KR20130012643A - Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability - Google Patents
Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability Download PDFInfo
- Publication number
- KR20130012643A KR20130012643A KR1020110073900A KR20110073900A KR20130012643A KR 20130012643 A KR20130012643 A KR 20130012643A KR 1020110073900 A KR1020110073900 A KR 1020110073900A KR 20110073900 A KR20110073900 A KR 20110073900A KR 20130012643 A KR20130012643 A KR 20130012643A
- Authority
- KR
- South Korea
- Prior art keywords
- free
- brass alloy
- lead
- corrosion resistance
- shape memory
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
본 발명은 납을 포함하지 않으면서 우수한 절삭성을 갖는 무연쾌삭 황동합금에 관한 것으로, 특히 우수한 절삭성에 더하여 강한 내식성과 소성가공성 및 형상기억성도 뛰어나 생활자재, 배관설비, 고정부재 등에 유용하게 활용될 수 있도록 개선된 무연쾌삭 황동합금에 관한 것이다.
The present invention relates to a lead-free free-cut brass alloy having excellent cutting properties without containing lead, in particular, in addition to excellent cutting properties, excellent corrosion resistance, plastic workability and shape memory properties can be usefully used for living materials, piping equipment, fixing members, and the like. The present invention relates to a lead-free free-cut brass alloy which has been improved.
황동(Brass)은 대표적인 비철금속으로서, 구리와 아연의 2원 합금이며, 보통 아연을 30-40% 함유한 7:3 황동, 6:4 황동 등이 널리 사용되고 있다.Brass is a representative nonferrous metal, and is a binary alloy of copper and zinc, and 7: 3 brass and 6: 4 brass, which contain 30-40% of zinc, are widely used.
이러한 황동은 구리에 비해 주조성, 가공성 및 내식성이 우수하며, 청동에 비해 값이 싸고, 색깔이 아름답기 때문에 자동차 부품, 탄피가공재 또는 각종 주물에 활발하게 사용되고 있다.Such brass has excellent castability, processability and corrosion resistance compared to copper, and is inexpensive compared to bronze, and is beautifully used in automobile parts, shelling materials or various castings because of its beautiful color.
황동은 아연 함유량에 따라 물리적 성질이 달라지는데, 이를 테면 아연의 함유량이 34% 이하 까지는 전기 및 열의 전도율이 낮아지다가 그 이상이 되면 상승하여 50%에 이르렀을 때 최대값을 가진다. 다만, 아연이 40% 이상 함유될 경우 관, 봉 등의 가공재에서 잔류응력이 존재할 때 자연균열이 생기는 화학적 성질이 있으므로 이를 고려하여 가공해야 한다.Brass has different physical properties depending on the zinc content. For example, when the zinc content is lower than 34%, the electrical and heat conductivity decreases, and when it is higher, it rises and reaches its maximum value when it reaches 50%. However, when 40% or more of zinc is contained, it should be processed in consideration of chemical properties such that natural cracks occur when residual stresses exist in processed materials such as pipes and rods.
황동이 기계적 성질로는 아연이 30% 함유될 때 연신율이 최대이며, 35% 이상에서는 연신율이 감소하는 대신 40% 까지 최대 인장강도를 갖는다.The mechanical property of brass is the maximum elongation when 30% of zinc is contained, the maximum tensile strength up to 40% instead of decreasing the elongation above 35%.
이와 같은 황동은 연성이 크기 때문에 금대용품, 장식품으로 주로 사용되는 8-20%의 아연을 함유한 톰백(Tombac), 주석이 포함되어 내식성 및 내해수성을 높이 주석황동(Tin Brass), 연 황동 또는 쾌삭황동이라 불리며 절삭성을 높인 납 황동(Lead Brass), 철을 함유시켜 강인성과 내식성을 높인 철 황동(Iron Brass), 주조성과 가공성을 높여 펌프 축, 밸브, 피스톤 등의 제조에 사용하도록 Mn, Al, Fe, Ni, Sn 등을 적정량 첨가시킨 강력황동, "양백" 또는 "양은"으로 불리며 니켈을 포함하여 선재와 판재로서 스프링, 장식품, 식기류, 가구재료, 계측기, 의료기기 등의 제조에 사용되는 니켈황동 등이 있다.These brasses have high ductility, so they include tin and tombac containing 8-20% of zinc, which are mainly used for gold bars and ornaments. Lead brass, which is called free cutting brass and has high machinability, iron brass, which has high toughness and corrosion resistance by containing iron, and castability and workability. Strong brass, Fe, Ni, Sn, etc. are added to the appropriate amount, called "silver white" or "yang silver", including nickel, wire and plate material used in the manufacture of springs, ornaments, tableware, furniture materials, measuring instruments, medical equipment, etc. Nickel brass and the like.
이 중에서, 절삭성이 우수하여 정밀가공품 제조에 적당한 쾌삭황동(납 황동)은 실생활과 관련하여 볼트, 너트, 문 손잡이, 배관설비, 수도꼭지 등에 많이 사용되므로 그 용도상 활용도가 매우 높다.Among these, free cutting brass (lead brass), which is suitable for manufacturing precision processed products with excellent cutting property, is widely used for bolts, nuts, door handles, plumbing fixtures, faucets, etc. in connection with real life, and thus its utilization is very high.
그런데, 이러한 쾌삭황동은 절삭성을 높이기 위해 납과 카드뮴을 필수적으로 첨가해야 하므로 인체 유해성 문제가 꾸준히 제기되어 왔으며, 특히 최근 환경규제로 인해 그 사용이 제한되는 물질로 지정됨으로써 이를 대체할 수 있는 새로운 황동 조성물의 개발이 요구되었다.However, this free cutting brass has been steadily raised the human hazard problem because it is necessary to add lead and cadmium in order to increase the machinability, especially the new brass that can be replaced by the designation as a material that is restricted to use due to the recent environmental regulations Development of the composition was required.
이에, 다음과 같은 다양한 방식의 연구들이 거듭되었는데, 예를 들면 다음과 같다.Thus, various types of research have been repeated, for example:
첫째, 흑연 분말이나 BN 분말과 같이 구리(Cu)기지 내에 고용되지 않는 이종입자들을 구리(Cu) 용탕 내에 강제 첨가 교반하여 동합금 내에 균일 분산시킨 것으로 구리와 이종입자간의 밀도 차가 커 이종입자의 균일 분포가 어려우며 이종입자의 박리에 의한 가공표면이 거칠어져 도금성 등에 문제가 있다.First, heterogeneous particles which are not dissolved in copper base such as graphite powder or BN powder are uniformly dispersed in copper alloy by forcibly adding and stirring in copper (Cu) molten metal. It is difficult, and the processing surface by peeling of dissimilar particles becomes rough and there is a problem in plating property.
둘째, 납(Pb)과 주기율표상에서 인접한 원소로 비스무트(Bi)를 첨가하는 것으로 비스무트는 구리기지 내에 고용도가 없고 인체에 유해하지 않은 원소로 이용되고 있으나, 비스무트는 조대한 결정립을 형성하며, 수축기공의 조장과 심한 입계편석을 일으키는 경향이 있어 동합금의 취성을 일으키는 원인이 되어 열처리에 의한 결정립의 미세화 및 구상화 처리를 해야 한다는 결점을 가지고 있다.Second, bismuth (Bi) is added to Pb and the adjacent elements on the periodic table. Bismuth is used as an element that has no solid solubility in the copper base and is not harmful to the human body, but bismuth forms coarse grains and shrinks. It tends to cause pores and severe grain boundary segregation, which causes brittleness of copper alloys, and has a drawback that the grains have to be refined and spheroidized by heat treatment.
셋째, 비스무트(Bi)계에 비스무트와 더불어 저융점 공정조성을 갖는 합금원소를 추가 첨가하는 방법으로 이 방법은 정출상이 박막성 형태로 결정입계에 정출하는 경우가 많아 절삭가공성을 저해하고 가공표면을 저해할 우려가 있다.Third, bismuth (Bi) is added to bismuth and alloy elements having low melting point process composition. In this method, the crystallized phase is often crystallized at the grain boundary in the form of a thin film, which impairs cutting processability and inhibits the processing surface. There is a concern.
넷째, 셀레늄(Se)을 첨가하는 방법으로 셀레늄은 구리와 다양한 금속간 화합물을 형성하며 결정입계에 미세하게 정출하는 특성이 있어 1%이하의 소량첨가로도 가공성을 향상시키는 것으로 알려져 있으나 650℃에서 기화되어 단독 첨가시 유독한 증기를 발생시켜 그 사용이 제한을 받고 있다.Fourthly, selenium (Se) is a method of adding selenium to form various intermetallic compounds with fine crystallization at grain boundaries, and it is known to improve processability even at a small amount of less than 1%. When used alone, vaporization generates toxic fumes, which limits their use.
다섯째, 셀레늄(Se)을 비스무트-셀레나이드 형태로 첨가하여 셀레늄의 유독성을 방지하고 비스무트와 셀레나이드를 결정입계와 입내에 고르게 형성시켜 가공성을 향상시킬 수 있는 것으로 알려져 있으나 봉상, 판상, 박막상 등으로 형성되는 경향이 강해 종전의 함연황동(=쾌삭황동)에 비해 기계가공성 및 특성을 향상시키는 효과를 얻기 힘들다.Fifth, selenium (Se) is added in the form of bismuth-selenide to prevent the toxicity of selenium and to form bismuth and selenide evenly in the grain boundary and in the mouth to improve processability, but it is known that rod, plate, thin film, etc. It is hard to obtain the effect of improving the machinability and properties compared to the conventional brazed brass (= free-cut brass).
이와 관련하여, 국내 개발 기술로는 등록특허 제0389777호가 있으나, 이 경우에는 미량이기는 하지만 여전히 납을 사용하고 있어 무연황동이라고 보기 어렵고, 다른 예로 등록특허 제0592369호가 있으나 이는 소성 가공성이 떨어지는 단점이 있다.In this regard, there is a domestic development technology, there is a registered patent No. 0389777, in this case it is a trace amount but still using lead, it is difficult to be considered as lead-free brass, and another example there is a registered patent No. 092369, but this has a disadvantage of poor plastic workability .
또다른 예로, 공개특허 제2004-0062314호가 있고, 그 외 공개특허 제2007-0101915호, 공개특허 제2007-0101916호, 공개특허 제2009-0083444호를 포함한 다수의 특허기술들이 용도에 따라 다양한 형태로 개시된 바 있다.As another example, there is Patent Publication No. 2004-0062314, and many other patent technologies including Patent Publication No. 2007-0101915, Patent Publication No. 2007-0101916, and Patent Publication No. 2009-0083444 vary depending on the application. It has been disclosed as.
그럼에도 불구하고, 납을 사용하지 않으면서 우수한 내식성과 절삭성 및 소성가공성이 뛰어나고 형상 복원성이 우수하여 각 종 생활자재, 긴밀한 결합성과 고정성을 요구하는 결합부재, 배관설비 등에 적당하여 제품의 수명을 연장하고, 안전성을 높이며, 유해성을 차단할 수 있는 무연쾌삭 황동합금의 필요성이 제기되었다.
Nevertheless, it is excellent in corrosion resistance, cutting property, plastic processing ability and shape resilience without using lead, so it is suitable for all kinds of living materials, joining members that require close bonding and fixing property, and piping equipment to extend product life. The necessity of lead-free free-cutting brass alloys to increase the safety, and to block the harmfulness has been raised.
본 발명은 상술한 바와 같은 종래 기술상의 필요성 때문에 창출된 것으로, 납을 함유하지 않은 무연황동이면서 쾌삭성, 즉 절삭성과 내식성은 기존 함연황동과 동등이상이면서 이에 더하여 소성가공성과 형상기억성이 뛰어나 각종 생활자재, 배관설비, 결합 또는 고정부재의 수명연장과 안전성(크랙 발생 억제)을 증진시킨 보다 진일보된 무연쾌삭 황동합금을 제공함에 그 주된 목적이 있다.
The present invention has been created due to the above-mentioned necessity of the prior art, and it is lead-free brass, which does not contain lead, and has excellent machinability, that is, machinability and corrosion resistance is equal to or higher than that of existing brass-containing brass, and in addition, excellent in plastic workability and shape memory. Its main purpose is to provide an advanced lead-free, free-cut brass alloy that enhances the lifespan and safety (inhibiting cracking) of life materials, plumbing fixtures, joints or fastening members.
본 발명은 상기한 목적을 달성하기 위한 수단으로, 무연쾌삭 황동합금에 있어서; 상기 무연쾌삭 황동합금은 중량%로, Cu:56-58%, Sn:0.5-1.5%, Fe:0.2-0.3%, Sb:0.1-0.2%, Ni:1.5-2.0%, P:0.04-0.08%, Al:0.8-1.2%, S:1.0-1.2%, Bi:1.3-1.5%, Se:0.1-0.2% 및 잔부 Zn으로 조성된 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금을 제공한다.The present invention as a means for achieving the above object, in a lead-free free-cut brass alloy; The lead-free free-cut brass alloy is in weight percent, Cu: 56-58%, Sn: 0.5-1.5%, Fe: 0.2-0.3%, Sb: 0.1-0.2%, Ni: 1.5-2.0%, P: 0.04-0.08 Lead-free corrosion resistance, plasticity and shape memory, characterized in that the composition is composed of%, Al: 0.8-1.2%, S: 1.0-1.2%, Bi: 1.3-1.5%, Se: 0.1-0.2% and the balance Zn Provides free cutting brass alloys.
또한, 본 발명은 무연쾌삭 황동합금에 있어서; 상기 무연쾌삭 황동합금은 중량%로, Cu:56-58%, Sn:0.5-1.5%, Fe:0.2-0.3%, Sb:0.1-0.2%, Ni:1.5-2.0%, P:0.04-0.08%, Al:0.8-1.2%, S:1.0-1.2%, Bi:1.3-1.5%, Se:0.1-0.2% 및 잔부 Zn으로 조성된 것을 기본 성분으로 하고; 상기 기본성분에, Ti를 Ni와 동일비율로 더 첨가함과 아울러 V, Cr, Mn, Co를 0.02-0.04 중량%의 범위 내에서 1:1:1:1의 비율로 더 첨가한 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금도 제공한다.In addition, the present invention is a lead-free free-cut brass alloy; The lead-free free-cut brass alloy is in weight percent, Cu: 56-58%, Sn: 0.5-1.5%, Fe: 0.2-0.3%, Sb: 0.1-0.2%, Ni: 1.5-2.0%, P: 0.04-0.08 Based on the composition consisting of%, Al: 0.8-1.2%, S: 1.0-1.2%, Bi: 1.3-1.5%, Se: 0.1-0.2% and the balance Zn; In addition to the basic component, Ti is further added in the same ratio as Ni, and V, Cr, Mn, and Co are further added in a ratio of 1: 1: 1: 1 within a range of 0.02-0.04% by weight. It also provides lead-free free-cut brass alloys with improved corrosion resistance, plasticity and shape memory.
아울러, 상기 기본성분에 Si를 0.02-0.04 중량% 더 첨가하여 내마모성을 더 향상시킨 것에도 그 특징이 있다.In addition, the addition of 0.02-0.04% by weight of Si to the basic component further improves the wear resistance.
뿐만 아니라, 상기 무연쾌삭 황동합금은, 마르텐사이트 변태점에서 소성변형을 가한 다음 모상으로 역변태되는 온도 이상으로 재가열 후 상온에서 면심입방구조의 α상과, 체심입방구조의 β상이 공존하도록 열처리된 것에도 그 특징이 있다.
In addition, the lead-free free-cut brass alloy is heat-treated so that the α phase of the face-centered cubic structure and the β-phase of the body-centered cubic structure coexist at room temperature after reheating above a temperature at which the plastic deformation is applied at the martensite transformation point and then reversely transformed into the mother phase. It also has its features.
본 발명에 따르면, 납이 함유되어 있지 않아 인체에 무해하고, 절삭성 및 내식성은 쾌삭황동과 동등 이상이며, 특히 생활자재, 배관류, 결합부재 등에 사용시 온도변화에 따른 형상복원성을 가져 보다 긴밀하고 안정적인 결속력을 제공하고, 수명을 연장하는 효과를 얻을 수 있다.
According to the present invention, it does not contain lead and is harmless to the human body, and the cutting property and corrosion resistance are equal to or higher than the free cutting brass, and in particular, the material is more closely and stable due to the shape restoring property according to the temperature change when used in living materials, pipes, and coupling members. The effect of providing a binding force and extending the life can be obtained.
이하에서는, 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments according to the present invention will be described in detail.
본 발명에 따른 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금은 중량%로, Cu:56-58%, Sn:0.5-1.5%, Fe:0.2-0.3%, Sb:0.1-0.2%, Ni:1.5-2.0%, P:0.04-0.08%, Al:0.8-1.2%, S:1.0-1.2%, Bi:1.3-1.5%, Se:0.1-0.2% 및 잔부 Zn으로 조성된 것을 기본 성분으로 한다.The lead-free free-cut brass alloy with improved corrosion resistance, plastic workability and shape memory according to the present invention is Cu: 56-58%, Sn: 0.5-1.5%, Fe: 0.2-0.3%, Sb: 0.1-0.2% Based on Ni, 1.5-2.0%, P: 0.04-0.08%, Al: 0.8-1.2%, S: 1.0-1.2%, Bi: 1.3-1.5%, Se: 0.1-0.2% and the balance Zn It is made with an ingredient.
그리고, 본 발명은 소성가공성(Superplastic Formability)과 형상기억성(Shape Memory Ability)를 높이기 위해 상기 기본성분에 Ti를 Ni와 동일비율로 더 첨가하고, 아울러 V, Cr, Mn, Co를 0.02-0.04중량%의 범위 내에서 균등하게, 즉 1:1:1:1의 비율로 더 첨가하는 형태로 구성된다.In addition, the present invention further adds Ti to the base component in the same ratio as Ni to increase the superplastic formability and shape memory (Shape Memory Ability), and V, Cr, Mn, Co 0.02-0.04 It is made up in the form of adding more evenly in the range of the weight%, ie, 1: 1: 1: 1.
이때, 상기 기본성분들은 지금까지 무연쾌삭 황동합금에 많이 포함된 공지된 성분들이며, 다만 본 발명에서는 목적 특이성을 달성하기 위해 기존 성분들이지만 조성비를 달리하였으며, 조성비를 달리하면서도 절삭성, 내식성은 기존 대비 동등 이상을 유지하고, 이에 더하여 소성가공성과 형상복원성(형상기억성) 특징을 더 갖추도록 한 것이 그 특징이다.At this time, the basic components are known components contained in many lead-free free-cut brass alloy so far, but in the present invention, the existing components but different composition ratios in order to achieve the object specificity, while changing the composition ratio, cutting, corrosion resistance compared to conventional Maintaining the equivalent or more, in addition to the plastic workability and shape resilience (moulding resistance) features that feature.
뿐만 아니라, 상기 성분조성에 Si를 0.02-0.04중량% 더 첨가할 수도 있는데, 이는 내마모성을 향상시키기 위한 것이나, 과량 첨가되면 절삭성을 저해하므로 상기 범위로 한정하여야 한다.In addition, 0.02-0.04% by weight of Si may be further added to the component composition, which is intended to improve wear resistance, but should be limited to the above range because excessively inhibiting machinability.
통상, 황동이 물리화학적 성질 또는 기계적 성질 또는 색상 등을 개량하기 위해 다양한 종류의 제3성분들이 첨가되는데, 이를 테면 내식성을 향상시키기 위한 첨가원소로는 주로 Sn, Al, Si, Fe, Mn, Ni 등이 사용된다.In general, brass has various kinds of third components added to improve physicochemical or mechanical properties or colors. For example, additive elements for improving corrosion resistance are mainly Sn, Al, Si, Fe, Mn, and Ni. Etc. are used.
여기에서, Mn은 앞서 설명한 바와 같이, 내식성 보다는 형상기억성 쪽에 촛점을 두어 첨가하는 것으로 설명될 것이므로 이를 제외한 나머지 성분들이 내식성과 관련있다고 하겠다.Here, Mn will be described as focusing on the shape memory rather than the corrosion resistance as described above, so the rest of the components are related to the corrosion resistance.
이러한 제3성분들은 황동의 α상 또는 β상에 고용되어 황동의 조직을 크게 변화시키지 않으면서 α상 또는 β상의 비율을 조절함으로써 내식성을 향상시키게 된다.These third components are dissolved in the α phase or β phase of the brass to improve the corrosion resistance by controlling the ratio of the α phase or β phase without significantly changing the structure of the brass.
또한, 황동의 조성에 있어 주의를 요하는 것으로서, 탈아연 부식현상인데, 이 현상은 아연이 15% 이상 첨가될 경우 나타날 수 있으며, Mn과 Fe는 이 현상을 가속화시킨다.In addition, attention should be paid to the composition of brass, which is a dezincification corrosion phenomenon, which may occur when 15% or more of zinc is added, and Mn and Fe accelerate this phenomenon.
반면, As, Ni, Al, Sb, P, W 등은 이 현상을 감소시키므로 이들간의 적정비율 조절이 매우 중요하다.On the other hand, As, Ni, Al, Sb, P, W, etc. reduce this phenomenon, it is very important to control the appropriate ratio between them.
아울러, 이전에 개시된 특허 기술들에서는 Fe, Si, Mn 등의 원소를 불가피하게 첨가되는 불순물로 치부하고 있으나, 본 발명에서는 이들 성분도 미량이기는 하지만 기계적 특성 발현에 꼭 필요한 필수성분으로 참여하고 있다는 점에서 차이가 있다.In addition, in the patent technologies disclosed previously, elements such as Fe, Si, and Mn are inevitably added as impurities, but in the present invention, although these components are trace amounts, they participate as essential components necessary for the expression of mechanical properties. There is a difference.
한편, 본 발명에서 구현하고 있는 형상기억성은 형상복원성을 의미하는 것으로, 형상기억 합금에서 유래된 것이다.On the other hand, the shape memory implemented in the present invention means shape resilience, it is derived from the shape memory alloy.
통상, 형상기억 합금이란 일정한 온도에서 어떤 모양을 기억시켜 두면 온도가 낮아져 그 모양이 변형되더라도 다시 가열하여 일정 온도로 올려주면 본래의 모습으로 되돌아오는 성질을 가진 합금을 말하는데, 이 효과는 합금이 주어진 형상을 원자 배열로서 기억하고 있다가 다시 고온이 되면 원래의 원자배열로 재배열하는 결과로 일어난다.In general, shape memory alloy refers to an alloy having a property of remembering a shape at a constant temperature and then returning to its original shape even if the shape is deformed and heated again to a certain temperature even if the shape is deformed. The shape is remembered as an atomic array, and when the temperature rises again, it occurs as a result of rearrangement to the original atomic arrangement.
본 발명에서는 형상기억 합금에 완전히 포함되는 개념이라기 보다는 그러한 기능을 일부 갖는 것으로, 이를 테면 냉온이 교차되는 배관 등에서 형상기억성, 즉 형상복원성을 가미함으로써 균열 발생을 줄이고, 수명을 연장할 수 있는 기능을 갖도록 한 것인 바, 개념상으로는 신축성을 부여한다고 보면 된다.In the present invention, rather than a concept that is completely contained in the shape memory alloy, it has such a function, for example, a function that can reduce the occurrence of cracks, and extend the life by adding shape memory, that is, shape resilience in the pipe, such as cold and hot cross It is intended to have elasticity in concept.
이를 위해, 본 발명에서는 기본성분에 Ti를 더 첨가하되, Ti의 첨가량을 Ni와 동일비율로 첨가하여 형상기억성을 높이고, 이에 더하여 형상복원성을 더욱 더 높이기 위해 V, Cr, Mn, Co를 동일비율로 더 첨가하며, 그 상태에서 금속가공에서 일반적으로 널리 알려진 용체화, 강제냉각, 공냉, 결정화, 재결정화 등 다수의 열처리기법, 특히 마르텐사이트 변채점에서 소성변형을 가한 다음 모상으로 역변태하는 온도 이상에서 가열하는 형태로 이루어지고, 이를 통해 본 발명에 따른 조성물이 상온에서 면심입방구조의 α과, 체심입방구조의 β상이 공존하도록 가공됨으로서 형상기억성에 더하여 소성가공성도 함께 높일 수 있게 된다.To this end, in the present invention, Ti is further added to the base component, and the amount of Ti is added in the same ratio as Ni to increase the shape memory, and in addition, the V, Cr, Mn, and Co are the same in order to further increase the shape resilience. The ratio is further added, and in that state, plastic deformation is applied at a number of heat treatment techniques such as solutionization, forced cooling, air cooling, crystallization, and recrystallization, especially martensite, and then transformed into the matrix phase. It is made in the form of heating above the temperature, through which the composition according to the present invention is processed to coexist in the α and the β phase of the body-centered cubic structure at room temperature in addition to the shape memory can be improved along with the plastic workability.
이때, 상기 V, Cr, Mn, Co는 α상과 β의 공존 영역을 넓혀주는데 기여하게 된다.At this time, the V, Cr, Mn, Co contributes to widen the coexistence region of the α phase and β.
그럼, 본 발명에 따른 조성비의 한정 사유에 대하여 설명한다.Then, the reason for limitation of the composition ratio which concerns on this invention is demonstrated.
[Cu:56-58중량%][Cu: 56-58 wt%]
Cu는 황동합금에서 필수성분으로, 내응력부식균열성을 감안하여 본 발명에서는 상기 범위로 첨가되어야 한다.Cu is an essential component in brass alloy, in view of stress corrosion cracking resistance in the present invention should be added in the above range.
특히, Cu는 Sn의 함유에 의해 금속의 조직을 변화시키므로 성분비의 결정시 주의하여야 한다.In particular, Cu changes the metal structure by the inclusion of Sn, so care must be taken when determining the component ratio.
[Sn:0.5-1.5중량%][Sn: 0.5-1.5 wt%]
Sn은 황동합금에서 내탈아연부식성, 내부식성, 내침식성을 향상시키기 위해 첨가되는 성분이다.Sn is a component added in brass alloy to improve zinc rust corrosion resistance, corrosion resistance and erosion resistance.
특히, β상 조직을 안정화시키는데 기여하며, 내응력부식균열성을 얻기 위해서는 최소한 0.5중량% 이상으로 첨가되어야 하며, 1.5중량%를 초과하게 되면 절삭가공성과 기계적성질(특히 신장력)을 급격히 떨어뜨리므로 상기 범위로 한정하여야 한다.In particular, it contributes to stabilizing β-phase tissue, and in order to obtain stress corrosion cracking resistance, it should be added at least 0.5% by weight or more, and when it exceeds 1.5% by weight, the machinability and mechanical properties (especially elongation force) are drastically reduced. It should be limited to the above range.
[Fe:0.2-0.3중량%][Fe: 0.2-0.3 wt%]
Fe는 주로 기계적 강도를 높이기 위해 첨가되는 것이나, 0.3중량%를 초과하면 결정립 미세화에 저해되고, 0.2중량% 미만으로 첨가되면 기계적 강도가 좋아지지 않으므로 상기 범위로 첨가하여야 한다.Fe is mainly added to increase the mechanical strength, but when it exceeds 0.3% by weight is inhibited in grain refinement, when it is added below 0.2% by weight, the mechanical strength does not improve and should be added in the above range.
[Sb:0.1-0.2중량%][Sb: 0.1-0.2 wt%]
Sb는 황동합금의 내탄아연성을 향상시키는 성분으로서, Sn을 함유한 Bi+Sb, Bi+Se+Sb의 형태로 활용되어 균열발생을 억제시킨다.Sb is a component to improve the zinc zinc resistance of the brass alloy, and is utilized in the form of Bi + Sb and Bi + Se + Sb containing Sn to suppress cracking.
[Ni:1.5-2.0중량%][Ni: 1.5-2.0 wt%]
Ni는 인장강도를 향상시키기 위해 첨가됨은 물론 Ti와의 결합에 의해 형상복원성을 구현하게 되며, 특히 α상을 촉진시킨다.Ni is added to improve the tensile strength as well as to realize the shape resilience by bonding with Ti, in particular to promote the α phase.
또한, Ni는 Se를 함유하는 경우 Se의 수율을 향상시키기도 하는데, 이러한 관계성을 고려하여 상기 범위로 한정하여야 한다.In addition, Ni also improves the yield of Se when it contains Se, it should be limited to the above range in consideration of this relationship.
[P:0.04-0.08중량%][P: 0.04-0.08% by weight]
P는 Ni와 반대로 인장강도를 저하시키는 성분이므로 주의를 요하나 Sb를 함유할 경우 내탈아연성을 높이기 위해 필수적으로 수반되어야 하는 성분이다.P is a component that lowers the tensile strength as opposed to Ni, but care must be taken when Sb is included.
뿐만 아니라, P는 부식시 Cu의 이온화를 억제하여 부식억제력을 갖는다.In addition, P has corrosion inhibitory power by inhibiting ionization of Cu during corrosion.
본 발명에서는 Sb와 Ni를 고려하여 상기 범위로 한정되어야 한다.In the present invention, it should be limited to the above range in consideration of Sb and Ni.
[Al:0.8-1.2중량%][Al: 0.8-1.2 wt%]
Al은 열간가공성, 내침식성, 내부식성, 미끄럼성 및 내구성에 영향을 주지 않으면서 고용강화 효과를 가져와 α상 및 β상 조직의 강도를 높이기 위해 첨가되는 성분이다.Al is a component added to increase the strength of the α-phase and β-phase tissue without affecting hot workability, corrosion resistance, corrosion resistance, slipperiness and durability.
뿐만 아니라, 성형시 유동성과 흐름성을 좋게 하는데, 본 발명에서는 유동성과 흐름성을 감안하여 상기 범위로 한정함이 바람직하다.In addition, the fluidity and flowability at the time of molding is improved, but in the present invention, it is preferable to limit to the above range in view of fluidity and flowability.
[S:1.0-1.2중량%][S: 1.0-1.2% by weight]
S는 기지금속에 Cu-S를 형성하여 절삭성을 높이는 효과를 제공한다.S forms Cu-S on the base metal and provides the effect of improving machinability.
이러한 S는 Se와 함께 절삭성 개선에 기여하지만 편석을 유발할 수 있으므로 상기 범위로 제한하여 첨가하여야 한다.Such S, together with Se, contributes to improving machinability, but may cause segregation, and therefore S should be added in a limited range.
[Bi:1.3-1.5중량%][Bi: 1.3-1.5 wt%]
Bi도 절삭성을 향상시키기 위해 첨가되는 성분으로, 유연 황동과 동등한 절삭성을 얻기 위해서는 최소 0.5중량% 이상 첨가되어야 한다.Bi is also added to improve machinability. At least 0.5 wt% of Bi should be added to obtain machinability equivalent to that of cast brass.
또한, 과잉첨가시에는 인장강도를 떨어뜨리고, 내부식성을 유발하므로 본 발명에서는 다른 성분들과의 관계성과 상기 특성을 감안하여 상기 범위로 한정하여야 한다.In addition, in the case of excessive addition, the tensile strength is lowered and corrosion resistance is caused. Therefore, the present invention should be limited to the above range in consideration of the relationship with other components and the above characteristics.
[Se:0.1-0.2중량%][Se: 0.1-0.2 wt%]
Se는 황동합금에서 Bi와 함께 절삭성을 향상시키기 위해 첨가되는 성분으로 유효성을 갖기 위해서는 최소한 0.1중량% 이상 첨가되어야 한다.Se must be added at least 0.1% by weight in order to be effective as a component added to improve machinability with Bi in brass alloy.
다만, 0.2중량%를 초과하게 되면 인장강도를 떨어뜨리므로 상기 범위로 한정되어야 하며, 황동합금 내에서는 아연 또는 구리와 결합하여 ZnSe 또는 CuSe의 금속간 화합물을 결성하게 된다.However, if the content exceeds 0.2% by weight, the tensile strength falls, so it should be limited to the above range. In the brass alloy, ZnSe or CuSe intermetallic compound is formed by combining with zinc or copper.
그리고, 잔부로 첨가되는 Zn은 공지된 사항이므로 생략한다.In addition, since Zn added to remainder is well-known matter, it abbreviate | omits.
덧붙여, Si를 더 첨가할 경우 Al과 Mn이 함께 할 경우 황동의 기지조직(α+β)에 MnSi 조직을 석출시켜 내마모성을 향상시키게 된다.In addition, when Al and Mn are added together, Si increases the wear resistance by precipitating the MnSi structure in the brass matrix (α + β).
이때, 미량의 Cr은 용탕에서 Mn, Al의 표면출이현상을 줄이게 되어 미세하고 균등한 기지조직을 유도하게 된다.At this time, a small amount of Cr reduces the surface migration of Mn, Al in the molten metal to induce a fine and even matrix structure.
이하, 실시예에 대하여 설명한다.Hereinafter, examples will be described.
[실시예][Example]
본 발명에 따른 황동합금의 특성을 확인하기 위해 용해 및 급냉 연속주조하여 하기한 표 1과 같은 성분조성이 되도록 시료를 제조하였다.In order to confirm the characteristics of the brass alloy according to the present invention, a sample was prepared by dissolving and quenching continuous casting to form a component as shown in Table 1 below.
이때, 용해과정은 대기 중에서 저주파유도 용해로를 통해 수행되었으며, 급냉 연속주조과정은 수평식 연속주조기를 통해 수행되었다.At this time, the melting process was carried out in the low-frequency induction melting furnace in the atmosphere, the quench continuous casting process was carried out through a horizontal continuous casting machine.
아울러, 냉각조건은 3단 냉각방식으로 수행되었고, 냉각수 온도는 27~30℃, 냉각수량 2300~2500ℓ/min, 냉각수압 5~6kg/㎟, 주조속도는 70~80mm/min의 연속주조 조건으로 실시하였다.In addition, the cooling conditions were carried out in a three-stage cooling method, the cooling water temperature is 27 ~ 30 ℃, the cooling water amount 2300 ~ 2500l / min, the cooling water pressure 5 ~ 6kg / ㎜, the casting speed is 70 ~ 80mm / min continuous casting conditions Was carried out.
이 경우, 주조 후 175mm 직경의 550mm 길이를 갖는 봉상으로 압출하여 압출봉을 시편으로 제작하였다.In this case, after extrusion, the extrusion rod was manufactured into a specimen by extrusion into a rod having a length of 550 mm having a diameter of 175 mm.
여기에서, 함량은 중량%이고, V, Cr, Mn, Co는 각각 0.03중량% 씩 모두 동일하게 각각 첨가되었다.In this case, the content is weight percent, and V, Cr, Mn, and Co were added in the same amounts, respectively 0.03 wt%.
이러한 실시예 A,B,C의 조성으로 제조된 황동합금의 절삭성을 측정하기 위해 공구동력계(Tool Dynamometer)를 이용하여 드릴가공 작업시의 드릴 토크값을 계측하였다.In order to measure the machinability of the brass alloys prepared in the compositions of Examples A, B, and C, a drill torque value during a drilling operation was measured using a tool dynamometer.
이 경우, 기존 납 함유 황동합금, 즉 쾌삭황동의 절삭성 지수(토크:8.21)를 100으로 하여 그 상대적인 비를 표시하였다.In this case, the relative ratio of the existing lead-containing brass alloy, that is, the cutting index (torque: 8.21) of the free cutting brass was set to 100.
이때, 기준은 HSS(High Speed Steel) 드릴로 절삭속도 1100 rpm, 깊이 10mm의 조건으로 절삭할 때 절삭저항력을 토크(kgf/cm)값으로 그 결과치를 표 2에 나타내었다.In this case, the cutting resistance is a torque (kgf / cm) value when cutting under conditions of a cutting speed of 1100 rpm, depth 10mm with a high speed steel (HSS) drill is shown in Table 2 the results.
상기 표 2에서와 같이, 본 발명 실시예에 따른 A,B,C는 기존 쾌삭황동이 갖는 절삭성 대비 최소 96% 이상의 수준으로 거의 대등한 절삭성을 가짐을 확인할 수 있었다.As shown in Table 2, A, B, C according to an embodiment of the present invention was confirmed to have almost the same cutting ability at least 96% or more compared to the machinability of the existing free cutting brass.
아울러, 내식성 실험은 1.0%의 염화제2동 2수화염(CuCl2ㆍ2H2ㆍO)의 수용액에 침지한 후 75℃의 온도에서 24시간 유지한 후 부식여부를 확인하였다.In addition, the corrosion resistance test was immersed in an aqueous solution of cupric chloride dihydrochloride (CuCl 2 · 2H 2 · O) of 1.0% and maintained for 24 hours at a temperature of 75 ℃ to determine whether the corrosion.
확인 결과, 실시예 A,B,C 모두 부식이 발생하지 않았다.As a result, all of Examples A, B, and C did not generate corrosion.
또한, 본 발명에 따른 황동합금의 소성가공성을 확인하기 위해 고온 인장시험을 실시하였다.In addition, a high temperature tensile test was conducted to confirm the plastic workability of the brass alloy according to the present invention.
이때, 인장 시험을 위해 봉상의 압출재 시편을 두께 2 ㎜, 폭 3 ㎜ 및 표점거리 5 ㎜를 갖는 판상의 인장시편으로 다시 제작 후 열처리로가 부착된 기계식 만능 인장시험기(Instron 4481)를 사용하여 400℃, 1×10-2/s의 변형속도로 실시하였으며, 파단 후 시편의 표점거리를 측정하여 연신율을 평가하였다.At this time, the rod-shaped extruded specimen was fabricated into a plate-like tensile specimen having a thickness of 2 mm, a width of 3 mm, and a gauge distance of 5 mm for tensile testing, and then 400 using a mechanical universal tensile tester (Instron 4481) equipped with a heat treatment furnace. The strain was carried out at a strain rate of 1 × 10 −2 / s, and the elongation was evaluated by measuring the gauge length of the specimen after fracture.
시험결과, 실시예 A,B,C는 각각 322.4%, 336.1%, 341.2%의 연신율을 나타내었으며, 본 발명이 목적하는 바를 충분히 달성하고 있음을 확인하였다.As a result of the test, Examples A, B, and C exhibited elongations of 322.4%, 336.1%, and 341.2%, respectively, and it was confirmed that the present invention sufficiently achieved the intended purpose.
뿐만 아니라, 형상기억성의 경우 연신율과도 관계있으며, 형상기억성이 입증된 성분 범위 내에서 첨가하였으므로 그에 대한 입증 실험은 생략하였다.In addition, the shape memory is also related to the elongation, and since the shape memory was added within the range of proven components, the proof experiment was omitted.
이상에서와 같이, 본 발명에 따른 무연쾌삭 황동합금은 충분히 목적하는 바를 달성하고 있음을 확인할 수 있었다.As described above, it was confirmed that the lead-free free-cut brass alloy according to the present invention sufficiently achieved the desired purpose.
Claims (4)
상기 무연쾌삭 황동합금은 중량%로,
Cu:56-58%, Sn:0.5-1.5%, Fe:0.2-0.3%, Sb:0.1-0.2%, Ni:1.5-2.0%, P:0.04-0.08%, Al:0.8-1.2%, S:1.0-1.2%, Bi:1.3-1.5%, Se:0.1-0.2% 및 잔부 Zn으로 조성된 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금.
In lead-free free-cut brass alloys;
The lead-free free-cut brass alloy is by weight,
Cu: 56-58%, Sn: 0.5-1.5%, Fe: 0.2-0.3%, Sb: 0.1-0.2%, Ni: 1.5-2.0%, P: 0.04-0.08%, Al: 0.8-1.2%, S Lead-free brass alloy with improved corrosion resistance, plastic workability and shape memory, comprising: 1.0-1.2%, Bi: 1.3-1.5%, Se: 0.1-0.2%, and balance Zn.
상기 무연쾌삭 황동합금은 중량%로,
Cu:56-58%, Sn:0.5-1.5%, Fe:0.2-0.3%, Sb:0.1-0.2%, Ni:1.5-2.0%, P:0.04-0.08%, Al:0.8-1.2%, S:1.0-1.2%, Bi:1.3-1.5%, Se:0.1-0.2% 및 잔부 Zn으로 조성된 것을 기본 성분으로 하고;
상기 기본성분에, Ti를 Ni와 동일비율로 더 첨가함과 아울러 V, Cr, Mn, Co를 0.02-0.04 중량%의 범위 내에서 1:1:1:1의 비율로 더 첨가한 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금.
In lead-free free-cut brass alloys;
The lead-free free-cut brass alloy is by weight,
Cu: 56-58%, Sn: 0.5-1.5%, Fe: 0.2-0.3%, Sb: 0.1-0.2%, Ni: 1.5-2.0%, P: 0.04-0.08%, Al: 0.8-1.2%, S Based on: 1.0-1.2%, Bi: 1.3-1.5%, Se: 0.1-0.2%, and the balance Zn;
In addition to the basic component, Ti is further added in the same ratio as Ni, and V, Cr, Mn, and Co are further added in a ratio of 1: 1: 1: 1 within a range of 0.02-0.04% by weight. Lead-free free-cut brass alloy with improved corrosion resistance, plasticity and shape memory.
상기 기본성분에 Si를 0.02-0.04 중량% 더 첨가하여 내마모성을 더 향상시킨 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금.
The method of claim 2,
Lead-free free-cut brass alloy with improved corrosion resistance, plasticity and shape memory, characterized in that the addition of 0.02-0.04% by weight of Si to the basic component further improved wear resistance.
상기 무연쾌삭 황동합금은, 마르텐사이트 변태점에서 소성변형을 가한 다음 모상으로 역변태되는 온도 이상으로 재가열 후 상온에서 면심입방구조의 α상과, 체심입방구조의 β상이 공존하도록 열처리된 것을 특징으로 하는 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금.The method of claim 2,
The lead-free free-cut brass alloy is heat-treated such that the α phase of the face-centered cubic structure and the β-phase of the body-centered cubic structure coexist at room temperature after reheating to a temperature above which the plastic deformation is applied at the martensite transformation point and then reversely transformed into the mother phase. Lead-free, free-cut brass alloy with improved corrosion resistance, plasticity and shape memory.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110073900A KR101301290B1 (en) | 2011-07-26 | 2011-07-26 | Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110073900A KR101301290B1 (en) | 2011-07-26 | 2011-07-26 | Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130012643A true KR20130012643A (en) | 2013-02-05 |
KR101301290B1 KR101301290B1 (en) | 2013-08-29 |
Family
ID=47893268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110073900A KR101301290B1 (en) | 2011-07-26 | 2011-07-26 | Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101301290B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104674056A (en) * | 2013-11-28 | 2015-06-03 | 宁波金田铜业(集团)股份有限公司 | Method for preparing environment-friendly bismuth-containing brass ingot casting |
CN105132739A (en) * | 2015-09-10 | 2015-12-09 | 孝感市元达新材料科技有限公司 | Lead-free brass alloy and preparing method of lead-free brass alloy |
CN111304487A (en) * | 2020-03-24 | 2020-06-19 | 河北雄安地一新材料科技有限公司 | Copper-based shape memory alloy and preparation method and application thereof |
CN112840051A (en) * | 2019-01-31 | 2021-05-25 | 古河科技材料株式会社 | Molded article of Cu-Al-Mn shape memory alloy and method for producing same |
CN115305381A (en) * | 2021-05-13 | 2022-11-08 | 湖南特力新材料有限公司 | Lead-free-cutting brass alloy and manufacturing process thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3335002B2 (en) * | 1994-05-12 | 2002-10-15 | 中越合金鋳工株式会社 | Lead-free free-cutting brass alloy with excellent hot workability |
US5653827A (en) | 1995-06-06 | 1997-08-05 | Starline Mfg. Co., Inc. | Brass alloys |
KR20040062314A (en) * | 2003-01-02 | 2004-07-07 | (주)와이디씨 | Composition of Unleaded Free Cutting Brass with Advenced Corrosion Resistance |
KR20070101916A (en) * | 2006-04-12 | 2007-10-18 | 주식회사 워커엠 | Composition of unleaded free cutting brass with advanced dezincification resistance |
-
2011
- 2011-07-26 KR KR1020110073900A patent/KR101301290B1/en active IP Right Grant
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104674056A (en) * | 2013-11-28 | 2015-06-03 | 宁波金田铜业(集团)股份有限公司 | Method for preparing environment-friendly bismuth-containing brass ingot casting |
CN105132739A (en) * | 2015-09-10 | 2015-12-09 | 孝感市元达新材料科技有限公司 | Lead-free brass alloy and preparing method of lead-free brass alloy |
CN112840051A (en) * | 2019-01-31 | 2021-05-25 | 古河科技材料株式会社 | Molded article of Cu-Al-Mn shape memory alloy and method for producing same |
US11953047B2 (en) | 2019-01-31 | 2024-04-09 | Furukawa Techno Material Co., Ltd. | Formed body of Cu—Al—Mn-based shape-memory alloy and method for producing same |
CN111304487A (en) * | 2020-03-24 | 2020-06-19 | 河北雄安地一新材料科技有限公司 | Copper-based shape memory alloy and preparation method and application thereof |
CN115305381A (en) * | 2021-05-13 | 2022-11-08 | 湖南特力新材料有限公司 | Lead-free-cutting brass alloy and manufacturing process thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101301290B1 (en) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2732350C (en) | An environment-friendly manganese brass alloy and manufacturing method thereof | |
EP2333126B1 (en) | Brass alloys having superior stress corrosion resistance and manufacturing method thereof | |
CA2639394C (en) | Tin-free lead-free free-cutting magnesium brass alloy and its manufacturing method | |
CA2639301C (en) | Lead-free free-cutting phosphorous brass alloy and its manufacturing method | |
KR101301290B1 (en) | Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability | |
JP3966896B2 (en) | Brass | |
JP2019504209A (en) | Low-cost lead-free dezincing resistant brass alloy for casting | |
JP2008214760A (en) | Lead-free free-cutting brass alloy and its manufacturing method | |
US20050039827A1 (en) | Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same | |
JP3824944B2 (en) | Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof | |
WO2011121799A1 (en) | Lead-free free-machining bronze casting alloy | |
EP1508625B1 (en) | Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same | |
KR102452654B1 (en) | Alloy material with antibacterial activity | |
JP7183285B2 (en) | Materials processed from copper alloy | |
KR100519556B1 (en) | Brass alloys which maintain a golden color and manufacturing method thereof | |
JP5688744B2 (en) | High strength and high toughness copper alloy forging | |
JP5522692B2 (en) | High strength copper alloy forging | |
JP4184357B2 (en) | Lead-free free-cutting brass alloy and method for producing the same | |
JP3732305B2 (en) | Copper base alloy having excellent corrosion resistance, hot workability and stress corrosion cracking resistance, and method for producing the copper base alloy | |
KR20240085468A (en) | Silicon-based lead-free brass alloy with excellent hot machinability | |
KR960005232B1 (en) | Cu-al alloy composition | |
TWI576444B (en) | Lead-free brass alloy | |
Han et al. | Effect of Zr addition on hot workability of Cu-6Ni-2Mn-2Sn-2Al alloy | |
KR20240085465A (en) | Low silicon-based lead-free brass alloy with excellent machinability | |
JP2005105405A (en) | Lead-less brass material for forging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160817 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170821 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180802 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190805 Year of fee payment: 7 |