KR20140139641A - ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material - Google Patents
ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material Download PDFInfo
- Publication number
- KR20140139641A KR20140139641A KR1020130059041A KR20130059041A KR20140139641A KR 20140139641 A KR20140139641 A KR 20140139641A KR 1020130059041 A KR1020130059041 A KR 1020130059041A KR 20130059041 A KR20130059041 A KR 20130059041A KR 20140139641 A KR20140139641 A KR 20140139641A
- Authority
- KR
- South Korea
- Prior art keywords
- zinc oxide
- nanofiber
- nanowire
- tin oxide
- zno
- Prior art date
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 55
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 title claims description 26
- 239000000463 material Substances 0.000 title description 8
- 238000002360 preparation method Methods 0.000 title 1
- 239000002121 nanofiber Substances 0.000 claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 111
- 239000011787 zinc oxide Substances 0.000 claims description 48
- 239000010931 gold Substances 0.000 claims description 47
- KKEYTLVFLSCKDE-UHFFFAOYSA-N [Sn+2]=O.[O-2].[Zn+2].[O-2] Chemical compound [Sn+2]=O.[O-2].[Zn+2].[O-2] KKEYTLVFLSCKDE-UHFFFAOYSA-N 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 33
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 27
- 229910052737 gold Inorganic materials 0.000 claims description 27
- 229910001887 tin oxide Inorganic materials 0.000 claims description 24
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 23
- 239000011259 mixed solution Substances 0.000 claims description 17
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 15
- 239000002086 nanomaterial Substances 0.000 claims description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 238000001523 electrospinning Methods 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 230000001590 oxidative effect Effects 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 80
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 21
- 229910002091 carbon monoxide Inorganic materials 0.000 description 21
- 230000008859 change Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- CQMUOFGWJSNFPX-UHFFFAOYSA-N [O].[Sn].[Sn] Chemical compound [O].[Sn].[Sn] CQMUOFGWJSNFPX-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229950005630 nanofin Drugs 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0037—NOx
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/004—CO or CO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
본 발명은 산화아연-산화주석(ZnO-SnO2) 나노섬유-나노와이어 줄기-가지 이종구조물, 이의 제조방법 및 이를 포함하는 가스센서에 관한 것이다.The present invention relates to a zinc oxide-tin oxide (ZnO-SnO 2 ) nanofiber-nanowire stem-branch heterostructure, a method for its manufacture and a gas sensor comprising the same.
산업발전과 도시화로 인한 대기오염이 심각한 환경문제로 대두되고 있으며, 산업발전의 결과로써 부득이하게 얻어지는 일산화탄소(CO), 산화질소(NOx), 산화황 (SOx), CHx, 황화수소(H2S)등 대기오염에 의한 공해 또한 큰 사회문제가 되고 있다.(CO), nitrogen oxides (NOx), sulfur oxides (SOx), CHx, hydrogen sulfide (H 2 S) and hydrogen sulfide (H 2 S), which are inevitably obtained as a result of industrial development, are emerging as serious environmental problems due to industrial development and urbanization. Pollution caused by air pollution is also becoming a big social problem.
이러한 사고와 재해를 미연에 방지하고, 쾌적한 환경의 제어를 위해 가연성 가스, 산소가스, 수소가스, 탄산가스, 그리고 배출가스용 감지소자의 개발이 1990년대 이후로 국내외적으로 활발히 진행되고 있다. 이런 가스의 농도를 제어하기 위해 산화물 반도체센서, 고체전해질을 이용한 전기화학센서, 단결정 반도체가스센서 등이 연구되어 왔다. 이 중 전기적성질의 제어와 미세구조제어가 쉬운 반도성 금속산화물 재료에 대한 다양한 연구가 이루어지고 있다. 산화주석은 메탄(CH4), 일산화탄소 그리고 황화수소와 같은 환원성 및 유해가스를 검지하는 모재로 많이 이용되고 있다. Development of sensing devices for flammable gas, oxygen gas, hydrogen gas, carbon dioxide gas, and exhaust gas has been actively promoted both domestically and externally since the 1990s in order to prevent such accidents and disasters in advance and to control the environment pleasantly. In order to control the concentration of such gases, oxide semiconductor sensors, electrochemical sensors using solid electrolytes, and single crystal semiconductor gas sensors have been studied. Among these, various studies have been made on semiconductive metal oxide materials which are easy to control electric properties and to control microstructure. Tin oxide is widely used as a base material for detecting reductive and noxious gases such as methane (CH 4 ), carbon monoxide and hydrogen sulfide.
최근에, 나노과학계에서 손 쉽고 독창적인 방법으로 1차원의 나노재료를 합성하는 것이 흥미로운 관심사 중의 하나인데, 특별히 가지 달린 1차원의 나노재료는 구조의 다양성을 증가시키는 독창적인 수단을 제공한다. Recently, synthesis of one-dimensional nanomaterials in an easy and ingenious way in nanoscience is an interesting concern, particularly one-dimensional nanomaterials with branched structures provide a unique means of increasing structural diversity.
비록 가지달린 탄소 나노튜브들은 다양한 방법을 통해 합성되어 왔지만, 가지달린 무기나노재료들에 대한 연구는 훨씬 덜 이루어지고 있다.Though branched carbon nanotubes have been synthesized in a variety of ways, research on branched inorganic nanomaterials has been much less successful.
가지 달린 1차원 나노구조들은 코어 1차원 나노재료들과 거기에 부착된 1차원 가지 나노재료들로 구성되어 있다. 그것들은 단지 큰 면적 대 부피 비율만을 제공하는 것뿐만 아니라 코어와 가지들의 다른 특성들을 결합하기 때문에, 가지 달린 1차원 나노구조들은 넓은 산업적 응용분야를 갖는다.The branched one-dimensional nanostructures are composed of core one-dimensional nanomaterials and one-dimensional branched nanomaterials adhered thereto. The branched one-dimensional nanostructures have wide industrial applications because they combine not only a large area-to-volume ratio but also different properties of the core and branches.
예를 들어, 가지 달린 산화아연(ZnO) 나노와이어들은 염료감응태양전지에서 염료 흡수를 최대화시키고 에너지 전환효율을 개선시키기 위해 사용된다.For example, branched zinc oxide (ZnO) nanowires are used to maximize dye uptake and improve energy conversion efficiency in dye-sensitized solar cells.
산화아연-산화주석 나노조성물 구조들은 그들의 넓은 응용분야 때문에 연구되어져왔다. 메조기공을 가진 산화아연-산화주석의 짝지어진 나노섬유들은 광촉매 활성을 개선시키기 위해 사용되어졌다. 또한, 우수한 세라믹 베리스터 (varistor)들은 산화아연-산화주석 화합물을 변형하여 만들어진 것이다. 그리고 산화아연 나노핀(nanofin)으로 코팅되어진 산화주석 골격 나노와이어는 고온레이징 (lasing) 특성을 보여준다. 게다가, 산화아연-산화주석 화합물의 나노구조는 순수한 산화주석에 비해 이산화질소나 트리메틸아민, 에탄올 등과 같은 특정 가스들을 센싱하는데 개선된 특성을 보여준다.Zinc oxide-tin oxide nanocomposite structures have been studied because of their wide application. Mated nanofibers of zinc oxide-tin oxide with mesopores have been used to improve photocatalytic activity. Also, good ceramic varistors are zinc oxide-tin oxide It is made by modifying compound. And tin oxide coated with zinc oxide nanofin The skeleton nanowires exhibit high temperature lasing characteristics. In addition, zinc oxide-tin oxide The nanostructures of the compounds show improved properties in sensing specific gases such as nitrogen dioxide, trimethylamine, ethanol and the like compared to pure tin oxide.
가스센서로의 활용 측면에서 줄기-가지 이종구조의 나노와이어는 4개의 메커니즘이 관련되는데, 맨 먼저, 상기 가지 나노와이어를 따라 공핍층이 가스분자들의 흡착과 분리 과정을 통해서 조절되는 단계이다. 두 번째로, 상기 단계에 의해 조절된 저항은 또한 줄기 나노재료에서 발생한다. 세 번째로, 연결되어진 동종접합부에서의 전위벽이 변화된다. 그 줄기-가지 이종구조들은 다른 종류의 나노재료들에서는 존재하지 않는 추가적인 전위벽을 만들어낸다.In terms of utilization as a gas sensor, a nanowire having a stem-and-branch structure involves four mechanisms. First, the depletion layer along the branch nanowire is controlled through adsorption and separation processes of gas molecules. Secondly, the resistance regulated by this step also occurs in the stem nanomaterials. Third, the transition wall at the homogenous junction to which it is connected is changed. The stem-and-branch heterostructures create additional shear walls that are not present in other types of nanomaterials.
이 네 가지 저항의 구성요소들이 저항변화가 가스분자의 흡착과 분리 과정 동안에 줄기-가지 이종구조의 나노와이어에서 더 커지고, 결과적으로 센싱능력을 개선시키는 것이다.
The components of these four resistances are that the resistance change is greater in the nanowires of the stem-like heterostructure during the adsorption and separation of the gas molecules, resulting in improved sensing capability.
이와 관련되는 종래기술에 있어서, 특허문헌 1은 환원성가스, 특히 일산화탄소(CO) 및 수소(H2)가스에 대한 감지선택성이 우수한 반도체식 가스센서 및 이의 제조방법에 관한 것으로서, 이에 따라 감지재료로서 산화구리(CuO)와 임의의 산화아연이 첨가된 산화주석을 사용하면 저온에서는 일산화탄소에 대해, 고온에서는 수소가스에 대해 감지선택성이 뛰어난 가스센서를 얻을 수 있다.
In the related art,
또 다른 관련기술로서, 특허문헌 2에서는 가스센서용 산화아연-산화주석 입자의 제조방법은 주석산화물 전구체 및 아연산화물 전구체를 포함하는 혼합용액을 제조하고; 상기 혼합용액을 교반하여 주석산화물-아연산화물 졸을 형성하고; 그리고 상기 주석산화물-아연산화물 졸을 열처리하여 산화아연-산화주석으로 결정화하는 단계를 포함하는 제조방법을 공개하고 있다. 상기 방법은 종래방법에 비해 공정이 용이하며, 균일한 물질을 제조할 수 있다. 상기의 방법으로부터 제조된 산화아연-산화주석 입자는 포름알데히드에 고감도를 가지므로, 신뢰성 및 감응성이 탁월할 뿐만 아니라 짧은 회복시간을 갖는 포름알데히드 가스센서로 적용될 수 있다.
As another related art, in
그러나 상기 공개된 기술에 따르면, 상당히 높은 민감도를 갖지는 못하는 문제점이 있다. 이에, 본 발명의 발명자들은 이러한 문제점을 해결하기 위해 본 발명을 완성하였다.
However, according to the disclosed technique, there is a problem that the sensitivity is not considerably high. Accordingly, the inventors of the present invention have completed the present invention to solve these problems.
1. 특허문헌 1 : 대한민국 공개특허 특2002-00371851. Patent Document 1: Korean Patent Publication No. 2002-0037185
2. 특허문헌 2 : 대한민국 공개특허 10-2011-0050128
2. Patent Document 2: Korean Patent Publication No. 10-2011-0050128
본 발명의 목적은 민감도 높은 가스센싱용 나노 구조물을 제공하는데 있다.It is an object of the present invention to provide a nanostructure for sensitive gas sensing.
본 발명의 또 다른 목적은 상기 가스센싱용 나노 구조물의 제조방법을 제공하는데 있다.It is still another object of the present invention to provide a method of manufacturing the nanostructure for gas sensing.
본 발명의 또 다른 목적은 상기 가스센싱용 나노 구조물을 포함하는 센서를 제공하는데 있다.It is still another object of the present invention to provide a sensor including the nanostructure for gas sensing.
상기 목적을 달성하기 위하여 본 발명은,According to an aspect of the present invention,
금(Au)층이 적층된 산화아연(ZnO) 줄기 상에 산화주석(SnO2) 가지가 형성된 구조를 갖는 산화아연(ZnO)-산화주석(SnO2) 나노섬유-나노와이어 줄기-가지 이종구조물을 제공한다.Zinc oxide (ZnO) - tin oxide (SnO 2 ) nanofibers having a structure in which tin oxide (SnO 2 ) branches are formed on a zinc oxide (ZnO) .
또한, 본 발명은 상기 산화아연(ZnO)-산화주석(SnO2) 나노섬유-나노와이어 줄기-가지 이종구조물을 포함하는 가스센서를 제공한다. The present invention also relates to a method for producing the above zinc oxide (ZnO) - tin oxide (SnO 2 ) The present invention provides a gas sensor comprising a nanofiber-nanowire stem-dihedral structure.
또한, 본 발명은, Further, according to the present invention,
산화아연 전구체 및 폴리비닐알콜(PVA)의 혼합용액을 전기방사하여 기판 위에 산화아연 나노섬유를 합성하는 단계(단계 1);A step of electrospinning a mixed solution of zinc oxide precursor and polyvinyl alcohol (PVA) to synthesize zinc oxide nanofibers on the substrate (step 1);
스퍼터링법을 이용하여 상기 단계 1에서 제조된 산화아연 나노섬유의 표면에 금(Au)층을 적층시키는 단계(단계 2); 및(Step 2) of laminating a gold (Au) layer on the surface of the zinc oxide nanofibers prepared in the
기체-액체-고체(VLS)법을 이용하여 상기 단계 2에서 제조된 금(Au)층이 적층된 산화아연 나노섬유로부터 산화주석 나노와이어를 성장시키는 단계(단계 3);(Step 3) of growing tin oxide nanowires from zinc oxide nanofibers in which the gold (Au) layer prepared in
를 포함하는 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 제조방법을 제공한다.Zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure.
본 발명에 따르면, 산화아연 나노섬유 줄기 및 산화주석 나노와이어 가지들 사이의 동종 또는 이종 접합 구조에 의해 산화 또는 환원성 가스를 높은 민감도로 센싱하는 효과가 있다.According to the present invention, there is an effect of sensing an oxidizing or reducing gas with high sensitivity by a homogeneous or heterogeneous bonding structure between zinc oxide nanofiber stem and tin oxide nanowire branches.
도 1은 본 발명에 따른 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 제조하는 공정을 단계별로 나타낸 그림이고,
도 2는 전형적인 산화아연-산화주석 줄기-가지 나노섬유-나노와이어 이종구조물의 XRD 패턴을 나타낸 그림이고,
도 3은 본 발명에 따른 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 포함하는 가스센서를 통해 NO2가스에 대하여 온도를 상온에서 350 ℃까지 변화시키면서, 및 NO2가스의 농도를 0.1 ppm, 1 ppm, 10 ppm, 30 ppm, 70 ppm으로 변화시키면서 센싱하여 얻어진 저항값을 나타낸 그래프이고,
도 4은 본 발명에 따른 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 포함하는 가스센서를 통해 NO2가스에 대하여 (a)는 NO2가스농도 및 온도변화에 따른 반응R(Rg/Ra) 값을 나타낸 그래프, (b)는 0.1 ppm NO2가스농도에서 온도변화에 따른 반응 또는 회복시간 값을 나타낸 그래프이고,
도 5은 실시예 1 및 비교예 1에 따라 제조된 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물 및 산화아연 나노섬유 구조물, 각각을 포함하는 가스센서를 통해 NO2가스, 1ppm 농도에 대하여, 300 ℃에서, 시간에 따른 반응R(Rg/Ra) 값을 비교한 그래프이고,
도 6는 종래에 알려진 다른 타입의 산화물질을 사용하여 제조된 NO2가스 센싱 센서와 본 발명의 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 포함하는 가스센서를 통해 측정한 NO2가스의 농도 변화에 따른 반응R(Rg/Ra) 값을 비교한 그래프이고,
도 7은 본 발명에 따른 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 포함하는 가스센서를 통해 CO가스에 대하여,(a)는 300 ℃에서 시간과 농도에 따른 저항값 변화, (b)는 CO가스 농도별 반응R (Rg/Ra)을 요약한 그래프이고,
도 8은 실시예 1 및 비교예 1에 따라 제조된 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물 및 산화아연 나노섬유 구조물, 각각을 포함하는 가스센서를 통해 CO가스, 3 ppm 농도에 대하여, 300 ℃에서,시간에 따른 반응R(Rg/Ra) 값을 비교한 그래프이고,
도 9는 종래에 알려진 다른 타입의 산화물질을 사용하여 제조된 CO가스 센싱 센서와 본 발명의 일실시예의 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 포함하는 가스센서를 통해 측정한 CO가스의 농도 변화에 따른 반응R(Rg/Ra) 값을 비교한 그래프이고, 및
도 10은 CO가스를 산화아연-산화주석(ZnO-SnO2) 줄기-가지 나노섬유-나노와이어 이종구조물을 통해 센싱하는 경우 발생 되는 저항의 4가지 메커니즘(R1: 공핍폭의 조절(SnO2), R2: 전위벽의 조절(ZnO), R3: 동종접합부에서의 전위벽 조절, R4: 이종접합부에서의 전위벽 조절)을 나타낸 그림이다.FIG. 1 is a view showing a stepwise process of manufacturing a zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branch nanofiber-nanowire heterostructure according to an embodiment of the present invention,
FIG. 2 is a view showing an XRD pattern of a typical zinc oxide-tin oxide stalk-branch nanofiber-nanowire heterostructure,
FIG. 3 is a graph showing the temperature of NO 2 gas from room temperature to 350 ° C through a gas sensor including zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branch nanofiber-nanowire heterostructure according to an embodiment of the present invention , And the resistance value obtained by sensing while changing the concentration of NO 2 gas to 0.1 ppm, 1 ppm, 10 ppm, 30 ppm, and 70 ppm, and FIG.
Figure 4 is one embodiment of a zinc oxide in accordance with the present invention tin oxide (ZnO-SnO 2) stem-of nanofibers - with respect to the NO 2 gas through a gas sensor comprising a nanowire two kinds of structures (a) is a NO 2 gas (R g / R a ) value according to the concentration and the temperature change, (b) is a graph showing the reaction or recovery time value according to the temperature change at the concentration of 0.1 ppm NO 2 gas,
FIG. 5 is a graph showing the relationship between the zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branched nanofiber-nanowire heterostructure and the zinc oxide nanofiber structure, prepared according to Example 1 and Comparative Example 1, (R g / R a ) with respect to NO 2 gas and 1 ppm concentration at 300 ° C., and FIG.
FIG. 6 illustrates a NO 2 gas sensing sensor fabricated using another type of oxidizing material known in the art and a zinc oxide-tin oxide (ZnO-SnO 2 ) stem-like nanofiber-nanowire heterostructure of an embodiment of the present invention (R g / R a ) according to the concentration change of the NO 2 gas measured through the gas sensor,
FIG. 7 is a graph showing the relationship between (a) the CO gas through a gas sensor comprising a zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branch nanofiber-nanowire heterostructure according to an embodiment of the present invention, (B) is a graph summarizing the reaction R (R g / R a ) by CO gas concentration,
FIG. 8 is a schematic view of a zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branched nanofiber-nanowire heterostructure and a zinc oxide nanofiber structure, prepared according to Example 1 and Comparative Example 1, (R g / R a ) value at 300 ° C with respect to the CO gas concentration of 3 ppm,
Figure 9 illustrates a CO gas sensing sensor fabricated using other types of oxide materials known in the art and a zinc oxide-tin oxide (ZnO-SnO 2 ) stem-branch nanofiber-nanowire heterostructure of an embodiment of the present invention (R g / R a ) according to the change in the concentration of CO gas measured through the gas sensor
Figure 10 is a CO gas Zinc oxide - 4 of the mechanism of the resistance generated when sensing through the nanowire two kinds of structures (R1 tin oxide (ZnO-SnO 2) stem-of nanofibers: control of the ball pippok (SnO 2) , R2: control of the fore-and-aft wall (ZnO), R3: control of the electromyogram at the homozygote, and R4: control of the electromyogram at the heterozygous junction).
이하 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명은 금(Au)층이 적층된 산화아연(ZnO) 줄기 상에 산화주석(SnO2) 가지가 형성된 구조를 갖는 산화아연(ZnO)-산화주석(SnO2) 나노섬유-나노와이어 줄기-가지 이종구조물을 제공한다.
The present invention relates to a zinc oxide (ZnO) - tin oxide (SnO 2 ) nanofiber having a structure in which tin oxide (SnO 2 ) branches are formed on a zinc oxide (ZnO) Provides a heterogeneous structure.
본 발명에 따른 상기 산화아연(ZnO) 나노섬유 줄기의 평균 직경은 80 내지 120 nm 인 것이 바람직하다.The zinc oxide (ZnO) nanofiber stem according to the present invention preferably has an average diameter of 80 to 120 nm.
산화아연(ZnO) 나노섬유 줄기는 평균 직경이 80 nm 미만으로 합성하는 것은 현재 기술수준에 비추어 합성의 어려움이 있고, 120 nm 초과하는 경우에는 센서로서의 기능을 수행하기에 어려운 문제점이 있다.
Synthesis of zinc oxide (ZnO) nanofiber stems having an average diameter of less than 80 nm is difficult to synthesize in view of current technology level, and when the nanotube stems exceed 120 nm, it is difficult to perform the function as a sensor.
본 발명에 따른 상기 산화아연(ZnO) 나노섬유 줄기의 표면에 적층되어 있는 금(Au)층의 두께는 0.1 내지 3 nm 가 바람직하다.The thickness of the gold (Au) layer laminated on the surface of the zinc oxide (ZnO) nanofiber stem according to the present invention is preferably 0.1 to 3 nm.
상기 금(Au)층의 두께가 0.1 nm 미만이면 나노와이어 가지의 합성이 잘 이루어지지 않는 문제점이 있고, 3 nm 초과이면 직경이 센서로서 기능을 위한 적합범위 이상으로 굵은 나노와이어가 합성되는 문제점이 있다.
If the thickness of the gold (Au) layer is less than 0.1 nm, there is a problem that the synthesis of the nanowire branches is not performed well. If the thickness is more than 3 nm, the nanowire having a diameter larger than the range suitable for the function as a sensor is synthesized have.
본 발명에 따른 상기 산화주석(SnO2) 나노와이어 가지의 평균 직경은 40 내지 60 nm가 바람직하다.The average diameter of the tin oxide (SnO 2 ) nanowires according to the present invention is preferably 40 to 60 nm.
상기 산화주석(SnO2) 나노와이어 가지의 평균 직경이 40 nm 미만인 경우의 합성이 곤란한 문제점이 있고, 60 nm 초과이면 가스센서로서의 감응 특성이 떨어지는 문제점이 있다.
When the average diameter of the tin oxide (SnO 2 ) nanowires is less than 40 nm, it is difficult to synthesize. When the average diameter is more than 60 nm, the sensitivity characteristic of the gas sensor is deteriorated.
또한, 본 발명은 상기 산화아연(ZnO)-산화주석(SnO2) 나노섬유-나노와이어 줄기-가지 이종구조물을 포함하는 가스센서를 제공한다.The present invention also relates to a method for producing the above zinc oxide (ZnO) - tin oxide (SnO 2 ) The present invention provides a gas sensor comprising a nanofiber-nanowire stem-dihedral structure.
구체적으로, 상기 가스센서의 전극은 본 발명의 상기 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 위에 인터디지털(interdigital) 전극 마스크를 통해 스퍼터링법을 이용하여 니켈(200 nm이하의 두께), 금(50 nm이하의 두께)의 순서로 이중 층을 적층시켜서 제조할 수 있다. 니켈은 금 층과 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 층사이의 접착제 역할을 한다. Specifically, the electrode of the gas sensor is formed by sputtering an interdigital electrode mask over the zinc oxide-tin oxide nanofiber-nanowire stem-branch structure of the present invention using nickel (a thickness of 200 nm or less ), Gold (thickness of 50 nm or less), and the like. Nickel acts as an adhesive between the gold layer and the zinc oxide-tin oxide nanofiber-nanowire stem-diatomic structure layer.
상기 가스센서는 이중층(전극층)을 포함하는 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물로 가스센서를 만들어 이를 전기적으로 측정시스템에 연결하여 구성될 수 있다. The gas sensor may be constructed by forming a gas sensor with a zinc oxide-tin oxide nanofiber-nanowire stem-tip heterostructure comprising a bilayer (electrode layer) and electrically connecting it to a measurement system.
본 발명의 가스센서를 이용한 가스분자의 센싱은 산화성 기체(NO2 등), 환원성기체(CO, H2 등)의 분자들이 나노구조물에 흡착 및 분리에 의해 생성하는 저항변화를 신호로 측정하는 방식으로 수행될 수 있는데, 예를 들어, 수평형 튜브 용광로에 놓고 온도를 달리하며, 표적가스의 농도를 질량 흐름 제어기를 사용하여 표적가스와 건조공기의 혼합비율을 변화시킴으로써 조절하면서 신호를 측정이 가능하다. The sensing of the gas molecules using the gas sensor of the present invention can be carried out using an oxidizing gas (NO 2 , Etc.), and a reducing gas (CO, H 2, etc.) by the adsorption and separation of molecules on the nanostructure by a signal. For example, And the signal can be measured while controlling the concentration of the target gas by changing the mixture ratio of the target gas and the dry air using the mass flow controller.
반응(R)은 하기의 수학식 1에 의해 계산될 수 있다. The reaction (R) can be calculated by the following equation (1).
<수학식 1>&Quot; (1) "
R = Rg/Ra (or Ra/Rg) R = R g / R a (or R a / R g )
Ra와 Rg는 표적가스(NO2 또는 CO) 각각의 부존재와 존재하의 측정된 저항들이다. R a and R g are And the measured resistances in the absence and presence of each of the target gases (NO 2 or CO).
나아가, 본 발명은,Further,
산화아연 전구체 및 폴리비닐알콜(PVA)의 혼합용액을 전기방사하여 기판 위에 산화아연 나노섬유를 합성하는 단계(단계 1); A step of electrospinning a mixed solution of zinc oxide precursor and polyvinyl alcohol (PVA) to synthesize zinc oxide nanofibers on the substrate (step 1);
스퍼터링법을 이용하여 상기 단계 1에서 제조된 산화아연 나노섬유의 표면에 금(Au)층을 적층시키는 단계(단계 2); 및(Step 2) of laminating a gold (Au) layer on the surface of the zinc oxide nanofibers prepared in the
기체-액체-고체(VLS)법을 이용하여 상기 단계 2에서 제조된 금(Au)층이 적층된 산화아연 나노섬유로부터 산화주석 나노와이어를 성장시키는 단계(단계 3);(Step 3) of growing tin oxide nanowires from zinc oxide nanofibers in which the gold (Au) layer prepared in
를 포함하는 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물의 제조방법을 제공한다.
Zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure, comprising the steps of:
이하, 본 발명에 따른 제조방법을 각 단계별로 상세히 설명한다.
Hereinafter, the manufacturing method according to the present invention will be described in detail for each step.
먼저, 단계 1은 전기방사법(electrospinning)에 의해서 기판 위에 산화아연 전구체 혼합용액으로 나노섬유를 합성하는 단계로서, 공정조건과 혼합용액의 조성비를 조절하여 나노섬유의 직경등의 물리적 성질을 조절할 수 있다.
First,
본 발명에 따른 상기 단계 1의 산화아연 전구체는 (CH3CO2)2Zn을 사용할 수 있다.
The zinc oxide precursor of
본 발명에 따른 상기 단계 1의 폴리비닐알콜(PVA)의 분자량에는 70000 내지 90000인 것이 바람직하다.The molecular weight of the polyvinyl alcohol (PVA) of the
폴리비닐알콜(PVA)는 혼합용액에 첨가시에 점도를 향상시키는 역할로서, 전기방사에 의한 나노섬유의 물리적 성질을 조절하는데 영향을 준다.
Polyvinyl alcohol (PVA) improves viscosity when added to a mixed solution, and affects the control of the physical properties of nanofibers by electrospinning.
본 발명에 따른 상기 단계 1의 전기방사는 산화아연 전구체 및 PVA 혼합용액이 장입된 실린더 니들에 5 내지 15 kV의 전압을 가하고, 상기 니들로부터 상기 혼합용액이 0.5 내지 1.5 ml/L의 속도로 빠져나오도록 조절하여 수행하는 것이 바람직하다.
In the electrospinning of
본 발명에 따른 상기 단계 1에서 제조된 ZnO 나노섬유는 550 - 650 ℃, 5 - 7시간 동안 소결시키는 단계를 더 포함할 수 있다. The ZnO nanofibers prepared in
상기 단계 1에서 제조된 ZnO 나노섬유가 550 ℃ 미만의 공정온도에서 소결되거나 소결되는 시간이 5 시간 미만인 경우는 고분자 및 유기물질이 완전히 증발되지 않는 문제점이 있고, 650 ℃ 초과의 공정온도에서 소결되거나 소결되는 시간이 7시간 초과인 경우는 나노섬유를 이루고 있는 나노알갱이들의 입자성장이 일어나서 감응특성을 저하시키는 문제점이 있다.
When the ZnO nanofibers prepared in the
다음으로, 단계 2는 스퍼터링법에 의해 금(Au)층을 상기 단계 1에서 제조된 ZnO 나노섬유 표면상에 적층시키는 단계로서, 상기 금(Au)층은 산화물 나노섬유의 거친 표면 위에 거의 적층이 힘들지만, 상기 금(Au)층은 산화주석 나노와이어의 성장을 위한 촉매로서 역할을 수행한다.
Next,
본 발명에 따른 상기 단계 2의 스퍼터링은 사용되는 전류가 50 - 70 mA이고, 80 - 150초 동안 금(Au)층을 적층하는 것이 바람직하다.The sputtering in the
상기 단계 2의 스퍼터링은 사용되는 전류가 50 mA 미만이거나 스퍼터링되는 시간이 80 초 미만인 경우는 너무 얇층 두께의 금 층이 형성되어 나노와이어 가지의 합성이 잘 되지않는 문제점이 있고, 70 mA 초과이거나 스퍼터링되는 시간이 150초 초과인 경우는 너무 두꺼운 두께의 금 층이 형성되어 센서로서 기능발휘가 곤란한 굵은 직경의 나노와이어 줄기를 합성하게 되는 문제점이 있다.
If the current used is less than 50 mA or the sputtering time is less than 80 seconds, the gold layer of too thin thickness is formed and the synthesis of the nanowire branches is not easily performed. If the current is more than 70 mA or sputtering If the time is longer than 150 seconds, a gold layer of too thick thickness is formed and thus a nanowire stem having a large diameter, which is difficult to exhibit its function as a sensor, is synthesized.
본 발명에 따른 상기 단계 2의 금(Au) 층이 적층된 산화아연 나노섬유를 400 내지 600 ℃에서 어닐링하는 단계를 더 포함할 수 있다.The method may further include annealing the zinc oxide nanofibers in which the gold (Au) layer of
상기 단계 2의 금(Au) 층이 적층된 산화아연 나노섬유를 어닐링하는 단계의 공정온도가 400 ℃ 미만인 경우에는 금 층이 충분히 용융되지 않아 촉매로서의 작용이 어렵게 되는 문제점이 있고, 600 ℃ 초과인 경우에는 산화아연 나노섬유를 이루고 있는 나노알갱이의 입자성장을 일으켜 전체 가스센서의 감응 특성을 저하시키는 문제점이 있다.
If the process temperature of the step of annealing the zinc oxide nanofibers in which the gold (Au) layer of
다음으로, 단계 3은 기체-액체-고체(VLS)법을 사용하여 산화아연 나노섬유 줄기로부터 산화주석 가지를 성장시키는 단계로서, 공정조건에 따라 성장되는 산화주석 가지의 물리적 특성을 조절할 수 있다.
Next,
본 발명에 따른 상기 단계 3의 기체-액체-고체(VLS)법은 공정온도가 500 - 1000 ℃이고, 기체의 흐름속도가 10 SSCM(Standard Cubic Centimeter per Minute)이며, 성장시간이 2 분 내지 10 분인 것이 바람직하다. The gas-liquid-solid (VLS) method of
본 발명에 따른 상기 단계 3의 기체-액체-고체(VLS)법은 공정온도를 500 - 1000 ℃, 기체의 흐름속도가 10 SSCM(Standard Cubic Centimeter per Minute)로 세팅한 경우의, 성장시간이 2 분 미만이면 센싱회로의 역할을 수행하기 위해서 산화아연 나노섬유들과 산화주석 나노와이어들간의 네트워크가 충분하지 못하게 형성이 되는 문제가 있고, 10 분 초과이면 지나치게 많은 네트워크의 형성으로 나노물질의 성질이 가스센싱에 적합하지 못하게 되는 문제점이 있다.
The gas-liquid-solid (VLS) method of
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to examples.
그러나 하기 실시예들은 본 발명을 예시하는 것 일뿐 이에 의하여 본 발명의 내용이 제한되는 것은 아니다.
However, the following examples are intended to illustrate the invention and are not intended to limit the scope of the invention.
<< 실시예Example 1> 나노섬유- 1> Nanofibers - 나노와이어Nanowire 줄기-가지 이종구조물의 제조 Manufacture of stem-branch heterogeneous structures
(단계 1) 산화아연 나노섬유를 기판 위에 합성시키는 단계(Step 1) Synthesis of zinc oxide nanofibers on a substrate
먼저, 전구체 물질로 아연아세테이트((CH3CO2)2Zn)을 사용하고, 전구체 용액의 점도 조절을 위해 평균 분자량 80000의 폴리비닐아세테이트(PVA)를 사용하여 혼합용액을 만들어 전기방사법을 통해 산화아연 나노섬유를 금속 수집기 위에 놓여진산화규소(SiO2)/주석(Si)웨이퍼(wafer)기판 위에 합성하였다. First, zinc acetate ((CH 3 CO 2 ) 2 Zn) was used as a precursor material, and a mixed solution was prepared using polyvinyl acetate (PVA) having an average molecular weight of 80000 to control the viscosity of the precursor solution. Zinc nanofibers were synthesized on a silicon oxide (SiO 2 ) / tin (Si) wafer substrate placed on a metal collector.
구체적으로 상기 혼합용액은 증류수에 PVA 입자들을 70 ℃에서 4시간 동안 교반하면서 용해시켜서 10 중량% PVA 수용액을 준비하고, 70 ℃에서 6시간 동안 교반하면서 상기 PVA 수용액에 1 중량%의 아연아세테이트 용액을 첨가하여 점성의 혼합용액을 제조하였다. 그 후 상기 혼합용액을 21-게이지 스테인레스 철 바늘을 포함하는 유리 주사기에 장입하였다. 상기 주사기 바늘의 끝과 알루미늄 판의 수집기사이의 거리를 20 cm로 고정시켰다. 이어서, 10 kV의 + 전압을 주사기 바늘에 가했으며, 상기 혼합용액의 장입속도는 1 mL/h 로 조절하였다. 이에 의해서, 나노섬유들이 웨이퍼 상에 랜덤하게 분포되어 형성되어졌다. 이어서, 순수한 산화아연 상을 얻기 위해서 상기 형성된 나노섬유들을 600 ℃에서 6시간 동안 공기 중에서 소결시켰다.
Specifically, the mixed solution was prepared by dissolving PVA particles in distilled water at 70 ° C. for 4 hours with stirring to prepare a 10 wt% aqueous PVA solution, and adding 1 wt% zinc acetate solution to the aqueous PVA solution while stirring at 70 ° C. for 6 hours To prepare a viscous mixed solution. The mixed solution was then charged into a glass syringe containing a 21-gauge stainless steel needle. The distance between the tip of the syringe needle and the collector of the aluminum plate was fixed at 20 cm. Subsequently, a positive voltage of 10 kV was applied to the syringe needle, and the charging rate of the mixed solution was adjusted to 1 mL / h. As a result, nanofibers were formed randomly distributed on the wafer. Then, the formed nanofibers were sintered in air at 600 DEG C for 6 hours to obtain a pure zinc oxide phase.
(단계 2) (Step 2) 스퍼터링을Sputtering 통해 상기 기판 위에 형성된 산화아연 나노섬유 표면에 금( The surface of the zinc oxide nanofiber formed on the substrate is coated with gold Au)층을Au) layer 적층시키는Laminate 단계 step
다음으로, 상기 산화아연 나노섬유가 형성되어 있는 웨이퍼 기판을 스퍼터코팅기로 옮겼다. 그 후, 높은 순도의 아르곤 하에서 의도적인 기판의 가열 없이 65 mA의 전류를 가하여 스퍼터링 처리를 120초간 하여 상기 산화아연 나노섬유 표면상에 금(Au)층을 적층하였다. 이어서, 아르곤 환경에서 500 ℃에서 30분간 어닐링하였다.
Next, the wafer substrate on which the zinc oxide nanofibers were formed was transferred to a sputter coater. Thereafter, a gold (Au) layer was laminated on the surface of the zinc oxide nanofiber by applying a current of 65 mA without intentionally heating the substrate under argon with high purity for 120 seconds by the sputtering treatment. It was then annealed at 500 < 0 > C for 30 minutes in an argon environment.
(단계 3) (Step 3) VLSVLS 공정을 통해 산화주석 Through the process, tin oxide 나노와이어를Nanowire 성장시키는 단계 The growing step
다음으로, 기체-액체-고체(VLS)법을 통해 상기 산화아연 나노섬유의 표면에 산화주석 나노와이어를 성장시켰다. 구체적으로, 상기 어닐링 처리된 웨이퍼 기판은 주석 분말(Aldrich사, 99.9%)을 포함하는 알루미나 도가니가 놓인 수평적 석영 튜브 용광로 안으로 옮겨졌다. 그 후, 회전식 펌프를 사용하여 압력을 1 x 10-3 Torr까지 낮추었고, 900 ℃에서 10분간 가열하면서, 질소 및 산소 기체를 석영 튜브 용광로 안으로 10 SCCM(Standard Cubic Centimeter per Minute)의 속도로 유동시켜 기판 위에 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물을 얻었다.
Next, tin oxide nanowires were grown on the surface of the zinc oxide nanofibers through a gas-liquid-solid (VLS) method. Specifically, the annealed wafer substrate was transferred into a horizontal quartz tube furnace in which an alumina crucible containing tin powder (Aldrich, 99.9%) was placed. Thereafter, the pressure was reduced to 1 x 10 < -3 > Torr using a rotary pump and nitrogen and oxygen gas was flowed into the quartz tube furnace at a rate of 10 SCCM (Standard Cubic Centimeter per Minute) Zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure was obtained on the substrate.
상기 처리를 통해 제조된 기판 위의 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물을 전계방출 스캐닝 전자 현미경(FE-SEM, Hitachi/S-4200) 및 X 레이 회절장치(XRD, Phillips Xpert MRD 회절계)로 관찰 및 측정하였다.The zinc oxide-tin oxide nanofibers-nanowire stem-branch heterostructure on the substrate produced through the above process was subjected to field emission scanning electron microscopy (FE-SEM, Hitachi / S-4200) and X-ray diffraction (XRD, Phillips Xpert MRD diffractometer).
그 결과, 산화아연 나노섬유는 평균 직경이 120 nm 이하였고 랜덤하게 기판위에 분포되어졌음을 알 수 있었다. 또한, 금(Au)층은 3 nm 이하의 두께를 가지고 있었다. 그리고, 산화주석 나노가지의 기체-액체-고체(VLS)법에 의한 성장시간은 1 분인 경우는 센싱회로로서의 역할을 하기 어려울 만큼 충분히 성장되지 않아 최소한 2 분 이상동안 성장시키는 것이 적절함을 알 수 있었다.
As a result, it was found that the zinc oxide nanofibers had an average diameter of 120 nm or less and were randomly distributed on the substrate. The gold (Au) layer had a thickness of 3 nm or less. The growth time by the gas-liquid-solid (VLS) method of tin oxide nanorods is not sufficient enough to make it difficult to serve as a sensing circuit in one minute, so that it is appropriate to grow for at least 2 minutes or more there was.
<< 비교예Comparative Example 1> 일반적인 산화아연 나노섬유의 제조 1> Manufacture of general zinc oxide nanofiber
실시예 1에서 단계 1만을 수행한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 기판 위에 합성된 산화아연 나노섬유 구조물을 얻었다.
A zinc oxide nanofiber structure synthesized on a substrate was obtained in the same manner as in Example 1 except that
<< 실험예Experimental Example 1> 본 발명의 이종구조물을 이용한 1> Using the heterogeneous structure of the present invention NONO 22 및And CO 의Of CO 검출시험 Detection test
본 발명에 따른 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물의 기체분자 센싱능력을 알아보기 위해 하기와 같은 실험을 수행하였다. The following experiments were carried out to investigate the gas molecule sensing ability of the zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure according to the present invention.
실시예 1에서 제조된 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 위에 인터디지털(interdigital) 전극(7 밀리미터의 길이, 0.5 밀리미터의 폭, 150 마이크로 미터 간격) 마스크를 통해 스퍼터링법을 이용하여 니켈(200 nm이하의 두께), 금(50 nm이하의 두께)의 순서로 이중 층을 적층시켰다. 니켈은 금 층과 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 층사이의 접착제 역할을 한다. 상기 이중층(전극층)을 포함하는 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물로 가스센서를 만들어 이를 전기적으로 측정시스템 (Keithley 2400)에 연결하였다. A sputtering method was performed on an interdigital electrode (7 mm length, 0.5 mm width, 150 micrometer spacing) mask over the zinc oxide-tin oxide nanofiber-nanowire stem-diopside structure prepared in Example 1 Nickel (200 nm or less in thickness) and gold (50 nm or less in thickness) were stacked in this order. Nickel acts as an adhesive between the gold layer and the zinc oxide-tin oxide nanofiber-nanowire stem-diatomic structure layer. A gas sensor was made of a zinc oxide-tin oxide nanofiber-nanowire stem-tip heterostructure comprising the bilayer (electrode layer) and connected to an electrical measurement system (Keithley 2400).
그 후에, 수평형 튜브 용광로에 놓고 상온부터 350 ℃까지 달리하며 측정하였다. 상기 가스 농도는 질량 흐름 제어기를 사용하여 표적 가스와 건조공기의 혼합비율을 변화시킴으로써 조절되었다. 반응(R)은 하기의 수학식 1에 의해 계산되어졌다. Thereafter, they were placed in a horizontal tube furnace and measured at different temperatures from room temperature to 350 ° C. The gas concentration was controlled by varying the mixing ratio of the target gas and dry air using a mass flow controller. The reaction (R) was calculated by the following equation (1).
<수학식 1>&Quot; (1) "
R = Rg/Ra (or Ra/Rg) R = R g / R a (or R a / R g )
Ra와 Rg는 표적가스(NO2 또는 CO) 각각의 부존재와 존재하의 측정된 저항들이다. 반응 및 회복시간은 표적가스의 공급개시와 공급중단에 따른 90 % 저항변화에 도달하는 시간으로 결정되었다.
R a and R g are And the measured resistances in the absence and presence of each of the target gases (NO 2 or CO). The reaction and recovery times were determined as the time to reach a 90% resistance change with the start and stop of the feed of the target gas.
먼저, 산화가스인 NO2에 대한 센싱능력을 NO2의 농도와 온도에 변화 따라 측정하였고 그 결과를 도 3에 나타내었다. 상기 실험에서의 저항은 센서가 NO2가스에 노출되는 즉시 증가되었고, 증가된 저항은 NO2가스의 공급이 멈추는 즉시 초기값으로 회복되었다. 도 4에서 센서의 반응 및 회복시간을 포함한 센싱 특성을 요약하였다. 모든 NO2가스 농도에서 상기 반응R(Rg/Ra)은 온도가 증가할수록 매우 개선되어졌다. 약 150 ℃에서 이러한 개선되는 경향이 둔해졌다.
First, the sensing ability of the oxidizing gas, NO 2 was measured in accordance with changes in the concentration and temperature of the NO 2. The results are shown in Fig. The resistance in the experiment was increased as soon as the sensor was exposed to NO 2 gas, and the increased resistance recovered to its initial value as soon as the supply of NO 2 gas stopped. Figure 4 summarizes the sensing characteristics including sensor response and recovery time. At all NO 2 gas concentrations, the reaction R (R g / R a ) was significantly improved with increasing temperature. At about 150 ° C, this improvement tendency was diminished.
실시예 1과 비교예 1에서 제조된 각각의 구조물을 이용하여 본 실험예에 따라 만들어진 가스센서를 통해 1 ppm 농도의 NO2가스 센싱능력을 측정한 결과 실시예 1에 따라 제조된 구조물을 포함하는 경우의 반응R(Rg/Ra) 값의 차이가 약 5 정도로실시예 1의 경우가 더 크게 나와 개선된 민감도를 보여주고 있다(도 5 참조).
Using the respective structures manufactured in Example 1 and Comparative Example 1, the NO 2 gas sensing ability at a concentration of 1 ppm was measured through a gas sensor manufactured according to the present experimental example. As a result, The difference in the value of the reaction R (R g / R a ) in the case of Example 1 is larger than that of Example 1, which shows an improved sensitivity (see FIG. 5).
또한, 환원가스인 CO가스에 대한 센싱능력을 알아보기 위해, CO가스의 농도를 1 - 90 ppm으로 달리하면서 시간에 따라 반응R을 측정하였다. 그 결과, CO가스의 농도가 증가함에 따라 저항값이 점차 낮게 나타났으며 이를 도 7에 나타내었다. In order to examine the sensing ability of CO gas, which is a reducing gas, the reaction R was measured with time while changing the concentration of CO gas to 1 - 90 ppm. As a result, the resistance value gradually decreased as the concentration of CO gas increased, which is shown in FIG.
실시예 1과 비교예 1에서 제조된 각각의 구조물을 이용하여 본 실험예에 따라 만들어진 가스센서를 통해 1 ppm 농도의 CO가스 센싱능력을 측정한 결과 실시예 1에 따라 제조된 구조물을 포함하는 경우의 반응R(Rg/Ra) 값의 차이가 약 0.3 정도로 실시예 1의 경우가 더 작게 나와 개선된 민감도를 보여주고 있다(도 8 참조).
Using the respective structures manufactured in Example 1 and Comparative Example 1, the CO gas sensing ability at a concentration of 1 ppm was measured through a gas sensor made according to the present experimental example, The difference in the value of the reaction R (R g / R a ) of about 0.3 is smaller than that of Example 1, which shows an improved sensitivity (see FIG. 8).
이를 통해, 산화 및 환원가스 모두에서 본 발명에 따른 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물을 포함하는 가스센서의 민감도가 개선된 성능을 나타냄을 알 수 있다.This shows that the sensitivity of the gas sensor including the zinc oxide-tin oxide nanofibers-nanowire stem-branch structures according to the present invention in both oxidation and reduction gases shows improved performance.
하기의 기체분자가 흡착 및 분리될 때 발생하는 4가지 타입의 저항변화에 의해서 본 발명에 따른 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물의 훌륭한 센싱능력이 나타난다(도 10 참조).The four types of resistance changes that occur when the following gas molecules are adsorbed and separated show good sensing ability of the zinc oxide-tin oxide nanofiber-nanowire stem-like heterostructure according to the present invention (see FIG. 10) .
첫번째는, 도 10의 R1으로 표시한 각 산화주석 가지 나노와이어의 길이방향에 따른 공핍층의 폭 변화이다. 이 메커니즘은 산화아연 줄기 나노 섬유와 산화주석 가지 나노와이어 모두에서 발생한다. The first is the width change of the depletion layer along the longitudinal direction of each tin oxide nanowire indicated by R1 in Fig. This mechanism occurs in both zinc oxide stem nanofibers and tin oxide nanowires.
둘째로, 도 10의 R2에 나타낸 바와 같이 전기적 장벽(전위벽)이 가스분자의 흡착 및 분리시에 형성된다.Secondly, as shown by R2 in Fig. 10, an electrical barrier (front wall) is formed upon adsorption and separation of the gas molecules.
셋째로, 도 10의 R3에 나타낸 바와 같이 동종접합부들이 존재하는 나노와이어들의 네트워크된 구조에 의해 상기 형성된 전위벽의 변화가 생긴다.Third, the network structure of the nanowires in which homogeneous junctions are present results in a change in the formed front wall as shown in FIG.
넷째로, 도 10의 R4에 나타낸 바와 같이 산화아연-산화주석의 이종구조에 의해서 또 다시 전위벽의 변화가 생긴다.Fourth, as shown by R4 in Fig. 10, a change in the fore-and-aft wall occurs again due to the heterogeneous structure of zinc oxide-tin oxide.
상기 4가지 발생되는 저항들에 의해서, 줄기-가지 이종구조화된 나노와이어의 저항변화가 나노섬유나 나노와이어만으로 이루어진 구조에 비하여 보다 개선된 가스분자 센싱능력을 제공한다.By the four generated resistances, the resistance change of stem-branch heterostructured nanowires provides an improved gas molecule sensing ability as compared with a structure composed of only nanofibers or nanowires.
Claims (12)
Zinc oxide (ZnO) - tin oxide (SnO 2 ) nanofibers having a structure in which tin oxide (SnO 2 ) branches are formed on a zinc oxide (ZnO) .
The zinc oxide-tin oxide nanofiber-nanowire stem-like heterostructure according to claim 1, wherein the zinc oxide (ZnO) nanofiber stem has an average diameter of 80 to 120 nm.
2. The nanostructure of claim 1, wherein the thickness of the gold (Au) layer deposited on the surface of the zinc oxide (ZnO) nanofiber stem is 0.1 to 3 nm. Distinct structures.
The nanofiber-nanowire stem-like heterostructure according to claim 1, wherein the average diameter of the tin oxide (SnO 2 ) nanowire branches is 40 to 60 nm.
The zinc oxide (ZnO) - tin oxide (SnO 2 ) Nanofibers - Nanowires Stems - Gas sensors containing diverse structures.
스퍼터링법을 이용하여 상기 단계 1에서 제조된 산화아연 나노섬유의 표면에 금(Au)층을 적층시키는 단계(단계 2); 및
기체-액체-고체(VLS)법을 이용하여 상기 단계 2에서 제조된 금(Au)층이 적층된 산화아연 나노섬유로부터 산화주석 나노와이어를 성장시키는 단계(단계 3);
를 포함하는 산화아연-산화주석 나노섬유-나노와이어 줄기-가지 이종구조물 제조방법.
A step of electrospinning a mixed solution of zinc oxide precursor and polyvinyl alcohol (PVA) to synthesize zinc oxide nanofibers on the substrate (step 1);
(Step 2) of laminating a gold (Au) layer on the surface of the zinc oxide nanofibers prepared in the step 1 by using a sputtering method; And
(Step 3) of growing tin oxide nanowires from zinc oxide nanofibers in which the gold (Au) layer prepared in step 2 is laminated using a gas-liquid-solid (VLS) method;
Zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure.
7. The method of claim 6, wherein the zinc oxide precursor of step 1 is (CH 3 CO 2 ) 2 Zn.
7. The method of claim 6, wherein the electrospinning of step 1 is performed by applying a voltage of 5 to 15 kV to a cylinder needle loaded with a zinc oxide precursor and a PVA mixed solution, and injecting the mixed solution from the needle at a rate of 0.5 to 1.5 ml / Wherein the zinc oxide-tin oxide nanofiber-nanowire stem-branch heterostructure is produced by regulating the zinc oxide-tin oxide nanofiber to exit through the nanowire.
7. The method of claim 6, wherein the ZnO nanofibers produced in step 1 are further sintered at 550 to 650 DEG C for 5 to 7 hours. The zinc oxide-tin oxide nanofiber nanowire- A method for manufacturing a heterogeneous structure.
7. The method of claim 6, wherein the sputtering of step 2 is performed at a current of 50-70 mA and laminates a gold (Au) layer for 80-150 seconds. The zinc oxide- - A method for manufacturing two kinds of structures.
7. The method of claim 6, further comprising annealing the zinc oxide nanofibers having the gold (Au) layer stacked in step 2 at 400 to 600 DEG C, Nanowire stalks - methods for making dihedral structures.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130059041A KR101498157B1 (en) | 2013-05-24 | 2013-05-24 | ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130059041A KR101498157B1 (en) | 2013-05-24 | 2013-05-24 | ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140139641A true KR20140139641A (en) | 2014-12-08 |
KR101498157B1 KR101498157B1 (en) | 2015-03-09 |
Family
ID=52457802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130059041A KR101498157B1 (en) | 2013-05-24 | 2013-05-24 | ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101498157B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107315036A (en) * | 2017-08-06 | 2017-11-03 | 潘金文 | One kind is based on SnO2The alcohol gas sensor of composite nano fiber |
KR20180088312A (en) * | 2017-01-26 | 2018-08-03 | 주식회사 아모그린텍 | Fiber web for Gas sensor, method for manufacturing thereof and Gas sensor comprising the same |
KR20180115920A (en) * | 2017-04-14 | 2018-10-24 | 한국기계연구원 | Gas sensor having nano-wire network structure and method for manufacturing the gas sensor |
CN108896622A (en) * | 2018-05-09 | 2018-11-27 | 广东美的制冷设备有限公司 | The SnO of heterojunction structure2- ZnO gas sensitive and preparation method thereof |
CN109119511A (en) * | 2018-07-24 | 2019-01-01 | 大连理工大学 | A kind of preparation method of tin oxide-nanometic zinc oxide rod array heterojunction structure ultraviolet light detector |
KR20190015133A (en) * | 2017-08-03 | 2019-02-13 | 한양대학교 산학협력단 | Method for manufacturing a gas sensor, and gas sensor using same |
CN109434128A (en) * | 2018-10-25 | 2019-03-08 | 上海纳米技术及应用国家工程研究中心有限公司 | Au loads preparation method of tin dioxide nanometer material and products thereof and application |
RU2684423C1 (en) * | 2018-05-21 | 2019-04-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Method of manufacturing chemoresistor based on nanostructures of zinc oxide by electrochemical method |
CN110589875A (en) * | 2019-09-17 | 2019-12-20 | 复旦大学 | Gas-sensitive nano material based on single-layer ordered tin oxide nano bowl branched zinc oxide nanowire structure, preparation process and application thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11119066B2 (en) | 2018-06-05 | 2021-09-14 | King Fahd University Of Petroleum And Minerals | Room temperature nitrogen dioxide gas sensor |
KR102493069B1 (en) | 2021-06-10 | 2023-01-27 | 연세대학교 산학협력단 | Highly sensitive and stable NO2 gas sensor based on porous ZnO nanosheets |
-
2013
- 2013-05-24 KR KR1020130059041A patent/KR101498157B1/en active IP Right Grant
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180088312A (en) * | 2017-01-26 | 2018-08-03 | 주식회사 아모그린텍 | Fiber web for Gas sensor, method for manufacturing thereof and Gas sensor comprising the same |
KR20180115920A (en) * | 2017-04-14 | 2018-10-24 | 한국기계연구원 | Gas sensor having nano-wire network structure and method for manufacturing the gas sensor |
KR20190015133A (en) * | 2017-08-03 | 2019-02-13 | 한양대학교 산학협력단 | Method for manufacturing a gas sensor, and gas sensor using same |
CN107315036A (en) * | 2017-08-06 | 2017-11-03 | 潘金文 | One kind is based on SnO2The alcohol gas sensor of composite nano fiber |
CN108896622A (en) * | 2018-05-09 | 2018-11-27 | 广东美的制冷设备有限公司 | The SnO of heterojunction structure2- ZnO gas sensitive and preparation method thereof |
RU2684423C1 (en) * | 2018-05-21 | 2019-04-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Method of manufacturing chemoresistor based on nanostructures of zinc oxide by electrochemical method |
CN109119511A (en) * | 2018-07-24 | 2019-01-01 | 大连理工大学 | A kind of preparation method of tin oxide-nanometic zinc oxide rod array heterojunction structure ultraviolet light detector |
CN109434128A (en) * | 2018-10-25 | 2019-03-08 | 上海纳米技术及应用国家工程研究中心有限公司 | Au loads preparation method of tin dioxide nanometer material and products thereof and application |
CN109434128B (en) * | 2018-10-25 | 2022-04-05 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of Au-loaded tin dioxide nano material, product and application thereof |
CN110589875A (en) * | 2019-09-17 | 2019-12-20 | 复旦大学 | Gas-sensitive nano material based on single-layer ordered tin oxide nano bowl branched zinc oxide nanowire structure, preparation process and application thereof |
CN110589875B (en) * | 2019-09-17 | 2021-10-26 | 复旦大学 | Gas-sensitive nano material based on single-layer ordered tin oxide nano bowl branched zinc oxide nanowire structure, preparation process and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101498157B1 (en) | 2015-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101498157B1 (en) | ZnO-SnO2 nanofiber-nanowire stem-branch heterostructure material and preparation method thereof and gas sensor containing the material | |
Van Hieu | Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures | |
Qi et al. | Application of 3D hierarchical monoclinic-type structural Sb-doped WO 3 towards NO 2 gas detection at low temperature | |
Sun et al. | Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties | |
Choi et al. | Growth behavior and sensing properties of nanograins in CuO nanofibers | |
Hung et al. | Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance | |
KR101091639B1 (en) | Method of manufacturing core-shell nanofiber network structure, chemical sensor having core-shell nanofiber network structure and method of manufacturing the chemical sensor | |
JP3940817B2 (en) | Electrochemical electrode in which nickel-containing nanostructure having dendritic structure is applied to the active layer and method for producing the same | |
Li et al. | Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance | |
CN113702447B (en) | Gallium oxide nano-structure device and preparation method and application thereof | |
Abdullah et al. | A review on zinc oxide nanostructures: Doping and gas sensing | |
KR101524108B1 (en) | SnO2-ZnO nanafiber heterostructure, the method for manufacturing the same and reductive gases sensing method using the same | |
Mane et al. | NO 2 sensing properties of 3D flower-like ZnO nanostructure decorated with thin porous petals synthesized using a simple sol–gel drop-casting method | |
Ghosh et al. | Understanding on the selective carbon monoxide sensing characteristics of copper oxide-zinc oxide composite thin films | |
Zhao et al. | Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing | |
Kumar et al. | Novel low-temperature growth of SnO2 nanowires and their gas-sensing properties | |
CN110672672A (en) | Zn–In2O3Preparation method and application of porous nanofiber gas-sensitive material | |
Fu et al. | Advances in the development of MOS-based sensors for detection of ethanol: A review | |
Si et al. | One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection | |
Jiang et al. | An in situ electrospinning route to fabricate NiO–SnO2 based detectors for fast H2S sensing | |
Hu et al. | New Generation Beta‐Gallium Oxide Nanomaterials: Growth and Performances in Electronic Devices | |
Yan et al. | Preparation of gas sensors by hollow SnO 2 electrospun nanofibers | |
Jahromi et al. | Construction of 0, 1, 2 and 3 dimensional SnO2 nanostructures decorated by NiO nanopetals: Structures, growth and gas-sensing properties | |
Chen et al. | Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review | |
Taulo et al. | Inkjet printing of SnO2 nanoparticles with exposed high-energy facets for CO gas sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20171213 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20181121 Year of fee payment: 5 |