannula. After the addition was completed, the temperature was raised to room temperature and stirred overnight. After the reaction was terminated, the reaction was filtered to remove the solid and cooled to 0 &lt; 0 &gt; C. HCl (2M in ethylether, 0.38 mL) was added to the solution, and the mixture was stirred at room temperature for 2 hours. After the reaction was completed, it was dried under reduced pressure. The pentane was added to the solid obtained, and the material was removed by filtration. The obtained pentane solution was stored in a refrigerator and recrystallized. The precipitate was filtered to obtain an orange solid (6- (tert-butoxy) hexyl) (methyl) silanyl-bis (6- (tert- butyl) -5- methoxy- 2-methyl-4- phenyl- 1-indenyl) zirconium dichloride (126 mg, 17%).

1H NMR(500 MHz, CDCl3, 7.24 ppm): 1.20(9H, s), 1.29(3H, s), 1.39(18H, s), 1.42~1.90(10H, m), 2.16(6H, s), 3.37(2H, t), 3.40(6H, s), 6.59(2H, s), 7.26~7.62(12H, m) 1 H NMR (500 MHz, CDCl 3, 7.24 ppm): 1.20 (9H, s), 1.29 (3H, s), 1.39 (18H, s), 1.42 ~ 1.90 (10H, m), 2.16 (6H, s) , 3.37 (2H, t), 3.40 (6H, s), 6.59 (2H, s), 7.26-7.62

(4) 담지 촉매 제조(4) Preparation of supported catalyst

Silica gel(3g)을 아르곤 하에 250mL Schlenk flask에 넣고 메틸알루미녹산(MAO; 23mL, 30mmol)을 상온에서 천천히 주입하여 95℃에서 18시간 동안 교반하였다. 반응 종결 후, 상온으로 식히고 15분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 톨루엔(25mL)을 넣고 1분 동안 교반하고 20분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 그리고, 상기 (3)에서 제조한 메탈로센 화합물(180μmol)을 톨루엔 (20mL)에 녹인 후, 위 flask에 cannula를 이용해 트랜스퍼하고 톨루엔(5mL)으로 세척하였다. 75℃에서 5시간 동안 교반한 후, 상온으로 식히고 15분 동안 방치하여 cannula를 이용해 용매를 decant하였다. 톨루엔(25mL)을 넣고 1분 동안 교반하고 10분 동안 방치하여 cannula를 이용해 용매를 decant하는 것을 2회 진행하였다. 동일한 방법으로 헥산(25mL)을 넣고 1분 동안 교반하고 20분 동안 방치하여 cannula를 이용해 용매를 decant하고 진공하에 밤새 건조하였다. 추가적으로 45℃에서 4시간 동안 진공 하에 건조하였다. Silica gel (3 g) was placed in a 250 mL Schlenk flask under argon and methylaluminoxane (MAO; 23 mL, 30 mmol) was slowly added at room temperature and stirred at 95 ° C for 18 hours. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and allowed to stand for 15 minutes to decant the solvent using a cannula. Toluene (25 mL) was added, stirred for 1 minute, left to stand for 20 minutes, and the solvent was decanted with a cannula. Then, the metallocene compound (180 μmol) prepared in the above (3) was dissolved in toluene (20 mL), and the flask was transferred using a cannula and washed with toluene (5 mL). After stirring at 75 ° C for 5 hours, the mixture was cooled to room temperature and allowed to stand for 15 minutes to decant the solvent using a cannula. Toluene (25 mL) was added, stirred for 1 minute, left for 10 minutes, and the solvent was decanted with a cannula twice. In the same manner, hexane (25 mL) was added, stirred for 1 minute, left to stand for 20 minutes, the solvent was decanted with a cannula and dried under vacuum overnight. Lt; RTI ID = 0.0 &gt; 45 C &lt; / RTI &gt; for 4 hours.

<< 비교예Comparative Example 1>  1>

Figure pat00016
Figure pat00016

(1) (6-t-부톡시헥실)(메틸)-비스(2-메틸-4-페닐인데닐)실란의 제조(1) Preparation of (6-t-butoxyhexyl) (methyl) -bis (2-methyl-4-phenylindenyl) silane

먼저, 100 mL의 트리클로로메틸실란 용액(약 0.21 mol, 헥산)에 100 mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14 mol, 에테르)을 -100℃ 하에서 3시간에 걸쳐 천천히 적가한 후, 상온에서 3시간 동안 교반하였다. 상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하여, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다. First, 100 mL of a solution of t-butoxyhexyl magnesium chloride (about 0.14 mol, ether) was added dropwise to 100 mL of a trichloromethylsilane solution (about 0.21 mol, hexane) at -100 ° C over 3 hours, And the mixture was stirred at room temperature for 3 hours. After separating the transparent organic layer from the mixed solution, the separated transparent organic layer was vacuum-dried to remove excess trichloromethylsilane to obtain transparent liquid (6-t-butoxyhexyl) dichloromethylsilane.

77 mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(34.9 mmol)에 n-부틸리튬 용액(2.5 M, 헥산 용매) 15.4 mL를 0℃에서 천천히 적가하였고, 80℃에서 1시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, -78℃에서 상기 혼합 용액에 앞서 제조한 (6-터트-부톡시헥실)디클로로메틸실란 5 g을 천천히 적가하였고, 약 10분 동안 교반한 뒤 80℃에서 1시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 78%의 수율로 얻었다(racemic:meso = 1:1).15.4 mL of n-butyllithium solution (2.5 M, hexane solvent) was slowly added dropwise to 77 mL of 2-methyl-4-phenylindene toluene / THF = 10/1 solution (34.9 mmol) The mixture was stirred for 1 hour and then at room temperature for one day. Then, 5 g of (6-tert-butoxyhexyl) dichloromethylsilane prepared previously was slowly added dropwise to the mixed solution at -78 ° C, and the mixture was stirred for about 10 minutes and then at 80 ° C for 1 hour. The organic layer was separated by adding water, purified silica column, and vacuum dried to obtain a sticky yellow oil (racemic: meso = 1: 1) in a yield of 78%.

1H NMR (500 MHz, CDCl3, 7.24 ppm): 0.10 (3H, s), 0.98 (2H, t), 1.25 (9H, s), 1.36~1.50 (8H, m), 1.62 (8H, m), 2.26 (6H, s), 3.34 (2H, t), 3.81 (2H, s), 6.87 (2H, s), 7.25 (2H, t), 7.35 (2H, t), 7.45 (4H, d), 7.53 (4H, t), 7.61 (4H, d) 1 H NMR (500 MHz, CDCl 3 , 7.24 ppm): 0.10 (3H, s), 0.98 (2H, t), 1.25 (9H, s), 1.36-1.50 , 2.26 (6H, s), 3.34 (2H, t), 3.81 (2H, s), 6.87 7.53 (4 H, t), 7.61 (4 H, d)

(2) [(6-t-부톡시헥실메틸실란-디일)-비스(2-메틸-4-페닐인데닐)]지르코륨 디클로라이드의 제조(2) Preparation of [(6-t-butoxyhexylmethylsilane-diyl) -bis (2-methyl-4-phenylindenyl)] zirconium dichloride

앞서 제조한 (6-터트-부톡시헥실)(메틸)비스(2-메틸-4-페닐)인데닐실란 에테르/헥산=1/1 용액(3.37 mmol) 50 mL에 n-부틸리튬 용액(2.5 M in 헥산) 3.0 mL를 -78℃에서 천천히 적가한 후, 상온에서 약 2시간 동안 교반한 뒤 진공 건조하였다. 헥산으로 염을 세척한 후 여과 및 진공 건조하여 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)와 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄 비스(테트라하이드로퓨란) [Zr(C5H6NCH2CH2NC5H6)Cl2(C4H8O)2]을 쉬링크 플라스크에 칭량한 후, -78℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 이후에, 붉은색 반응 용액을 여과 분리한 후 HCl 에테르 용액(1 M) 4당량을 -78℃에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 안사-메탈로센 화합물을 85%의 수율로 얻었다(racemic:meso = 10:1).To a 50 mL of the previously prepared (6-tert-butoxyhexyl) (methyl) bis (2-methyl-4-phenyl) indenylsilane ether / hexane = 1/1 solution (3.37 mmol) M in hexane) was slowly added dropwise at -78 ° C, stirred at room temperature for about 2 hours, and then vacuum-dried. The salt was washed with hexane and then filtered and vacuum dried to give a yellow solid. The ligand salt synthesized in a glove box and bis (N, N'-diphenyl-1,3-propanediamido) dichlorozirconium bis (tetrahydrofuran) [Zr (C 5 H 6 NCH 2 CH 2 NC 5 H 6 ) Cl 2 (C 4 H 8 O) 2 ] was weighed into a shrinking flask, ether was slowly added dropwise at -78 ° C., and the mixture was stirred at room temperature for one day. Thereafter, the red reaction solution was separated by filtration, 4 equivalents of a 1 M solution of HCl in ether was slowly added dropwise at -78 ° C, and the mixture was stirred at room temperature for 3 hours. Filtration and vacuum drying afforded the anthra-metallocene compound as an orange solid in 85% yield (racemic: meso = 10: 1).

1H NMR (500 MHz, C6D6, 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48~1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, t), 6.95 (2H, s), 7.13 (2H, t), 7.36 (2H, d), 7.43 (6H, t), 7.62 (4H, d), 7.67 (2H, d) 1 H NMR (500 MHz, C 6 D 6, 7.24 ppm): 1.19 (9H, s), 1.32 (3H, s), 1.48 ~ 1.86 (10H, m), 2.25 (6H, s), 3.37 (2H, d), 7.67 (2H, d), 7.63 (2H, d), 6.95

(3) 담지된 촉매의 제조(3) Preparation of supported catalyst

실시예의 단계 4와 동일한 방법으로, 상기에서 합성한 메탈로센 화합물([(6-t-부톡시헥실메틸실란-디일)-비스(2-메틸-4-페닐인데닐)]지르코륨 디클로라이드)을 사용하여 실리카 담지 메탈로센 촉매를 제조하였다. ([(6-t-butoxyhexylmethylsilane-diyl) -bis (2-methyl-4-phenylindenyl)] zirconium dichloride synthesized in the same manner as in Example 4, ) Was used to prepare a silica-supported metallocene catalyst.

<< 비교예Comparative Example 2>  2>

Figure pat00017
Figure pat00017

(1) Dimethylbis(2-methyl-4-phenyl-1H-inden-1-yl)silane의 합성(1) Synthesis of Dimethylbis (2-methyl-4-phenyl-1H-inden-1-yl) silane

77mL의 2-메틸-4-페닐인덴 톨루엔/THF=10/1 용액(49.5 mmol)에 n-부틸리튬 용액(2.5M, 헥산 용매) 21.8mL를 0℃에서 천천히 적가하고, 80℃에서 1시간 동안 교반한 뒤 상온에서 하루 동안 교반하였다. 그 후, 0℃ 이하에서 디클로로메틸실란 2.98mL를 천천히 적가하고, 약 10분 동안 교반한 뒤 80℃로 온도를 올려 1시간 동안 교반하였다. 그 뒤 물을 가하여 유기층을 분리한 뒤 실리카 컬럼 정제하고 진공 건조하여 끈끈한 노란색 오일을 61%의 수율로 얻었다(racemic:meso=1:1).21.8 mL of a n-butyllithium solution (2.5 M, hexane solvent) was slowly added dropwise to 77 mL of 2-methyl-4-phenylindene toluene / THF = 10/1 solution (49.5 mmol) at 0 ° C, And the mixture was stirred at room temperature for one day. Thereafter, 2.98 mL of dichloromethylsilane was slowly added dropwise at 0 DEG C or lower, stirred for about 10 minutes, then heated to 80 DEG C and stirred for 1 hour. The organic layer was separated by adding water, and the silica column was purified and vacuum dried to obtain a sticky yellow oil (yield: racemic: meso = 1: 1).

1H NMR (500MHz, CDCl3, 7.24ppm): 0.02(6H, s), 2.37(6H, s), 4.00(2H, s), 6.87(2H, t), 7.83(2H, t), 7.45(2H, t), 7.57(4H, d), 7.65(4H, t), 7.75(4H, d) 1 H NMR (500MHz, CDCl 3 , 7.24ppm): 0.02 (6H, s), 2.37 (6H, s), 4.00 (2H, s), 6.87 (2H, t), 7.83 (2H, t), 7.45 ( 2H, t), 7.57 (4H, d), 7.65 (4H, t), 7.75

(2) Dimethylbis(2-methyl-4-phenyl-1H-inden-1yl)silane Zirconium dichloride의 합성(2) Synthesis of Dimethylbis (2-methyl-4-phenyl-1H-inden-1yl) silane Zirconium dichloride

240mL의 디메틸비스(2-메틸-4-페닐인데닐)실란 에테르/헥산=1/1 용액(12.4 mmol)에 n-부틸리튬 용액(2.5M in 헥산) 10.9mL를 -78℃에서 천천히 적가하였다. 그 뒤, 상온에서 하루 동안 교반한 뒤 여과하고 진공 건조하여 연한 노란색의 고체를 얻었다. 글로브 박스(glove box) 내에서 합성한 리간드 염(ligand salt)과 비스(N,N'-디페닐-1,3-프로판디아미도)디클로로지르코늄비스(테트라하이드로퓨란)을 쉬링크 플라스크(schlenk flask)에 칭량(weighing)한 후, -78℃에서 에테르를 천천히 적가한 뒤 상온에서 하루 동안 교반하였다. 붉은색의 용액을 여과 분리한 후 진공 건조하고 톨루엔/에테르=1/2 용액을 가하여 깨끗한 붉은 색 용액을 얻었다. HCl 에테르 용액(1M) 1.5~2 당량을 -78℃에서 천천히 적가한 후 상온에서 3시간 동안 교반하였다. 이후 여과하고 진공 건조하여 오렌지색 고체 성분의 촉매를 70%의 수율로 얻었다(racemic only).10.9 mL of a n-butyllithium solution (2.5 M in hexane) was slowly added dropwise to 240 mL of a dimethyl bis (2-methyl-4-phenylindenyl) silane ether / hexane = 1/1 solution (12.4 mmol) . Thereafter, the mixture was stirred at room temperature for one day, filtered and vacuum dried to obtain a pale yellow solid. The ligand salt synthesized in a glove box and bis (N, N'-diphenyl-1,3-propanediamido) dichloro zirconium bis (tetrahydrofuran) were dissolved in a Schlenk flask ), Ether was slowly added dropwise at -78 ° C, and the mixture was stirred at room temperature for one day. The red solution was separated by filtration, dried in vacuo, and a toluene / ether = 1/2 solution was added to obtain a clear red solution. 1.5-2 equivalent of HCl ether solution (1M) was slowly added dropwise at -78 deg. C, followed by stirring at room temperature for 3 hours. After filtration and vacuum drying, the catalyst of orange solid component was obtained in a yield of 70% (racemic only).

1H NMR (500MHz, C6D6, 7.24ppm): 1.32(6H, s), 2.24(6H, s), 6.93(2H, s), 7.10(2H, t), 7.32(2H, t), 7.36(2H, d), 7.43(4H, t), 7.60(4H, d), 7.64(2H, d) 1 H NMR (500MHz, C6D6, 7.24ppm): 1.32 (6H, s), 2.24 (6H, s), 6.93 (2H, s), 7.10 (2H, t), 7.32 (2H, t), 7.36 (2H , 7.43 (4H, t), 7.60 (4H, d), 7.64 (2H, d)

<< 실험예Experimental Example >>

(1) 프로필렌의 호모 중합(1) homopolymerization of propylene

2 L 스테인레스 반응기를 65℃에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5 mmol, 수소 2 bar 및 프로필렌 770 g을 순차적으로 투입하였다. 이후 10분 동안 교반한 후, 상기 실시예 및 비교예에서 제조한 각각의 메탈로센 촉매 0.048 g을 TMA 처방된 헥산 20 mL에 녹여 질소 압력으로 반응기에 투입하였다. 이후 반응기 온도를 70℃까지 천천히 승온한 다음, 1시간 동안 중합하였다. 반응 종료 후 미반응된 프로필렌은 벤트하였다. The 2 L stainless steel reactor was vacuum dried at 65 占 폚, cooled, and then 1.5 mmol of triethylaluminum, 2 bar of hydrogen and 770 g of propylene were sequentially added at room temperature. After stirring for 10 minutes, 0.048 g of each metallocene catalyst prepared in the above Examples and Comparative Examples was dissolved in 20 mL of TMA-prescribed hexane and introduced into the reactor under a nitrogen pressure. The temperature of the reactor was then slowly raised to 70 ° C and then polymerized for 1 hour. After the completion of the reaction, unreacted propylene was bubbled.

(2) 프로필렌의 랜덤 중합(2) Random polymerization of propylene

2 L 스테인레스 반응기를 65℃에서 진공 건조한 후 냉각하고, 실온에서 트리에틸알루미늄 1.5 mmol 및 프로필렌 770 g을 순차적으로 투입하였다. 이후 10분 동안 교반한 후, 상기 실시예 및 비교예에서 제조한 각각의 메탈로센 촉매 0.048 g을 TMA 처방된 헥산 20 mL에 녹여 질소 압력으로 반응기에 투입하였다. 이후 에틸렌을 총 15 g 투입하면서 반응기 온도를 70℃까지 천천히 승온한 다음, 1시간 동안 중합하였다. 반응 종료 후 미반응된 프로필렌 및 에틸렌은 벤트하였다.The 2 L stainless steel reactor was vacuum dried at 65 占 폚, cooled, and then 1.5 mmol of triethylaluminum and 770 g of propylene were sequentially introduced at room temperature. After stirring for 10 minutes, 0.048 g of each metallocene catalyst prepared in the above Examples and Comparative Examples was dissolved in 20 mL of TMA-prescribed hexane and introduced into the reactor under a nitrogen pressure. After 15 g of ethylene was added, the temperature of the reactor was slowly raised to 70 ° C., and the reactor was polymerized for 1 hour. After completion of the reaction, unreacted propylene and ethylene were vented.

(3) 중합체의 물성 측정 방법(3) Method of measuring physical properties of polymer

1) 촉매 활성: 단위 시간(h)을 기준으로 사용된 촉매 함량(촉매의 mmol 및 g)당 생성된 중합체의 무게(kg PP)의 비로 계산하였다. 1) Catalytic activity: Calculated as the ratio of the weight of polymer produced (kg PP) per unit time (h) to the catalyst content (mmol and g of catalyst) used.

2) 중합체의 녹는점(Tm): 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 녹는점을 측정하였다. 구체적으로, 중합체를 220℃까지 가열한 후 5분 동안 그 온도를 유지하고, 다시 20℃까지 냉각한 후 다시 온도를 증가시켰으며, 이때 온도의 상승 속도와 하강 속도는 각각 10℃/min으로 조절하였다. 2) Melting point (Tm) of polymer: The melting point of the polymer was measured using a differential scanning calorimeter (DSC, DSC 2920, manufacturer: TA instrument). Specifically, the polymer was heated to 220 ° C., and then the temperature was maintained for 5 minutes. After the temperature was further cooled to 20 ° C., the temperature was increased again. The temperature rising rate and the falling rate were adjusted to 10 ° C./min Respectively.

3) 용융흐름지수 (Melt Flow Rate, MFR): ASTM D-1238에 의거하여, 230℃, 2.16kg의 하중의 조건 하에서 측정하였다.3) Melt Flow Rate (MFR): Measured under the conditions of a load of 230 kg and a load of 2.16 kg according to ASTM D-1238.

(4) 중합체의 물성 측정 결과(4) Measurement results of physical properties of polymer

실시예 및 비교예에서 제조한 각각의 메탈로센 담지 촉매를 사용하여 제조한, 호모 및 랜덤 중합 공정 조건 및 생성된 폴리프로필렌의 물성 측정 결과를 하기 표 1(호모 중합) 및 표 2(랜덤 중합)에 나타내었다.The homo and random polymerization process conditions and physical properties of polypropylene produced using the metallocene supported catalysts prepared in Examples and Comparative Examples were measured and the results are shown in Table 1 (homopolymerization) and Table 2 ).

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 담지 촉매량(mg)Amount of supported catalyst (mg) 4545 4545 4545 6060 240240 수소(ppm)Hydrogen (ppm) 00 372372 703703 372372 372372 수율(g)Yield (g) 9292 463463 396396 428428 7878 활성(kg/gCat·hr)Activity (kg / gCat · hr) 22 10.310.3 8.88.8 7.17.1 0.320.32 MFRMFR <1<1 0.80.8 6.66.6 9.89.8 Tm(℃)Tm (占 폚) 142.2142.2 144.8144.8 145.5145.5 148.7148.7

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 담지 촉매량(mg)Amount of supported catalyst (mg) 2323 2323 2323 4545 6060 수소(ppm)Hydrogen (ppm) 00 372372 703703 00 00 수율(g)Yield (g) 145145 456456 479479 433433 505505 활성(kg/gCat·hr)Activity (kg / gCat · hr) 6.36.3 19.819.8 20.820.8 9.69.6 8.48.4 MFRMFR 0.090.09 1.31.3 5.05.0 19.619.6 12.612.6 Tm(℃)Tm (占 폚) 131.6131.6 139.2139.2 140.4140.4 139.9139.9 140.3140.3

상기 표 1 및 표 2에 나타난 바와 같이, 상기 일 구현예에 따라 인덴기 및 브릿지 그룹에 특정의 치환기를 갖는 메탈로센 화합물을 담지 촉매로 사용한 실시예는, 폴리올레핀 제조시 대체적으로 높은 활성을 나타내었으며, 낮은 용융흐름지수(MFR) 및 고분자량의 특성을 보이는 중합체를 제조할 수 있음을 확인할 수 있었다. As shown in the above Tables 1 and 2, the metallocene compound having a specific substituent group in the indene group and the bridge group as a supported catalyst according to this embodiment exhibited substantially higher activity in the production of the polyolefin And it was confirmed that a polymer exhibiting a low melt flow index (MFR) and high molecular weight can be produced.

Claims (11)

하기 화학식 1로 표시되는 리간드 화합물:
[화학식 1]
Figure pat00018

상기 화학식 1에서,
R1은 C6-20 아릴 또는 C1-20 알킬로 치환된 C6-20 아릴이고,
R2는 C1-20 알콕시이고,
R3는 C1-20 알킬이고,
R4는 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
A는 탄소, 실리콘 또는 게르마늄이고,
R5는 C1-20 알콕시로 치환된 C1-20 알킬이고,
R6는 수소, C1-20 알킬 또는 C2-20 알케닐이다.
A ligand compound represented by the following formula (1):
[Chemical Formula 1]
Figure pat00018

In Formula 1,
R 1 is a C 6-20 aryl substituted with C 6-20 aryl or C 1-20 alkyl,
R 2 is C 1-20 alkoxy,
R 3 is C 1-20 alkyl,
R 4 is hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 alkyl silyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1- 20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
A is carbon, silicon or germanium,
R 5 is C 1-20 alkyl substituted by C 1-20 alkoxy,
R 6 is hydrogen, C 1-20 alkyl or C 2-20 alkenyl.
제1항에 있어서,
상기 R1은 페닐 또는 C1-10 알킬로 치환된 페닐인 것을 특징으로 하는 리간드 화합물.
The method according to claim 1,
Wherein R 1 is a ligand compound, it characterized in that the phenyl is substituted by phenyl or C 1-10 alkyl.
제1항에 있어서,
상기 R2는 메톡시인 것을 특징으로 하는 리간드 화합물.
The method according to claim 1,
Wherein R &lt; 2 &gt; is methoxy.
제1항에 있어서,
상기 R3는 C1-4 알킬인 것을 특징으로 하는 리간드 화합물.
The method according to claim 1,
Wherein R 3 is a ligand compound, characterized in that C 1-4 alkyl.
제1항에 있어서,
상기 R5는 6-터트-부톡시-헥실이고, R6는 메틸인 것을 특징으로 하는 리간드 화합물.
The method according to claim 1,
Said R &lt; 5 &gt; is 6-tert-butoxy-hexyl and R &lt; 6 &gt; is methyl.
제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 구조식으로 표시되는 리간드 화합물:
Figure pat00019
,
Figure pat00020
,
Figure pat00021
,
Figure pat00022

2. The compound according to claim 1, wherein the compound represented by the formula (1) is a ligand compound represented by the following structural formula:
Figure pat00019
,
Figure pat00020
,
Figure pat00021
,
Figure pat00022

하기 화학식 2로 표시되는 메탈로센 화합물:
[화학식 2]
Figure pat00023

상기 화학식 2에서,
R1은 C6-20 아릴 또는 C1-20 알킬로 치환된 C6-20 아릴이고,
R2는 C1-20 알콕시이고,
R3는 C1-20 알킬이고,
R4는 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,
A는 탄소, 실리콘 또는 게르마늄이고,
R5는 C1-20 알콕시로 치환된 C1-20 알킬이고,
R6는 수소, C1-20 알킬 또는 C2-20 알케닐이고,
M은 4족 전이금속 화합물이고,
X는 각각 독립적으로, 할로겐 또는 탄소수 1 내지 20의 알킬기이다.
A metallocene compound represented by the following formula (2): &lt; EMI ID =
(2)
Figure pat00023

In Formula 2,
R 1 is a C 6-20 aryl substituted with C 6-20 aryl or C 1-20 alkyl,
R 2 is C 1-20 alkoxy,
R 3 is C 1-20 alkyl,
R 4 is hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 alkyl silyl, C 1-20 alkoxysilyl, C 1-20 ether, C 1- 20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
A is carbon, silicon or germanium,
R 5 is C 1-20 alkyl substituted by C 1-20 alkoxy,
R 6 is hydrogen, C 1-20 alkyl or C 2-20 alkenyl,
M is a Group 4 transition metal compound,
Each X independently represents a halogen or an alkyl group having 1 to 20 carbon atoms.
제7항에 있어서,
상기 M은 지르코늄이고, X는 클로로인 것을 특징으로 하는 메탈로센 화합물.
8. The method of claim 7,
Wherein M is zirconium and X is chloro.
제7항에 있어서,
상기 화학식 2로 표시되는 화합물은 하기 구조식으로 표시되는 메탈로센 화합물:
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027

8. The method of claim 7,
The compound represented by Formula 2 is a metallocene compound represented by the following structural formula:
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027

제7항의 화학식 2로 표시되는 메탈로센 화합물 및 조촉매를 포함하는 올레핀 중합용 촉매 조성물.
A catalyst composition for olefin polymerization comprising a metallocene compound represented by the general formula (2) of claim 7 and a cocatalyst.
제10항의 올레핀 중합용 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는, 올레핀 중합체의 제조 방법.A process for producing an olefin polymer, comprising the step of polymerizing an olefin monomer in the presence of the catalyst composition for olefin polymerization of claim 10.
KR1020160002235A 2016-01-07 2016-01-07 Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same KR102086049B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160002235A KR102086049B1 (en) 2016-01-07 2016-01-07 Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160002235A KR102086049B1 (en) 2016-01-07 2016-01-07 Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same

Publications (2)

Publication Number Publication Date
KR20170082917A true KR20170082917A (en) 2017-07-17
KR102086049B1 KR102086049B1 (en) 2020-03-06

Family

ID=59442975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160002235A KR102086049B1 (en) 2016-01-07 2016-01-07 Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same

Country Status (1)

Country Link
KR (1) KR102086049B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072670B2 (en) 2017-12-20 2021-07-27 Lg Chem, Ltd. Catalyst composition and method for preparing olefin polymer using same
US11370851B2 (en) 2018-11-02 2022-06-28 Lg Chem, Ltd. Transition metal compound and method for preparing polypropylene using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049148A (en) * 2011-11-03 2013-05-13 주식회사 엘지화학 Non-supported heterogeous catalyst composition for polymerizing polyolefin and preparation method of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130049148A (en) * 2011-11-03 2013-05-13 주식회사 엘지화학 Non-supported heterogeous catalyst composition for polymerizing polyolefin and preparation method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Organometallics, 2012, Vol.31, pp.4962-4970, 1부.* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072670B2 (en) 2017-12-20 2021-07-27 Lg Chem, Ltd. Catalyst composition and method for preparing olefin polymer using same
US11370851B2 (en) 2018-11-02 2022-06-28 Lg Chem, Ltd. Transition metal compound and method for preparing polypropylene using the same

Also Published As

Publication number Publication date
KR102086049B1 (en) 2020-03-06

Similar Documents

Publication Publication Date Title
KR101637026B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR101738139B1 (en) Polypropylene
KR102124102B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR101768193B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR101619396B1 (en) Novel metallocene compound, Catalyst composition comprising the same, and Method for preparing olefin-based polymers using the same
KR102024328B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR20160084181A (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
KR101703274B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR20160072068A (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR20190074798A (en) Supported hybrid metallocene catalyst and method for preparing of polyolefin using the same
KR101659540B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR101725349B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
KR102086049B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR101617871B1 (en) Dinuclear metallocene compound, catalyst composition and method for preparing polyolefin using the same
KR101734427B1 (en) Supported catalyst and method for preparing of olefin based polymer using the same
KR101973191B1 (en) Metallocene supported catalyst and method for preparing polyolefin using the same
KR102022686B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR102024327B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR102022685B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR101785705B1 (en) Catalyst composition and method for preparing polyolefin using the same
KR20200061171A (en) Method for preparing polyolefin using catalysts composition comprising transition metal compounds
KR101703273B1 (en) Ansa-metallocene catalyst and preparation method of supported catalyst by using it
KR102023168B1 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
KR102086059B1 (en) Metallocene compound and method for preparing polyolefin using the same
KR20170001424A (en) Catalyst system and process for preparing polyolefins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant