KR20160042056A - High strength aluminum alloy fin stock for heat exchanger - Google Patents
High strength aluminum alloy fin stock for heat exchanger Download PDFInfo
- Publication number
- KR20160042056A KR20160042056A KR1020167006163A KR20167006163A KR20160042056A KR 20160042056 A KR20160042056 A KR 20160042056A KR 1020167006163 A KR1020167006163 A KR 1020167006163A KR 20167006163 A KR20167006163 A KR 20167006163A KR 20160042056 A KR20160042056 A KR 20160042056A
- Authority
- KR
- South Korea
- Prior art keywords
- aluminum alloy
- ingot
- heat exchanger
- stock material
- fin stock
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/124—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Air-Conditioning For Vehicles (AREA)
- Laminated Bodies (AREA)
- Metal Rolling (AREA)
Abstract
본 발명은 더 높은 강도, 및 향상된 처짐 저항성(sag resistance)을 갖는, 열 교환기에서 사용되기 위한 알루미늄 합금 핀 스톡 (fin stock) 합금 재료를 제공한다. 이 알루미늄 합금 핀 스톡 합금 재료는 직접 냉각(DC) 주조에 의해서 만들어졌다.The present invention provides an aluminum alloy fin stock alloy material for use in heat exchangers having higher strength and improved sag resistance. This aluminum alloy fin stock alloy material was made by direct cooling (DC) casting.
Description
관련출원의 교차 참조Cross reference of related application
본원은 2013년 8월 8일 출원된 미국 특허 가출원 일련 번호 61/863,568의 이익을 주장하며, 이는 참조에 의해서 그 전체가 여기에 포함된다.This application claims the benefit of U.S. Provisional Patent Application Serial No. 61 / 863,568, filed August 8, 2013, which is hereby incorporated by reference in its entirety.
본 발명은 재료 과학, 재료 화학, 야금, 알루미늄 합금, 알루미늄 제조 분야 및 관련 분야에 관한 것이다. 본 발명은 열 교환기 핀의 제조에 사용되기 위한 새로운 알루미늄 합금을 제공하고, 이는 다시 다양한 열 교환기 장치, 예를 들어 자동차 라디에이터, 응축기, 증발기 및 관련 장치에 채용된다.The present invention relates to materials science, material chemistry, metallurgy, aluminum alloys, aluminum making and related fields. The present invention provides a new aluminum alloy for use in the manufacture of heat exchanger fins, which is again employed in a variety of heat exchanger devices, such as automotive radiators, condensers, evaporators and related devices.
자동차용 라디에이터를 포함하는 다양한 열 교환기 적용에 사용되기 위한, 고강도 및 향상된 처짐 저항성(sag resistance) 고강도를 갖는 알루미늄 합금 핀 스톡(fin stock)에 대한 필요성이 있다. 고성능 열 교환기 적용을 위해, 강한 브레이즈전(pre-braze) 기계적 특성과, 브레이징 동안의 양호한 거동, 즉 향상된 브레이즈 재료 처짐 저항성 및 감소된 핀 침식과, 브레이즈 후의 양호한 강도 및 전도성 특성을 갖는 알루미늄 합금 핀 스톡을 얻을 필요가 있다.There is a need for an aluminum alloy fin stock having high strength and improved sag resistance high strength for use in various heat exchanger applications, including automotive radiators. For high performance heat exchanger applications, aluminum alloy pins with strong pre-braze mechanical properties and good behavior during brazing, i.e. improved braze material deflection resistance and reduced pin wear, and good strength and conductivity properties after brazing, It is necessary to obtain stock.
본 발명은 더 높은 강도, 및 향상된 처짐 저항성을 갖는, 열 교환기에서 사용되기 위한 알루미늄 합금 핀 스톡 합금 재료를 제공한다. 이 알루미늄 합금 핀 스톡 합금 재료는 직접 냉각(DC) 주조에 의해서 만들어졌다.The present invention provides an aluminum alloy fin stock alloy material for use in heat exchangers having higher strength and improved sag resistance. This aluminum alloy fin stock alloy material was made by direct cooling (DC) casting.
바람직한 브레이즈전 (H14 템퍼(temper)) 및 브레이즈후(post-braze) 기계적 특성, 처짐 저항성, 내부식성 및 전도성을 갖는 DC 핀 스톡 재료가 개발되었다. 알루미늄 합금 핀 스톡 합금은 브레이징 전에 더 큰 입자(grain) 및 향상된 강도를 나타낸다.DC finstock materials have been developed that have a desirable braze transition (H14 temper) and post-braze mechanical properties, deflection resistance, corrosion resistance, and conductivity. Aluminum alloy finstock alloys exhibit larger grain and improved strength before brazing.
알루미늄 합금 핀 스톡 합금은 다양한 적용, 예를 들어 열 교환기에서 사용될 수 있다. 이 핀스톡은 고성능 경량, 자동차 열 교환기에 대해서 특히 유용하고, HVAC를 포함하나 이에 한정되지 않는 다른 브레이징 적용을 위해서 사용될 수 있다. 일 실시형태에서, 알루미늄 합금 핀 스톡 합금은 자동차 열 교환기, 예를 들어 라디에이터, 응축기 및 증발기에서 사용될 수 있다. 본 발명의 다른 목적 및 장점은 본 발명의 실시형태의 다음 상세한 설명으로부터 명백해질 것이다.Aluminum alloy finstock alloys can be used in a variety of applications, for example in heat exchangers. This fin stock is particularly useful for high performance lightweight automotive heat exchangers and can be used for other brazing applications including but not limited to HVAC. In one embodiment, the aluminum alloy finstock alloy can be used in automotive heat exchangers, such as radiators, condensers, and evaporators. Other objects and advantages of the present invention will become apparent from the following detailed description of embodiments of the present invention.
본 발명은 더 높은 강도, 향상된 내부식성 및 향상된 처짐 저항성을 갖는, 자동차 열 교환기와 같은 열 교환기에서 사용되기 위한 알루미늄 합금 핀 스톡 합금 재료를 제공한다. 이 알루미늄 합금 핀 스톡 합금 재료는 직접 냉각 주조(direct chill casting)에 의해서 만들어졌다.The present invention provides an aluminum alloy fin stock alloy material for use in a heat exchanger, such as automotive heat exchangers, with higher strength, improved corrosion resistance, and improved sag resistance. This aluminum alloy fin stock alloy material was made by direct chill casting.
이 DC 핀 스톡 재료는 바람직한 브레이즈전 (H14 템퍼) 및 브레이즈후 기계적 특성, 처짐 저항성, 내부식성 및 전도성을 보인다. 알루미늄 합금 핀 스톡 합금은 브레이징 전에 더 큰 입자 및 향상된 강도를 나타낸다.This DC pinstock material exhibits the mechanical properties, sag resistance, corrosion resistance and conductivity after the preferred braze (H14 temper) and braze. Aluminum alloy finstock alloys exhibit larger particles and improved strength before brazing.
알루미늄 합금 핀 스톡 합금은 다양한 적용, 예를 들어 열 교환기에서 사용될 수 있다. 일 실시형태에서, 알루미늄 합금 핀 스톡 합금은 자동차 열 교환기, 예를 들어 라디에이터, 응축기 및 증발기에서 사용될 수 있다.Aluminum alloy finstock alloys can be used in a variety of applications, for example in heat exchangers. In one embodiment, the aluminum alloy finstock alloy can be used in automotive heat exchangers, such as radiators, condensers, and evaporators.
일 실시형태에서, DC 핀 스톡 재료는 약 0.8-1.4%의 Si, 0.4-0.8%의 Fe, 0.05-0.4%의 Cu, 1.2-1.7%의 Mn 및 1.2-2.3%의 Zn, 그리고 잔부의 알루미늄을 포함한다. 모든 % 값은 중량 (wt)%이다.In one embodiment, the DC finstock material comprises about 0.8-1.4% Si, 0.4-0.8% Fe, 0.05-0.4% Cu, 1.2-1.7% Mn and 1.2-2.3% Zn, and the balance aluminum . All% values are weight (wt)%.
다른 실시형태에서, DC 핀 스톡 재료는 약 0.9-1.3%의 Si, 0.45-0.75%의 Fe, 0.10-0.30%의 Cu, 1.3-1.7%의 Mn 및 1.30-2.2%의 Zn, 그리고 잔부의 알루미늄을 포함한다.In another embodiment, the DC finstock material comprises about 0.9-1.3% Si, 0.45-0.75% Fe, 0.10-0.30% Cu, 1.3-1.7% Mn and 1.30-2.2% Zn, and the balance aluminum .
또 다른 실시형태에서, DC 핀 스톡 재료는 약 0.9-1.2%의 Si, 0.50-0.75%의 Fe, 0.15-0.30%의 Cu, 1.4-1.6%의 Mn 및 1.4-2.1%의 Zn, 그리고 잔부의 알루미늄을 포함한다.In yet another embodiment, the DC finstock material comprises about 0.9-1.2% Si, 0.50-0.75% Fe, 0.15-0.30% Cu, 1.4-1.6% Mn, and 1.4-2.1% Zn, Aluminum.
선택적으로, Cr 및/또는 Zr 또는 다른 입자 사이즈 제어 원소가 이 합금 조성에 각각 0.2 % 이하, 0.15% % 이하, 0.1 % 이하, 0.05 % 이하, 또는 0.03 % 이하로 존재할 수도 있다. 모든 % 값은 중량(wt)% 이다.Alternatively, Cr and / or Zr or other particle size controlling elements may be present in the alloy composition in an amount of 0.2% or less, 0.15% or less, 0.1% or less, 0.05% or less, or 0.03% or less. All% values are weight (wt)%.
여기서 설명되는 합금 조성은 종종 의도되지 않은 원소로 지칭되는 다른 소량 원소를 0.05% 미만으로 포함할 수도 있다는 점이 이해되어야 한다.It should be understood that the alloy composition described herein may also include less than 0.05% of other minor elements referred to as unintended elements.
잉곳을 제조하는 방법 How to make ingots
여기서 설명되는 잉곳은 알루미늄 시트 산업 도처에서 공통적으로 사용되는 직접 냉각(DC) 프로세스로 만들어지며, 여기서 ~1.5 m x 0.6 m x 4 m의 큰 잉곳은 얕은 몰드(shallow mold) 또는 냉각수가 공급되는 몰드에 금속을 공급하는 대형 보온 조정로(holding furnace)로부터 주조된다. 고화되는 잉곳은 냉각수의 직접 닿음(impingement)에 의해서 계속적으로 냉각되며, 전체 잉곳 또는 잉곳들이 완료될 때까지 몰드의 베이스로부터 저속으로 인출된다. 주조 프로세스로부터 일단 냉각되면, 잉곳의 압연 표면(rolling surfaces)은 기계가공되어 표면 편석 및 불균일이 제거된다. 기계가공된 잉곳은 열간 압연을 위해서 예열된다. 예열 온도 및 지속시간은 낮은 레벨로 제어되어 완료된 핀 스톡이 브레이징된 후 큰 입자 사이즈 및 고강도를 유지하도록 한다. 잉곳은 열간 압연되어 코일을 형성하고 다음으로 냉간 압연된다. 냉간 압연 프로세스는 몇 단계로 일어나며, 약 300-450℃ 범위의 중간 어닐링(interanneal)이 적용되어 최종 냉간 압연 단계 전에 재료를 재결정화한다. 다음으로, 재료는 냉간 압연되어 원하는 최종 게이지(gauge)를 얻고, 라디에이터 및 다른 자동차 열 교환기의 제조에 적합한 좁은 스트립으로 잘려진다. 열간 압연 전 잉곳의 예열은 달성된 최종 금속 온도가 약 480℃이고, 평균 약 4시간(전형적으로 최소 약 2시간 및 최대 약 12 시간) 동안 여기에 유지되도록 실시된다. 여러 잉곳(약 8 내지 30)이 노에 장전되고 가스 또는 전기에 의해 압연 온도로 예열된다. 알루미늄 합금은 전형적으로 약 450℃ 내지 약 560℃의 범위에서 압연된다. 만약 온도가 너무 차가우면, 롤 부하가 너무 높고, 만약 온도가 너무 뜨거우면, 금속이 너무 무르고 밀에서 파손될 수도 있다. 이 경우, 예열 온도가 다른 알루미늄 제품에 비하여 낮고, 유지 시간은 상대적으로 짧아, 최종 브레이즈후 입자 사이즈를 감소시키는 분산체의 성장을 제한한다. 실제로 고온 밀은 많은 상이한 잉곳 및 합금을 압연하도록 되어 있고, 항상 최소 소크 타임(soak time)에 잉곳을 압연할 수는 없다. 일 실시형태에서, 최소 소크 타임은 약 480℃에서 약 2시간이다. 제조 동안에, 적용되는 중간 어닐링 온도는 평균 약 3 시간 동안 약 400℃였고, 최종 게이지까지의 약 29%의 % 냉간 가공(CW)의 적용이 후속되었다. 이 %CW는 재료가 최종적으로 요구되는 강도 범위로 되도록 적용되는 냉간 압연의 정도이다. 이 % 냉간 가공은 다음과 같이 정의된다: (초기 게이지 - 최종 게이지)*100/초기 게이지. 냉간 가공이 증가함에 따라, H14 강도는 증가하나, 최종 브레이즈후 입자 사이즈 및 처짐 저항성은 감소한다. 29%는 대부분의 알루미늄 압연 적용에 대해서 상대적으로 낮다.The ingots described here are made by a direct cooling (DC) process commonly used throughout the aluminum sheet industry, where a large ingot of ~ 1.5 mx 0.6 mx 4 m has a shallow mold or metal And is then cast from a large holding furnace. The ingot to be solidified is continuously cooled by the impingement of the cooling water, and is withdrawn at a low speed from the base of the mold until the entire ingot or ingot is completed. Once cooled from the casting process, the rolling surfaces of the ingot are machined to remove surface segregation and unevenness. The machined ingot is preheated for hot rolling. The preheat temperature and duration are controlled to a low level so that the finished fin stock remains brazed and then retains large grain size and high strength. The ingot is hot rolled to form a coil and then cold rolled. The cold rolling process takes place in several steps and an interanneal of about 300-450 DEG C is applied to recrystallize the material before the final cold rolling step. Next, the material is cold rolled to obtain the desired final gauge and is cut into narrow strips suitable for the manufacture of radiators and other automotive heat exchangers. Preheating of the ingot prior to hot rolling is carried out such that the final metal temperature achieved is about 480 DEG C and is maintained here for an average of about 4 hours (typically at least about 2 hours and up to about 12 hours). Several ingots (about 8 to 30) are loaded into the furnace and preheated to rolling temperature by gas or electricity. The aluminum alloy is typically rolled in the range of about 450 캜 to about 560 캜. If the temperature is too cold, the roll load is too high, and if the temperature is too hot, the metal may be too dry and broken in the mill. In this case, the preheating temperature is lower than that of other aluminum products, and the holding time is relatively short, which limits the growth of the dispersion to reduce the particle size after the final brazing. In fact, hot mills are intended to roll many different ingots and alloys and can not always roll ingot at the soak time. In one embodiment, the minimum soak time is about 2 hours at about 480 [deg.] C. During manufacture, the applied intermediate annealing temperature was about 400 캜 for an average of about 3 hours followed by application of about 29%% cold working (CW) to the final gauge. The% CW is the degree of cold rolling applied so that the material is ultimately in the required strength range. This% cold working is defined as: (initial gauge - final gauge) * 100 / initial gauge. As the cold working increases, the H14 strength increases, but the particle size and sag resistance after the final braze decrease. 29% is relatively low for most aluminum rolling applications.
일 실시형태에서, 평균 4 시간동안 약 480℃에서의 예열 관례(pre heat practice)는 약 300 - 400℃의 중간 어닐링 온도 및 최종 게이지까지의 약 25 - 35 %의 %CW로 채용된다.In one embodiment, the preheat practice at about 480 ° C for an average of 4 hours is employed at an intermediate annealing temperature of about 300-400 ° C and a% CW of about 25-35% to the final gauge.
마무리된 냉간 압연 코일은 다음으로, 마무리된 열 교환기로의 성형, 조립 및 브레이징을 위해서 열 교환기 제조자에 의해서 요구되는 폭의 많은 좁은 스트립으로 잘려진다.The finished cold rolled coil is then cut into a number of narrow strips of the width required by the heat exchanger manufacturer for forming, assembling and brazing into a finished heat exchanger.
다음의 예시는 본 발명을 추가로 설명하는 역할을 할 것이나, 동시에 본 발명의 어떠한 한정을 구성하지 않는다. 반면, 여기의 설명을 읽은 후, 본 발명의 사상으로부터 벗어나지 않으면서 본 기술 분야의 당업자에게 시사될 수도 있는 본 발명의 다양한 실시형태, 변경물 및 균등물에 대해 지지할 수도 있다는 점이 명백히 이해될 것이다.The following examples serve to further illustrate the present invention, but do not constitute any limitation of the invention at the same time. On the contrary, it is to be clearly understood that, after reading the description herein, it will be appreciated that various embodiments, modifications and equivalents of the invention may be suggested to those skilled in the art without departing from the spirit of the invention .
예시example
DC 케이스 합금 조성물이 만들어졌다. 이 합금의 조성 범위는 다음의 사양 내에 있었다: 1.1±0.1%의 Si, 0.6±0.1%의 Fe, 0.2±0.05%의 Cu, 1.4±0.1%의 Mn 및 1.50±0.1%의 Zn, 그리고 잔부의 알루미늄. 합금 재료는 ~130 MPa의 최소 극한 인장 강도(ultimate tensile strength)를 가졌다. 합금 재료는 ~43 IACS(International Annealed Copper Standard(즉, 순수 구리는 100% 전도성이다))의 브레이징 후의 평균 전도성, 및 -741 mV의 개방 회로 포텐셜 부식 값(표준 칼로멜 전극(SCE)에 대하여)을 가졌다. 제조된 합금 재료는 최종 게이지가 49 마이크로미터였을 때의 28 밀리미터 내지 최종 게이지가 83 마이크로미터였을 때의 43 밀리미터 사이의 처짐 값을 보였으며, 이는 이 게이지에서 요구되는 사양 범위 내에 있었다. 이 값은, 상업적 브레이징 프로세스의 온도 시간 프로파일을 시뮬레이션하도록 샘플이 605℃의 온도로 가열되고, 약 20 분의 기간에 실온으로 냉각되는 시뮬레이션 브레이징 사이클의 적용 후에 측정되었다. 제조된 합금 재료는 게이지가 49 내지 83 마이크로미터 사이에서 다양했다.A DC case alloy composition was made. The composition range of this alloy was within the following specifications: 1.1 ± 0.1% Si, 0.6 ± 0.1% Fe, 0.2 ± 0.05% Cu, 1.4 ± 0.1% Mn and 1.50 ± 0.1% Zn, aluminum. The alloying material had a minimum ultimate tensile strength of ~ 130 MPa. The alloy material has an average conductivity after brazing of ~ 43 IACS (ie, pure copper is 100% conductive) and an open circuit potential corrosion value of -741 mV (for a standard calomel electrode (SCE)) I have. The alloying material produced exhibited deflection values between 28 millimeters when the final gauge was 49 micrometers to 43 millimeters when the final gauge was 83 micrometers, which was within the specifications required for this gauge. This value was measured after application of a simulated brazing cycle in which the sample was heated to a temperature of 605 占 폚 to simulate the temperature time profile of the commercial brazing process and cooled to room temperature for a period of about 20 minutes. The alloy material produced varied in gauge between 49 and 83 micrometers.
위에서 언급된 모든 특허, 특허 출원, 공개 및 요약은 참조에 의해 그들 전체로서 여기에 포함된다. 본 발명의 다양한 실시형태는 본 발명의 다양한 목적을 충족하도록 설명되었다. 이 실시형태는 본 발명 원리의 단순한 설명이라는 점이 인식되어야 한다. 본 발명의 많은 변경물 및 수정물은 다음의 청구항에서 정의되는 본 발명의 범위 및 사상을 벗어나지 않으면서 당업자에게 용이하게 명백할 것이다.All patents, patent applications, publications, and abstracts mentioned above are hereby incorporated by reference in their entirety. Various embodiments of the invention have been described in order to fulfill the various objects of the invention. It should be appreciated that this embodiment is a simple description of the principles of the invention. Many modifications and variations of this invention will be readily apparent to those skilled in the art without departing from the scope and spirit of the invention as defined in the following claims.
Claims (16)
상기 알루미늄 합금을 잉곳으로 직접 냉각 주조하는 단계;
상기 잉곳을 450 내지 560℃로 2 시간 내지 16 시간 동안 예열하는 단계;
상기 예열된 잉곳을 열간 압연하는 단계;
상기 잉곳을 냉간 압연하는 단계;
300-450℃의 온도에서 중간 어닐링(inter-annealing)하는 단계; 및
중간 어닐링 후, 25-35%의 % 냉간 가공(%CW)을 달성하는 최종 냉간 압연 단계를 행하는 단계
를 포함하는 방법에 의해 제조되는 알루미늄 합금 핀 스톡 재료.6. An aluminum alloy according to any one of claims 1 to 4,
Casting the aluminum alloy directly into an ingot;
Preheating the ingot at 450 to 560 DEG C for 2 to 16 hours;
Hot rolling the preheated ingot;
Cold-rolling the ingot;
Inter-annealing at a temperature of 300-450 占 폚; And
After the intermediate annealing, a step of performing a final cold rolling step achieving 25-35%% cold working (% CW)
≪ / RTI > aluminum alloy pin stock material.
청구항 1 내지 청구항 4 중 어느 한 항의 상기 알루미늄 합금을 잉곳으로 직접 냉각 주조하는 단계;
상기 잉곳을 450 내지 560℃로 2 시간 내지 16 시간 동안 예열하는 단계;
상기 예열된 잉곳을 열간 압연하는 단계;
상기 잉곳을 냉간 압연하는 단계;
300-450℃의 온도에서 중간 어닐링(inter-annealing)하는 단계; 및
중간 어닐링 후, 25-35%의 % 냉간 가공(%CW)을 달성하는 최종 냉간 압연 단계를 행하는 단계
를 포함하는 방법.A method for manufacturing an aluminum alloy pin stock material,
Casting the aluminum alloy according to any one of claims 1 to 4 directly into an ingot;
Preheating the ingot at 450 to 560 DEG C for 2 to 16 hours;
Hot rolling the preheated ingot;
Cold-rolling the ingot;
Inter-annealing at a temperature of 300-450 占 폚; And
After the intermediate annealing, a step of performing a final cold rolling step achieving 25-35%% cold working (% CW)
≪ / RTI >
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361863568P | 2013-08-08 | 2013-08-08 | |
US61/863,568 | 2013-08-08 | ||
PCT/US2014/050346 WO2015021383A1 (en) | 2013-08-08 | 2014-08-08 | High strength aluminum alloy fin stock for heat exchanger |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187015733A Division KR20180063380A (en) | 2013-08-08 | 2014-08-08 | High strength aluminum alloy fin stock for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20160042056A true KR20160042056A (en) | 2016-04-18 |
Family
ID=51398901
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187015733A KR20180063380A (en) | 2013-08-08 | 2014-08-08 | High strength aluminum alloy fin stock for heat exchanger |
KR1020167006163A KR20160042056A (en) | 2013-08-08 | 2014-08-08 | High strength aluminum alloy fin stock for heat exchanger |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187015733A KR20180063380A (en) | 2013-08-08 | 2014-08-08 | High strength aluminum alloy fin stock for heat exchanger |
Country Status (9)
Country | Link |
---|---|
US (1) | US20160195346A1 (en) |
EP (1) | EP3030684A1 (en) |
JP (1) | JP2016534223A (en) |
KR (2) | KR20180063380A (en) |
CN (1) | CN105452499A (en) |
BR (1) | BR112016002234A2 (en) |
CA (1) | CA2919193A1 (en) |
MX (1) | MX2016001557A (en) |
WO (1) | WO2015021383A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160042055A (en) * | 2013-08-08 | 2016-04-18 | 노벨리스 인크. | High strength aluminum alloy fin stock for heat exchanger |
US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2646767T3 (en) | 2011-12-16 | 2017-12-15 | Novelis, Inc. | Aluminum alloy for fins and method of producing it |
CN105734368B (en) * | 2014-12-24 | 2020-03-17 | 三菱铝株式会社 | Aluminum alloy fin material, method for producing same, and heat exchanger provided with same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62196348A (en) * | 1986-02-20 | 1987-08-29 | Sumitomo Light Metal Ind Ltd | Fin material for heat exchanger made of aluminum alloy |
JPH1088265A (en) * | 1996-09-06 | 1998-04-07 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing |
JP2002161324A (en) * | 2000-11-17 | 2002-06-04 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin-material for heat exchanger superior in formability and brazability |
JP3847077B2 (en) * | 2000-11-17 | 2006-11-15 | 住友軽金属工業株式会社 | Aluminum alloy fin material for heat exchangers with excellent formability and brazing |
JP4166613B2 (en) * | 2002-06-24 | 2008-10-15 | 株式会社デンソー | Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material |
US7898385B2 (en) * | 2002-06-26 | 2011-03-01 | Robert William Kocher | Personnel and vehicle identification system using three factors of authentication |
JP4725019B2 (en) * | 2004-02-03 | 2011-07-13 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material |
HUE032303T2 (en) * | 2004-05-26 | 2017-09-28 | Aleris Rolled Prod Germany Gmbh | Process for producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet |
SE530437C2 (en) * | 2006-10-13 | 2008-06-03 | Sapa Heat Transfer Ab | Rank material with high strength and high sagging resistance |
JP5195837B2 (en) * | 2010-07-16 | 2013-05-15 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger |
JP5613548B2 (en) * | 2010-12-14 | 2014-10-22 | 三菱アルミニウム株式会社 | Aluminum alloy fin material for heat exchanger and heat exchanger using the fin material |
JP5836695B2 (en) * | 2011-08-12 | 2015-12-24 | 株式会社Uacj | Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing |
WO2013111884A1 (en) * | 2012-01-27 | 2013-08-01 | 古河スカイ株式会社 | Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy |
JP2014052366A (en) * | 2012-08-06 | 2014-03-20 | Ricoh Co Ltd | Optical measurement instrument and vehicle |
-
2014
- 2014-08-08 KR KR1020187015733A patent/KR20180063380A/en not_active Application Discontinuation
- 2014-08-08 JP JP2016533468A patent/JP2016534223A/en not_active Withdrawn
- 2014-08-08 EP EP14755495.0A patent/EP3030684A1/en not_active Withdrawn
- 2014-08-08 CA CA2919193A patent/CA2919193A1/en not_active Abandoned
- 2014-08-08 MX MX2016001557A patent/MX2016001557A/en unknown
- 2014-08-08 BR BR112016002234A patent/BR112016002234A2/en not_active Application Discontinuation
- 2014-08-08 KR KR1020167006163A patent/KR20160042056A/en active Search and Examination
- 2014-08-08 CN CN201480044210.9A patent/CN105452499A/en active Pending
- 2014-08-08 US US14/909,798 patent/US20160195346A1/en not_active Abandoned
- 2014-08-08 WO PCT/US2014/050346 patent/WO2015021383A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160042055A (en) * | 2013-08-08 | 2016-04-18 | 노벨리스 인크. | High strength aluminum alloy fin stock for heat exchanger |
US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
Also Published As
Publication number | Publication date |
---|---|
CA2919193A1 (en) | 2015-02-12 |
WO2015021383A1 (en) | 2015-02-12 |
JP2016534223A (en) | 2016-11-04 |
CN105452499A (en) | 2016-03-30 |
BR112016002234A2 (en) | 2017-08-01 |
KR20180063380A (en) | 2018-06-11 |
US20160195346A1 (en) | 2016-07-07 |
MX2016001557A (en) | 2016-05-02 |
EP3030684A1 (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11933553B2 (en) | Aluminum alloy for heat exchanger fins | |
JP5186185B2 (en) | High-strength aluminum alloy material for automobile heat exchanger fins excellent in formability and erosion resistance used for fin material for high-strength automobile heat exchangers manufactured by brazing, and method for producing the same | |
US6592688B2 (en) | High conductivity aluminum fin alloy | |
KR101988704B1 (en) | High strength aluminum alloy fin stock for heat exchanger | |
JP2008308761A (en) | Method for producing high strength aluminum alloy material for automobile heat exchanger having excellent erosion resistance and used for high strength automobile heat exchanger member produced by brazing | |
WO2015141698A1 (en) | Aluminum alloy fin material for heat exchanger, method for manufacturing same, and heat exchanger | |
JP5105389B2 (en) | Aluminum alloy manufacturing method | |
JP4911657B2 (en) | High conductivity aluminum fin alloy | |
JP2003520295A5 (en) | ||
KR20160042056A (en) | High strength aluminum alloy fin stock for heat exchanger | |
JP2009293059A (en) | High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger | |
JP6154224B2 (en) | Aluminum alloy fin material for heat exchanger and manufacturing method thereof | |
JP6154225B2 (en) | Aluminum alloy fin material for heat exchanger and manufacturing method thereof | |
KR101401080B1 (en) | A strip-cast aluminum-silicon alloy for brazing and Manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
J301 | Trial decision |
Free format text: TRIAL NUMBER: 2018101002349; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20180601 Effective date: 20190829 |