KR20030067235A - Wheat Flour Premix Composition Containing Enzyme Resistance Starch - Google Patents
Wheat Flour Premix Composition Containing Enzyme Resistance Starch Download PDFInfo
- Publication number
- KR20030067235A KR20030067235A KR1020020007136A KR20020007136A KR20030067235A KR 20030067235 A KR20030067235 A KR 20030067235A KR 1020020007136 A KR1020020007136 A KR 1020020007136A KR 20020007136 A KR20020007136 A KR 20020007136A KR 20030067235 A KR20030067235 A KR 20030067235A
- Authority
- KR
- South Korea
- Prior art keywords
- sample
- starch
- added
- flour
- control
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D10/00—Batters, dough or mixtures before baking
- A21D10/002—Dough mixes; Baking or bread improvers; Premixes
- A21D10/005—Solid, dry or compact materials; Granules; Powders
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D13/00—Finished or partly finished bakery products
- A21D13/06—Products with modified nutritive value, e.g. with modified starch content
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
- A23L33/21—Addition of substantially indigestible substances, e.g. dietary fibres
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Mycology (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
Abstract
Description
본 발명은 밀가루를 주재료로 하는 식품 제조용 밀가루 프리믹스 조성물로서, 보다 상세하게는 다이어트 식품으로서 각종 성인병에도 탁월한 효능을 가지는 저항성 전분을 밀가루에 소정량 첨가한 식품제조용 프리믹스 조성물에 관한 것이다.The present invention relates to a food preparation flour premix composition comprising flour as a main ingredient, and more particularly, to a food preparation premix composition in which a predetermined amount of resistant starch having excellent efficacy against various adult diseases as a diet food is added to flour.
전분은 인류가 음식을 섭취하는데 오랫동안 사용해온 경제적인 소재로서 체내에서 완전히 분해되는 것으로 알려져 왔지만, Englyst 등(1982)이 식이섬유소를 분석하는 과정에서 비전분 다당류가 효소의 저항을 받는 전분과 함께 검출되는 것을 발견하여 저항전분의 존재가 알려지게 되었다.Starch is an economical material that has long been used by humans to eat food, and it has been known to be completely decomposed in the body.However, Englyst et al. (1982) detect non-starch polysaccharides along with enzyme-resistant starches in analyzing fiber. It was discovered that the presence of resistance starch became known.
저항성 전분(Resistant starch, RS)이란 건강한 인체의 소장에서 흡수되지 않는 전분과 그 분해산물을 통틀어 말한다. 이러한 저항전분은 낟알이나 종자와 같이 물리적으로 효소의 접근이 어려운 RS1, 생전분으로 B형의 결정형을 갖는 입자형의 저항전분으로 바나나나 감자 전분 같은 RS2, 전분의 노화에 의해서 형성된 RS3,그리고 화학적으로 처리된 변성전분중 소화되지 않는 전분을 RS4 등, 4가지로 분류될 수 있다.Resistant starch (RS) refers to starch and its breakdown products that are not absorbed by the small intestine of a healthy body. These resistant starches are RS1, which is physically inaccessible to enzymes such as grains and seeds, granular resistant starches that have B-form crystal form as raw starch, RS2 such as banana or potato starch, RS3 formed by aging of starch, and chemical The undigested starch in the modified starch treated with can be classified into four types, such as RS4.
저항전분은 저칼로리 원으로 생리적 기능이 식이섬유소와 비슷하여 소장에서 소화 흡수되지 않고 대장에서 미생물에 의해 발효되어 부티르산과 같은 단쇄 지방산을 생성함으로써 대장환경에 큰 영향을 줄 수 있다는 것이 알려졌다. 또한 음식물이 당으로 전환되는 정도를 나타내는 글리세믹 인덱스 수치가 낮아 비만이나 당뇨병 환자의 치료 또는 예방에도 도움을 줄 수 있으며 성인병 예방이나 대장암 예방에도 기여할 수 있다는 결과들이 보고되고 있다.Resistant starch is a low-calorie source, and its physiological function is similar to that of dietary fiber, which is not digested and absorbed in the small intestine, but fermented by microorganisms in the large intestine to produce short-chain fatty acids such as butyric acid. In addition, the low glycemic index that indicates the degree of food conversion to sugar can help in the treatment or prevention of obese or diabetic patients, and has been reported to contribute to the prevention of adult disease or colon cancer.
저항 전분에 대한 지금까지의 연구로는 저항전분을 형성시키는 방법과 그 특성에 관한 것, 분석하는 방법, 저항전분 수율을 증가시키는 방법 및 저항전분을 동물이나 인체에 섭취시켰을 때의 생리적 효과에 국한되어왔다.Previous studies on resistance starch have limited the methods of forming and characterizing resistance starch, analyzing them, increasing the yield of resistance starch, and the physiological effects of resistance starch on animals or humans. Has been.
최근 들어 건강에 대한 관심이 높아지면서 소비자는 저지방, 저칼로리 그리고 고섬유질을 가진 식품을 선호하게 되어 이런 식품의 개발이 식품업계의 중요한 과제가 되고 있다. 식이섬유소는 수분 흡수력이 커서 첨가한 식품의 저장 중 품질 안정성이 낮고 식품에 이용하는데 있어서 색깔이나 질감에 좋지 않는 영향을 줄 수 있다. 그러나 저항전분은 식이 섬유소와 유사한 영양 생리 효과를 가지면서도 수분 흡수력이 낮고 입자 크기가 작아 텍스쳐를 중요시하는 식품에 적합하며 맛에 영향을 주지 않는다는 점 등이 있어 바람직하다. 따라서 저항성 전분을 첨가한 식품은 저장 중 수분 흡수가 적어 식이 섬유소를 첨가한 식품 보다 품질 유지에 더 좋을 것으로 생각된다.Recently, with increasing interest in health, consumers prefer foods with low fat, low calorie and high fiber, and the development of these foods has become an important task in the food industry. Dietary fiber has a high water absorption ability, so the added quality of food is low during storage and may adversely affect the color or texture of the food. However, resistant starch is preferred because it has a nutritional physiological effect similar to that of dietary fiber but is low in water absorption and small in particle size, which is suitable for texture-sensitive foods and does not affect taste. Therefore, foods added with resistant starch have less water absorption during storage, and thus, foods containing dietary fiber may be better in quality maintenance than foods added with dietary fiber.
본 발명자는 상기한 바와 같이 식품적합성이 우수한 저항성 전분을 국민 모두가 간단하게 접하고 식용할 수 있는 새로운 형태의 가공식품으로 개발하고자 노력한 결과 본 발명에 이르게 되었다. 이에 따라 현재 다양한 식품의 원료로서 제공되는 밀가루를 주재료로 하고 여기에 소정의 저항성 전분을 첨가함으로써 밀가루의 소비를 촉진시키고 동시에 저항성 전분이 지니는 기능성을 구비한 프리믹스 조성물을 제공하여 아울러 국민 건강 및 산업발전에도 기여함에 본 발명의 목적이 있다.The present inventors have come to the present invention as a result of an effort to develop a new type of processed food that can be easily touched and edible by all the people. Accordingly, by using flour, which is currently used as a raw material for various foods, as a main ingredient and adding certain starch to it, it promotes the consumption of flour and at the same time provides a premix composition having the functionality of resistant starch, and also for national health and industrial development. There is also an object of the present invention to contribute to.
상기 목적달성을 위한 수단으로 본 발명은 밀가루를 주재로 하는 식품 제조용 프리믹스 조성물로서, 저항성 전분 0.1∼50중량%를 함유하는 밀가루 프리믹스 조성물을 제공한다.As a means for achieving the above object, the present invention provides a flour premix composition containing 0.1 to 50% by weight resistant starch as a premix composition for the production of food, mainly flour.
프리믹스 조성물은 조리에 간편하도록 미리 섞어 놓은 분말제품을 일컬으며 배합성분이 균일하고 안정할 뿐만아니라 조리에 편리해서 최근에 와서 가정소비는 물론이고 제과, 제빵업체의 공업용 실수요도 크게 늘어나고 있다. 밀가루 프라믹스 조성물은 용도나 제조 방법에 따라 여러가지로 분류할 수 있는데 일반적으로 용도별로 보아 빵 및 도우넛류, 튀김류, 쿠키류, 부침류, 면류 등으로 제공되어진다.The premix composition refers to a powder product that is premixed for easy cooking, and the ingredients are not only uniform and stable, but also convenient for cooking. Recently, as well as home consumption, industrial real demands of confectionery and bakery companies are increasing. The flour promix composition can be classified into various types according to the use or the manufacturing method. Generally, the flour promix composition is provided as bread and donuts, fried foods, cookies, frosted noodles, noodles, and the like.
본 발명의 프리믹스 조성물은 밀가루를 주성분으로 하면서 저항성전분 0.1∼50 중량%를 포함한다. 만일 0.1 중량% 미만으로 첨가되는 경우에는 제품에 수반되는 기능성과 품질에 기여하는 바가 크지 못하고, 50 중량%를 초과하게 되면 가공상의 문제와 주원료인 밀가루의 특성을 상실하게 되어 바람직하지 않다. 다만 상기 범위를 다소 벗어나는 경우라도 본 발명을 실시하지 못하는 것으로 되는 것은 아니므로 본 발명은 이들 균등실시영역에도 미친다.The premix composition of the present invention contains from 0.1 to 50% by weight of starch resistant to flour as a main component. If it is added less than 0.1% by weight is not a significant contribution to the functionality and quality accompanying the product, if it exceeds 50% by weight it is not desirable to lose the processing problems and properties of the flour as the main raw material. However, the present invention also extends to these equivalent embodiments even if the scope of the present invention is somewhat out of the range.
프리믹스 조성물에는 분유, 유지, 설탕, 식염, 베이킹 파우더 등의 공지의 첨가물이 포함될 수 있다. 또한 바람직하기로는 단백질로서 글루텐이 소정량 첨가될 수 있다. 단백질은 밀가루의 품질을 좌우하는 가장 중요한 인자로서 특히 품질의 평가는 글루텐 형성성분의 이화학적 특성과 관련된다. 상기 글루텐이 첨가되는 경우 밀가루의 함량비와 고려해 볼 때 바람직한 첨가량은 10중량% 이하로 한다.The premix composition may include known additives such as powdered milk, fats and oils, sugars, salts, baking powder and the like. Also preferably, a predetermined amount of gluten may be added as a protein. Protein is the most important factor in determining the quality of wheat flour, in particular the assessment of quality being related to the physicochemical properties of gluten forming ingredients. When the gluten is added in consideration of the content ratio of the flour and the preferred addition amount is 10% by weight or less.
이하 본 발명의 내용을 실시예를 통해 구체적으로 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 설명하기 위한 것일 뿐 발명의 권리범위가 이에 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail through examples. However, these examples are only for explaining the contents of the present invention is not limited to the scope of the invention.
<실시예 1> 빵의 제조Example 1 Preparation of Bread
빵의 제조에 사용되는 프리믹스 조성물은 시판 밀가루에 대해 생전분과 저항전분(RS3, RS4) 5종류를 각각 10%, 20%의 비율로 첨가하여 표 1과 같이 제조하였다The premix composition used for the manufacture of bread was prepared as shown in Table 1 by adding 5 types of raw starch and resistance starch (RS3, RS4) to 10% and 20%, respectively, with respect to commercial flour.
<표 1> 밀가루의 조성Table 1 Composition of Wheat Flour
빵 반죽은 A.A.C.C.(10-10A)방법의 직접반죽법에 준하였다. 호버트 믹서(A200T, 미국)에 표 1의 재료를 넣고 반죽한 후 프루퍼에서 1차 발효(27℃, 75% R/H, 1hr)를 시켰다. 1차 발효가 완료된 반죽을 430g씩 분할하여 기포를 제거한 후 둥글리기를 하여 10분간 작업대 위에서 벤취 타임을 주고난 뒤 성형하여 틀에 넣고 2차 발효(35℃, 85% R/H, 1hr)를 실시하였다. 식빵은 예열된 오븐(Winkler deck, 독일)에서 반죽을 24분(윗불 180℃, 아랫불 190℃)간 굽고, 구워진 즉시 오븐에서 꺼내 실온에서 2시간 방냉시킨 후 제조하였다.Bread dough was prepared according to the direct kneading method of A.A.C.C. (10-10A) method. Hover mixer (A200T, USA) was put into the ingredients of Table 1 and kneaded, and then subjected to primary fermentation (27 ° C., 75% R / H, 1 hr) in a proofer. 430g of the primary fermentation is completed by removing the bubbles to remove the air bubbles and then rounded off, give the bench time for 10 minutes on the workbench, then molded into the mold and the secondary fermentation (35 ℃, 85% R / H, 1hr) Was carried out. The bread was prepared after baking the dough in a preheated oven (Winkler deck, Germany) for 24 minutes (upper 180 ° C., lower fire 190 ° C.), immediately taken out of the oven and allowed to cool at room temperature for 2 hours.
<시험예 1> 밀가루 일반성분 분석Test Example 1 Analysis of General Ingredients of Wheat Flour
(1) 실험과정(1) Experimental process
저항전분 첨가 밀가루의 수분, 회분, 조단백질, 젖은 글루텐은 A.A.C.C. 방법에 따라 분석하였다. 수분은 상압 가열 건조법(2g, 130℃, 1hr), 회분은 직접 회화법(5g, 580℃, 4hr), 조단백질 함량은 킬달 질소 정량법으로 측정하였다. 젖은 글루텐은 시료 25g에 물 15ml를 가하여 반죽하고 흐르는 물에서 12분 동안 전분을 씻어낸 후 손으로 물기를 제거한 후 글루텐 양을 측정하였다.Moisture, Ash, Crude Protein, and Wet Gluten of Wheat Flour Resistant Starch Added by A.A.C.C. The analysis was conducted according to the method. Moisture was measured by atmospheric heating and drying (2 g, 130 ° C., 1 hr), ash by direct ashing (5 g, 580 ° C., 4 hr), and crude protein content by Kjeldahl nitrogen assay. Wet gluten was kneaded by adding 15 ml of water to 25 g of the sample, washed starch in running water for 12 minutes, and then drained by hand to measure the amount of gluten.
(2) 실험결과(2) Experiment result
저항전분이 첨가된 밀가루의 수분, 회분, 조단백질, 젖은 글루텐의 함량은 표 2와 같다. 저항전분을 첨가한 밀가루의 수분함량은 12.1∼13.6%로 밀가루의 수분함량인 13.4%와 유사하였다. 회분함량의 경우 대조구 1과 비교시 밀전분과 RS3형 전분을 사용한 대조구 1-1부터 샘플 3-2까지의 경우에는 저항전분의 첨가 함량이 높아짐에 따라 회분도 비례적으로 감소하는 경향을 보였으나 RS4형 전분을 사용한 샘플 4-1부터 샘플 4-2까지는 저항전분 첨가량에 따라 다소 증가하였다. 이는 RS4형 전분을 제조할 때 사용한 가교 결합제와 염 또는 제조과정 중 생성된 염때문인 것으로 사료된다. 이것은 저항전분 제조 후 수세과정에서 가교 결합에 사용되고 남은 잔유물이 완전히 제거되지 않았기 때문이다. 또 RS4형 전분은 인산기에 의한 가교결합 전분으로 전분에 인산기가 결합되어 회분함량을 다소 증가시킨다.The moisture, ash, crude protein, and wet gluten content of flour added with resistant starch are shown in Table 2. The moisture content of flour added with resistant starch was 12.1 ~ 13.6%, which was similar to that of flour, 13.4%. In case of ash content, in case of control 1-1 using sampled starch and RS3 type starch to sample 3-2, ash content also decreased proportionally as the content of resistance starch increased compared to control 1, but RS4 From sample 4-1 using sample starch to sample 4-2, the amount increased with the addition of the resistance starch. This may be due to the crosslinking agent and salt used to prepare RS4 starch or salts formed during the preparation process. This is because the residues used for crosslinking in the washing process after the preparation of the resistant starch were not completely removed. In addition, RS4 type starch is a cross-linked starch by phosphate groups, and the phosphate group is bonded to the starch, thereby slightly increasing the ash content.
밀가루의 제빵 적성은 밀가루 단백질 함량과 질에 좌우되고 빵의 부피를 결정하는 중요한 인자이다. 밀가루의 단백질의 특징 중의 하나는 글리아딘, 글루테닌 두 단백질이 물과 혼합되어 글루텐이라는 단백질을 형성하는 것이고 이러한 성질은 밀가루 단백질만이 갖는 독특한 것이다. 본 실험에서는 저항전분이 10% 첨가되었을 때 단백질이 평균 1.22%, 젖은 글루텐량은 3.82% 감소하였고 20% 첨가시에는 2.27%, 6.58%가 감소하였다.The baking aptitude of flour depends on flour protein content and quality and is an important factor in determining bread volume. One of the characteristics of wheat flour protein is that two proteins, gliadin and glutenine, are mixed with water to form a protein called gluten. This property is unique to wheat flour protein. In this experiment, when 10% of the starch was added, the average protein decreased by 1.22%, the wet gluten content decreased by 3.82%, and the addition of 20% decreased 2.27% and 6.58%.
<표 2> 일반성분 분석결과<Table 2> General Component Analysis Results
<시험예 2> 밀가루 입자분포Test Example 2 Distribution of Flour Particles
(1) 실험과정(1) Experimental process
혼합 밀가루 입자의 크기 및 분포 측정을 위하여 입도분석기(LS-100Q, Coulter Counter, 미국)를 사용하였다. 100mL 비이커에 95% 에탄올 50mL를 넣은 다음 시료 1g을 분산시켜, obscurity가 8∼12%가 되도록 주입구에 주입하였다. 시료에 레이저를 쬐면 레이저가 입자에 투사할 때 산란되는 빛이 서로 간섭하고 이를 통해 특정 각도에서 증폭, 소멸되어 나타난다. 입자의 크기는 산란되는 빛의 세기와 형태에 따라 측정된다.A particle size analyzer (LS-100Q, Coulter Counter, USA) was used to measure the size and distribution of the mixed flour particles. 50 mL of 95% ethanol was added to a 100 mL beaker, and then 1 g of the sample was dispersed and injected into the inlet so that the obscurity was 8-12%. When a laser is placed on a sample, the scattered light interferes with each other when the laser is projecting onto a particle, which causes it to amplify and disappear at a certain angle. Particle size is measured by the intensity and shape of the scattered light.
(2) 실험결과(2) Experiment result
저항전분 첨가 밀가루의 입자분포는 표 3과 같다. 대조구는 평균 입자 크기가 62.21㎛였고 생전분의 첨가는 함량의 증가(10%, 20%)에 따라 63.92㎛, 70.16㎛로 평균 입자 크기를 증가시켰다. RS3형 전분이 밀가루에 첨가되었을 때 첨가량이 증가함에 따라 입자 크기를 65.45㎛에서 74.90㎛까지 증가시켰고, RS4형 전분의 경우에는 첨가량에 반비례하게 평균 입자크기가 60.69㎛에서 53.13㎛까지 감소되었다. RS4형 전분이 첨가된 샘플 4-1부터 샘플 5-2까지의 밀가루는 10㎛∼40㎛사이의 입자가 다른 시료에 비해 많이 관찰되었다.The particle distribution of the wheat flour with the resistance starch is shown in Table 3. The control group had an average particle size of 62.21 μm and the addition of raw starch increased the average particle size to 63.92 μm and 70.16 μm with increasing content (10%, 20%). When RS3 starch was added to flour, the particle size increased from 65.45 to 74.90 μm, and the average particle size decreased from 60.69 μm to 53.13 μm in inverse proportion to the amount of RS4 starch. In the flour from Sample 4-1 to Sample 5-2 to which RS4 type starch was added, more particles between 10 μm and 40 μm were observed than other samples.
<표 3> 입자분포Table 3 Particle Distribution
* d10: 10% volume에서의 입자크기, ** d90: 90% volume에서의 입자크기.* d10: particle size at 10% volume, ** d90: particle size at 90% volume.
<시험예 3> 손상전분 함량Test Example 3 Damaged Starch Content
(1) 실험과정(1) Experimental process
손상전분 함량은 AACC 76-30A에 따라 측정하였다. 시료는 0.2%(14% 수분 기준) 현탁액을 만들어 시험관에 넣고 여기에 4분 동안 예열처리한 α-아밀라제(Sigma Co, 미국)용액(아세트산 버퍼, pH 4.6-4.8 ) 9mL를 가하여 잘 혼합하였다. 30℃ 항온 수조(DS-21S)에서 15분간 반응시켰다. 3.68N 황산 용액 0.6ml와 텅스텐산 나트륨 용액(12g Na2WO4·2H2O을 물 100mL에 녹인 용액) 0.4ml를 가하여 2분간 정치한 다음, 이 액을 여과지(Whatman No. 4)를 사용하여 여과하였다.Damaged starch content was measured according to AACC 76-30A. Samples were prepared by mixing 0.2% (14% moisture) suspension in a test tube and adding 9 mL of pre-heated α-amylase (Sigma Co, USA) solution (acetic acid buffer, pH 4.6-4.8) to 9 ml. The reaction was carried out in a 30 ° C. constant temperature water bath (DS-21S) for 15 minutes. 0.6 ml of 3.68N sulfuric acid solution and 0.4 ml of sodium tungstate solution (a solution of 12 g Na 2 WO 4 · 2H 2 O dissolved in 100 mL of water) were added thereto, and the mixture was left to stand for 2 minutes. The solution was then filtered using Whatman No. 4 filter paper. Filtered.
여과액 5ml를 시험관에 취하고 환원당을 측정하기 위해 0.1N 알칼라인 페리시아나이드 용액(33g K3Fe(CN)6과 44g 무수 Na2CO3을 1L의 따뜻한 물에 녹인 용액) 10mL를 가하여 끓는 항온수조에서 20분간 반응시킨 후 흐르는 물에 완전히 냉각시켰다. 이 시험관을 아세트산염 용액(70g KCl과 40g ZnSO4·7H2O를 750ml 물에 녹인후 200mL glacial acetic acid를 넣어 1L로 정용한 용액) 25mL로 씻어주면서 100mL 삼각플라스크에 옮겨 담은 후 가용성 전분-KI 용액 1mL를 가하였다. 가용성 전분-KI 용액은 2g 용해성 전분을 소량의 찬물에 분산시키고 끓는 물에 천천히 부은 후 완전히 냉각시켜 50g KI를 첨가하고 100ml로 정용한 후 포화 NaOH용액을 1방울 떨어뜨려 만들었다. 0.1N 치오설페이트 용액(24.82g Na2S2O3·5H2O와 3.8g borax를 1L물에 녹인 용액)으로 파란색이 없어질 때까지 적정하였다. 전분의 손상도는 페리시아나이드-말토오즈-수크로즈 변환표에 따라 다음과 같이 계산하였다.5 ml of the filtrate was added to a test tube and a boiling water bath was added with 10 mL of 0.1 N alkaline ferricyanide solution (33 g K 3 Fe (CN) 6 and 44 g anhydrous Na 2 CO 3 in 1 L of warm water) to measure the reducing sugar. After reacting for 20 minutes at, it was completely cooled in running water. The test tube was washed with 25 mL of an acetate solution (70 g KCl and 40 g ZnSO 4 · 7H 2 O dissolved in 750 ml of water, and 200 mL glacial acetic acid was added to 1 L). 1 mL was added. Soluble starch-KI solution was prepared by dispersing 2g soluble starch in a small amount of cold water, slowly pouring into boiling water, cooling completely, adding 50g KI, diatomizing to 100ml, and dropping 1 drop of saturated NaOH solution. Titrate with 0.1N thiosulfate solution (24.82 g Na 2 S 2 O 3 · 5H 2 O and 3.8 g borax in 1 L water) until blue color disappeared. Starch damage was calculated as follows according to the ferricyanide-maltose-sucrose conversion table.
전분의 손상도 ( % ) = 0.082 × mg 말토오즈 / 10g 샘플Starch damage (%) = 0.082 × mg maltose / 10 g sample
(2) 실험결과(2) Experiment result
저항전분을 첨가한 밀가루의 손상 전분 함량은 표 4와 같다. 제빵 과정에서 손상전분은 글루텐 단백질과 경쟁적으로 물을 흡수한다. 만약 손상 전분이 많다면 제조된 반죽 특성에 영향을 줄 것이다. Farrand에 따르면 주어진 단백질 양에 준하여 허용된 함량 이하에서 손상전분량이 증가하면 반죽의 흡수량은 증가하지만 구워진 빵의 부피는 감소하는 경향이 있다. 측정되어진 손상전분량은 대조구 2, 샘플 4, 샘플 5는 첨가 비율에 따라서 손상전분량이 비례적으로 감소하였으나 RS3형 전분이 첨가된 샘플 1, 샘플 2, 샘플 3 시료들은 오히려 손상전분이 증가되는 경향을 보였다.Damaged starch content of flour added with resistant starch is shown in Table 4. In baking, the damaged starch absorbs water competitively with gluten protein. If there is a lot of damaged starch, it will affect the dough properties produced. According to Farrand, if the amount of damaged starch is increased below the permissible amount based on the amount of protein given, the absorption of the dough increases but the volume of the baked bread tends to decrease. The damage starch measured was proportionally decreased in the control group 2, sample 4, and sample 5 according to the addition ratio, but the sample 1, sample 2, and sample 3 to which the RS3-type starch was added increased. Showed a tendency.
<표 4> 손상전분<Table 4> Damaged Starch
<시험예 4> 침강실험Test Example 4 Sedimentation Experiment
(1) 실험과정(1) Experimental process
저항전분 첨가 밀가루의 글루텐 함량 및 질의 차이 비교를 위해서 침강시험을 실시하였다. 50ml의 증류수를 100mL 실린더에 넣은 다음, 시료 3.2g(14.0% 수분 기준)을 실린더에 넣었다. 이 현탁액을 30초 동안 상하로 흔든 다음 5분간 방치하였다. 여기에 블루 또는 브로모페놀 블루 지시약을 2∼3방울 떨어뜨리고, 락트산/이소프로필알콜 용액(락트산 250ml를 섞은 다음 물로 1L로 희석한 용액)25mL를 가하여 상하로 10번 혼합하였다. 이 실린더를 바로 정상위치로 놓은 다음 5분간 정치시켜 침강되는 물질의 부피를 측정하였다.A sedimentation test was performed to compare the gluten content and quality of wheat flour with resistant starch. 50 ml of distilled water was placed in a 100 mL cylinder, and 3.2 g (14.0% moisture basis) of the sample was placed in the cylinder. The suspension was shaken up and down for 30 seconds and then left for 5 minutes. 2 to 3 drops of blue or bromophenol blue indicator were added thereto, and 25 ml of lactic acid / isopropyl alcohol solution (250 ml of lactic acid mixed with 1 L of water) was added thereto, and the mixture was mixed up and down 10 times. The cylinder was placed directly in the normal position and allowed to stand for 5 minutes to measure the volume of material settled.
침강값(mL, 14.0% 수분 기준) = 측정된 침강값(mL) × (100-14)/(100-실제수분함량)Sedimentation value (mL, 14.0% moisture basis) = measured sedimentation value (mL) × (100-14) / (100-actual water content)
(2) 실험결과(2) Experiment result
침강 시험의 결과는 표 5과 같다. 100% 밀가루인 대조구 1과 비교하여 저항전분의 함유량이 높아짐에 따라서 침강값이 비례적으로 감소하는 경향을 보였고, 저항전분을 10% 첨가한 시료의 평균 침강값은 42.35mL였고, 20% 첨가한 시료의 평균 침강값은 38.43mL였다. 10% 첨가 시료에서는 침강값이 비교적 일정하지만 20% 첨가시에는 RS3형 시료군에서 침강값의 차가 많이 났다. 침강시험은 lactic acid의 처치에 의한 밀가루 단백질의 팽윤 작용을 기초로 하고 있고, 실린더 바닥에 가라앉은 글루텐의 부피는 글루텐의 팽윤 용량(swelling capacity)을 결정하는 밀가루 속의 단백질의 양과 질에 의존한다. 이는 흡수되어지는 물의 양이 증가함에 따라 비중이 감소하고 침강속도가 느려지기 때문이다. 이 침강시험은 밀가루속의 단백질의 양이나 질을 측정하는 것 보다 식빵의 부피를 예상할 수 있다. 따라서 본 발명에서는 저항전분을 첨가한 밀가루로 제조한 식빵의 부피가 저항전분을 첨가하지 않은 대조구보다 적어짐을 보여주었다.The results of the sedimentation test are shown in Table 5. As compared with the control 1, which is 100% wheat flour, the sedimentation value tended to decrease proportionally as the content of the resistance starch increased, and the average sedimentation value of the sample containing 10% of the resistance starch was 42.35mL and 20% The average sedimentation value of the sample was 38.43 mL. Although the sedimentation value was relatively constant in the 10% added sample, the difference in sedimentation value was large in the RS3 type sample group when 20% was added. The sedimentation test is based on the swelling action of flour protein by treatment with lactic acid, and the volume of gluten sinking to the bottom of the cylinder depends on the quantity and quality of the protein in the flour, which determines the swelling capacity of the gluten. This is because the specific gravity decreases and the sedimentation rate is slowed down as the amount of water to be absorbed increases. This sedimentation test can predict the bread volume rather than measuring the quantity or quality of protein in flour. Therefore, the present invention showed that the bread volume of bread made of flour containing resistance starch was smaller than that of control group without resistance starch.
<표 5> 침강값<Table 5> Sedimentation Value
<시험예 5> 색도측정Test Example 5 Chromaticity Measurement
(1) 실험과정(1) Experimental process
색도는 색차계(JP7100P, JUKI Co., Japan)를 사용하여 식빵의 시료의 L, a, b 값을 측정하였다.For chromaticity, L, a, and b values of samples of bread were measured using a color difference meter (JP7100P, JUKI Co., Japan).
(2) 실험결과(2) Experiment result
저항전분을 혼합한 밀가루의 색도는 표 6과 같으며 밀가루의 L값이 98.26으로 가장 높은 수치를 나타내어 가장 밝은 명도를 나타내었다. 생전분이 첨가된 대조구 2나 저항전분이 첨가된 샘플 1-1부터 샘플 5-2의 시료는 최저 89.48에서 90.68까지 값으로 명도가 낮았으며 저항전분간에 차이를 보였다. L값은 저항전분첨가군이 대조군보다 더 낮았고, 적색을 나타내는 a 값은 -(녹색)쪽으로 증가하였으며 노란색의 b값은 +7.9정도의 증가를 보여 전분을 첨가한 밀가루가 더 노란색을 가지고 있는 것으로 나타났다.The chromaticity of wheat flour mixed with resistance starch is shown in Table 6, and the L value of wheat flour was 98.26, showing the highest value, showing the brightest brightness. Samples 1-1 to 5-2 with added raw starch or samples with added resistance starch showed low brightness with low values ranging from 89.48 to 90.68 and showed difference in resistance starch. The L value was lower than that of the control starch group, the red value of a increased to-(green), and the b value of yellow increased by +7.9, indicating that the flour containing starch was more yellow. appear.
<표 6> 색도<Table 6> Chromaticity
<시험예 6> 점도측정계에 의한 호화 특성 측정Test Example 6 Gelatinization Characteristic Measurement by Viscometer
(1) 실험과정(1) Experimental process
저항전분 첨가 밀가루의 가열에 따른 호화 특성을 점도 측정계(Amylograph, Brabender, 독일)를 이용하여 측정하였다. 시료(14% 수분 기준) 65g에 증류수 450ml를 넣고 1분에 1.5℃씩 가열하여 호화개시온도(점도가 10Bu 이상으로 증가하기 시작한 온도로 표시), 최고점에서의 온도 및 최고점에서의 점도를 측정하였다. 점도 측정계에서 얻은 특성치는 밀가루의 제빵적성을 판단할 수 있으며, 제빵적성은 호화온도가 낮고 최고점도가 400∼600Bu인 밀가루가 양호한 것으로 알려져 있다.Gelatinization characteristics of the flour with resistance starch were measured using a viscosity meter (Amylograph, Brabender, Germany). In 65 g of the sample (14% moisture), 450 ml of distilled water was added and heated at 1.5 ° C. per minute to measure the gelatinization start temperature (expressed as the temperature at which viscosity began to increase above 10 Bu), the temperature at the highest point, and the viscosity at the highest point. . The characteristic value obtained from the viscosity measuring system can determine the baking suitability of the flour, and the baking suitability is known to be excellent in flour having a low gelatinization temperature and having a highest viscosity of 400 to 600 Bu.
(2) 실험결과(2) Experiment result
저항 전분 첨가 비율에 따른 점도측정계의 특성치는 표 7과 같았다. 저항전분을 첨가하지 않은 대조구 1의 초기 호화 온도는 57.0℃였고, 저항전분이 첨가된 샘플은 56.3분에서부터 61.3분 사이에서 호화가 개시되었다.The characteristic values of the viscometer according to the ratio of resistance starch were shown in Table 7. The initial gelatinization temperature of Control 1 without the addition of the resistance starch was 57.0 ° C., and the sample with the resistance starch added began to be gelatinized between 56.3 minutes and 61.3 minutes.
최고점도는 전분이 호화과정중 나타내는 최고의 점도를 나타내는 것으로써 이는 농도의 영향을 받게된다. 농도가 증가할수록 최고점도는 증가하고 초기호화온도는 낮아지게 된다. 대조구 1이 850BU였고 대조구 2-1, 2-2의 경우에는 전분의 첨가량 증가에 따라 점도가 증가하는 전형적인 상태를 나타냈다. RS3형과 RS4형 저항전분이 첨가됨에 따라 초기호화 온도는 증가하였으나 최고점도는 오히려 첨가량이 증가함에 따라 감소하였다. 샘플 3-2의 최고점도가 가장 낮았다. RS4형의 저항전분을 첨가한 샘플 4와 샘플 5의 경우에는 RS3형 전분을 첨가한 샘플 보다는 최고 점도 값이 높았다.The highest viscosity represents the highest viscosity the starch exhibits during the gelatinization process, which is affected by the concentration. As the concentration increases, the peak viscosity increases and the initial stabilization temperature decreases. Control 1 was 850BU, and control 2-1 and 2-2 showed a typical state in which the viscosity increased as the amount of added starch increased. As the RS3 and RS4 resistance starches were added, the initial stabilization temperature increased, but the peak viscosity decreased with the addition amount. The highest viscosity of Sample 3-2 was the lowest. Sample 4 and sample 5, which had added RS4 type resistive starch, had higher peak viscosity values than samples containing type RS3 starch.
저항 전분을 첨가한 밀가루는 전분을 첨가하지 않은 밀가루보다 총 전분 함량이 낮게 나타났다. RS3형 전분 첨가시에는 첨가율이 증가함에 따라 점도가 감소하는 경향을 나타냈으나, RS4형은 그 차이를 보이지 않았다.Flour added with resistant starch had lower total starch content than flour without added starch. When RS3 starch was added, the viscosity tended to decrease with increasing the addition rate, but RS4 did not show the difference.
전분 호화액의 점도 양상은 전분 입자의 팽윤 정도와 팽윤된 입자의 열 및 전단에 의한 안정성, 입자의 크기와 모양, 아밀로오스와 아밀로펙틴 함량 및 구조 차이, 결정정도에 의하여 결정된다. 전분의 호화는 전분과 물분자의 상호작용의 결과이며 물은 수소결합에 의하여 회합되어 있으나 온도가 높아질수록 단분자의 비율이 증가하고 이 회합정도가 낮은 물분자가 전분의 미세한 결정 가까이 침입하여 고온에서 불안정하게된 전분 분자의 수소 결합에 파괴를 일으키는 것으로 알려져 있다.Viscosity of starch liquor is determined by the degree of swelling of the starch particles, the stability by heat and shear of the swollen particles, the size and shape of the particles, the content and structure of amylose and amylopectin, and the degree of crystallinity. Gelatinization of starch is the result of the interaction between starch and water molecules. Water is associated with hydrogen bonds, but as the temperature increases, the ratio of monomolecules increases. It is known to cause breakdown in hydrogen bonds of starch molecules that become unstable at.
이러한 과정에서 전분입자의 팽윤이 일어나고 아밀로오스 분자들이 용출되어 나오면서 전분의 분산액은 점도가 매우 큰 유백색의 콜로이드 용액을 형성하여 일정한 전분 농도 이상에서 냉각하면 반고체 겔을 형성하게 된다고 하였다.In this process, swelling of the starch particles and amylose molecules eluted out, the starch dispersion forms a milky colloidal solution with a very high viscosity and forms a semi-solid gel when cooled above a certain starch concentration.
<표 7> 점도 특성TABLE 7 Viscosity Characteristics
<시험예 7> 밀가루의 반죽 특성Test Example 7 Dough Characteristics of Flour
(1) 실험과정(1) Experimental process
저항전분을 첨가한 밀가루의 반죽 특성은 A.A.C.C 방법에 따라 파리노그래프(Brabender, 독일)를 사용하여 측정하였다. 혼합용기(Mixing bowl)의온도를 30℃±0.2℃로 조정하고 시료 300g(14.0% 수분 기준)을 사용하여 커브의 중심선이 500BU 선에 도달하도록 물을 가하여 흡수율, 안정도, 반죽형성 시간, MTI(Mixing Tolerance Index)를 측정하였다.The kneading properties of flour added with resistance starch were measured using parinograph (Brabender, Germany) according to the A.A.C.C method. Adjust the temperature of the mixing bowl to 30 ℃ ± 0.2 ℃ and add water so that the center line of the curve reaches 500BU line using 300g of sample (14.0% moisture standard). Mixing Tolerance Index) was measured.
(2) 실험결과(2) Experiment result
저항전분을 첨가한 밀가루 파리노 그래프로 분석한 결과가 표 8와 같다. 대조구 1의 흡수율은 66.5%였고 샘플 2-1, 샘플 2-2는 각각 저항전분 첨가량에 따라 흡수율이 70.2%, 76.7%로 증가하였다. 샘플 3-1, 샘플 3-2는 흡수율 증가가 가장 커 70.9%, 79.3%였다. 피리노 그래프의 흡수율은 밀가루의 단백질 함량, 입도, 손상전분에 의해 영향을 받는다. 생전분을 첨가한 밀가루 반죽은 첨가량에 따라 흡수율에 따른 변화가 적은데 반하여 저항전분을 첨가한 밀가루의 경우에는 흡수율이 증가하였다. 그러나 RS4형 저항전분이 첨가된 시료군에서의 흡수율 변화는 타 시료군에 비해 변화가 적었다. 이것은 저항전분의 구조에 의하여 전분의 무정형 부분의 흡수율에 영향을 준 것으로 생각되었다. 반죽 형성 시간은 대조구가 2.7분 이었고 생전분의 첨가의 경우 2.0분, 2.1분을 나타냈다. RS3형 저항전분을 첨가한 시료군에서는 반죽 형성 시간이 증가하였고 20% 첨가시에는 대조구와 유사한 결과를 보였다. RS4형 저항전분을 첨가한 시료군에서는 10%, 20% 첨가 시료 모두 감소하였다. 저항전분 10% 첨가시에 반죽 형성 시간이 증가되는 것은 저항전분의 무정형 부분이 먼저 수화되어 글루텐 형성속도를 늦추었기 때문이라고 생각되었다. 반죽의 안정도는 대조구가 38.5분이었고 생전분과 저항전분 첨가 시료군에서 첨가율에 비례하여 안정도가 감소하였으나 특히 샘플 3-2형의 전분이 첨가된 시료에서는 그 변화폭이23.5분에서 6.5분으로 매우 컸다.Table 8 shows the results of analysis of wheat flour parino graph with the addition of resistance starch. The absorption rate of Control 1 was 66.5%, and the absorption rates of Sample 2-1 and Sample 2-2 increased to 70.2% and 76.7%, respectively, according to the amount of resistance starch added. Samples 3-1 and 3-2 had the largest increase in absorption rates of 70.9% and 79.3%. The absorption rate of the pyrinograph is influenced by the protein content of the flour, the particle size and the damaged starch. Flour dough added with raw starch showed little change according to the absorption rate, whereas the absorption rate of wheat flour added with resistance starch increased. However, the change in absorption rate of the sample group to which RS4 type resistance starch was added was smaller than that of other sample groups. This was thought to influence the absorption of the amorphous portion of the starch by the structure of the resistive starch. The dough formation time was 2.7 minutes for the control and 2.0 minutes and 2.1 minutes for the addition of raw starch. The dough formation time was increased in the sample group to which RS3-type starch was added, and similar results were obtained at 20% addition. In the sample group to which RS4-type starch was added, both the 10% and 20% added samples decreased. The increase in dough formation time when 10% resistance starch was added was thought to be due to the fact that the amorphous portion of the resistance starch was first hydrated to slow down the gluten formation. The stability of the dough was 38.5 minutes in the control group, and the stability decreased in proportion to the addition rate in the raw starch and the resistance starch sample groups.
MTI는 대조구 1의 경우 10BU 였고 생전분과 저항전분의 첨가량에 따라 MTI 값이 커지는 현상을 보였다. RS4형 전분이 첨가된 시료군에서는 표 9에서와 같이 그 값의 편차가 컸다. MTI가 커진다는 것은 반죽의 안정성이 낮아진다는 것을 의미하기 때문에 MTI가 커짐에 따라서 제빵 적성이 나빠졌을것로 예상했다.MTI was 10BU in Control 1 and the MTI value increased with the addition of raw starch and resistance starch. In the sample group to which the RS4 type starch was added, the variation of the value was large as shown in Table 9. Larger MTI means less stability of the dough, so it is expected that the breadability will be worse as the MTI increases.
<표 8> 반죽특성Table 8 Dough Properties
<시험예 8> 빵의 부피 측정Test Example 8 Measurement of Bread Volume
(1) 실험과정(1) Experimental process
빵의 총 부피는 좁쌀을 이용한 종자치환법으로 측정하였다. 비용적은 crumb 부분을 1×1×1.3 ㎤ 크기로 잘라 무게를 측정하여 무게에 대한 부피의 비로서 표시하였고, 벌크밀도(Bulk density)를 계산하였다.The total volume of bread was measured by seed replacement using millet. The specific cost was obtained by cutting the crumb portion into 1 × 1 × 1.3 cm 3, measuring the weight, and expressing it as the ratio of the volume to the weight, and calculating the bulk density.
(2) 실험결과(2) Experiment result
저항전분을 첨가한 밀가루로 제조된 빵의 부피와 비용적은 표 9와 같다. 빵의 부피는 대조구 1이 2130mL였고 비용적은 4.95였다. 생전분과 저항전분이 첨가된 밀가루로 만든 시료 모두 첨가량이 증가함에 따라 총 부피 및 비용적이 감소하였다. 생전분과 저항전분이 10% 첨가된 경우 대조구에 비해 부피가 338mL에서 210mL까지 감소하였으나 전체적인 제품 모양이나 부피는 양호하였다. 20% 첨가된 빵의 경우 RS3형 전분이 첨가된 시료의 총부피가 샘플 1-2 1563mL, 샘플 2-2 1593mL, 샘플 3-2 1585mL로 대조구 1, 대조구 2 그리고 RS4형 저항전분이 첨가된 시료군보다 작은 부피를 가졌다. 빵의 부피는 글루텐 형성 단백질(글루테닌, 글리아딘)의 비율이 중요하며 그외 밀가루에 함유된 전분, 극성지질과 가스팽창제 등에 의해 영향을 받는다고 알려져 있다. RS3형 전분을 첨가한 빵의 부피를 증가시키기 위해서는 활성글루텐(Vital Wheat Gluten)을 첨가하는 것이 바람직하다. 밀도는 빵을 씹을 때 씹히는 맛의 차이를 주며 밀도가 작을수록 부드러운 느낌이, 밀도가 크면 쫄깃한 느낌을 주게 된다. Bulk density는 빵의 무게와 부피의 비를 나타낸 것으로 대조구 1이 가장 높았으며 저항전분의 첨가량이 증가할수록 낮아졌다.Table 9 shows the volume and cost of bread made from flour containing resistant starch. The bread volume was 2130 mL in Control 1 and the cost was 4.95. The total volume and the cost decreased with the addition of both raw and resistant starch flours. When 10% of raw starch and resistant starch were added, the volume decreased from 338 mL to 210 mL compared to the control, but the overall product shape and volume were good. For the 20% added bread, the total volume of the sample containing RS3 starch was 15-15 mL of sample 1-2, 1593 mL of sample 2-2, 1585 mL of sample 2-2, and the sample containing control 1, control 2, and RS4 resistance starch. It had a smaller volume than the group. Bread volume is known to be affected by the proportion of gluten-forming proteins (glutenin, gliadin), and is influenced by starch, polar lipids and gas swelling agents in other flours. In order to increase the volume of bread containing RS3 starch, it is desirable to add Vital Wheat Gluten. Density gives a difference in taste when chewing bread. The smaller the density, the softer the feeling, and the higher the density, the more chewy. The bulk density was the ratio of the weight and volume of bread, the highest in Control 1, and decreased as the amount of resistance starch increased.
<표 9> 부피TABLE 9 Volumes
<시험예 9> 빵의 텍스쳐 측정Test Example 9 Texture Measurement of Bread
(1) 실험과정(1) Experimental process
텍스쳐는 빵의 작은 crumb을 2×4×1.3 ㎤ 크기로 잘라 레오미터(Fudoh rheometer, 일본)로 다음과 같은 조건에서 측정하였다. 압착시험(Compression test)은 range 200g, 시험속도는 30cm/M, 어뎁터 직경은 24.4mm의 조건에서 측정하였고, 전단시험(Shearing test)은 range 200g, 시험속도는 30cm/M, sweep speed는 50cm/M으로 측정하였다.The texture was cut into small crumbs of bread into 2 × 4 × 1.3 cm 3 and measured with a rheometer (Fudoh rheometer, Japan) under the following conditions. Compression test was measured under the condition of range 200g, test speed 30cm / M, adapter diameter 24.4mm, shearing test range 200g, test speed 30cm / M, sweep speed 50cm / Measured by M.
(2) 실험결과(2) Experiment result
빵의 텍스쳐를 레오미터로 측정한 결과는 표 10, 11,와 같다. 빵의 제조후 3일간 밀봉하여 보관한후 각 시료의 텍스쳐를 압착시험과 shearing test를 통해 측정하였다. crumb의 단단함을 나타내는 toughnesss는 대조구의 경우 198g이었고, RS3형과 RS4형 저항전분을 10% 첨가한 시료군에서는 대조구와 크게 차이가 없었고샘플 3-1에서만 194g으로 낮았다. 저항전분을 20% 첨가한 시료군에서는 RS3형을 첨가한 샘플 1-2와 샘플 2-2에서 낮은 toughness 값을 얻었다.The results of measuring the texture of the bread by rheometer are shown in Tables 10 and 11. After the manufacture of bread was sealed and stored for 3 days, the texture of each sample was measured through a compression test and a shearing test. The toughness of the crumb was 198 g in the control group, and the sample group containing 10% RS3 and RS4 resistance starch was not significantly different from the control group. In the sample group to which 20% of the resistance starch was added, low toughness values were obtained in the sample 1-2 and the sample 2-2 to which the RS3 type was added.
빵의 단단함은 생전분이나 저항전분의 직접적인 영향이라기 보다는 저항전분내의 무정형 부분이 요구하는 수분의 양이 많으면 글루텐의 형성에 영향을 주기 때문으로 생각된다. 낮은 글루텐 형성능은 발효동안 생성된 이산화탄소(CO2) 가스를 잘 포집하지 못하여 빵의 전체 부피가 작아지고, 밀집된 구조를 갖게 되어 더 딱딱해 지는 것으로 생각되었다. 탄성에서는 RS3형 저항전분이 첨가된 시료군에서 높은 값을 보였다. 점성 역시 RS3형 저항전분을 첨가한 시료군에서 높아 유의적이었다. 강성(Strength)은 전 시료군에서 유사한 특성을 보였으나 RS3형 저항전분을 10% 첨가한 샘플 2-1, 샘플 1-2에서 높은값을 보였다. Shearing energy도 RS3형 저항전분이 첨가된 시료군에서 높았다.Hardness of bread is thought not to be a direct effect of raw starch or resistant starch, but because the amount of water required by the amorphous portion of the resistant starch affects the formation of gluten. The low gluten-forming capacity was thought to be poor at capturing the carbon dioxide (CO 2 ) gas produced during fermentation, resulting in a smaller overall bread volume and a harder structure with a dense structure. The elasticity was high in the sample group to which RS3-type starch was added. Viscosity was also high in the sample group containing RS3-type starch. The stiffness was similar in all the sample groups, but was high in samples 2-1 and 1-2 added with 10% RS3-type starch. Shearing energy was also higher in the sample group to which RS3-type starch was added.
<표 10>TABLE 10
<표 11>TABLE 11
<시험예 10> 관능평가Test Example 10 Sensory Evaluation
(1) 실험과정(1) Experimental process
빵의 관능 평가는 미리 훈련을 받은 전남대학교 식품영양학과 대학원생 10명을 평가원으로 선정하여 실험 목적을 설명하고 평가를 시행하였다. 훈련은 실험 목적을 설명하고 예비 실험을 반복하여 평가 기준을 정확히 표시하도록 실시하였다.For the sensory evaluation of bread, 10 trained graduate students of the Department of Food and Nutrition, Chonnam National University, were selected as the evaluator. The training was conducted to explain the purpose of the experiment and to repeat the preliminary experiments to accurately indicate the evaluation criteria.
평가는 모양, 색깔, 기공, 향미, 텍스쳐에 대해서는 차이조사를 실시하였고, 전체적인 맛은 기호도 조사를 실시하였다. 평가지는 각 항목에 대해 15cm 직선 척도로 선 밑에 표시된 강도를 기준으로 표시하도록 하였다.The evaluation was conducted on the differences in shape, color, pore, flavor, and texture, and the taste was examined for overall taste. For each item, each item was marked on the 15cm straight scale based on the intensity indicated below the line.
(2) 실험결과(2) Experiment result
관능평가 결과는 표 12과 같다. 평가 제품군의 모양 균형성은 RS4형 저항전분(샘플 4-1, 샘플 4-2)이 첨가된 제품군에서 가장 낮은 불균일성을 보였으며 HMT처리를 한 RS3형 저항전분이 첨가된 제품군에서 우수한 균형성을 보였다. 껍질색(crust color)은 RS3형 저항전분이 첨가된 제품군에서 대조구보다 밝았고 RS4형 저항전분이 첨가된 제품군에서는 어둡게 나왔으며 첨가량에 따른 변화는 차이가 났으나 유의성이 없었다. 속색상(crumb color)은 전 제품군에서 유사한 특성을 나타내었으나 RS4형 저항전분을 첨가한 제품군에서 대조구보다 밝은 색을 띄었다. 기공(grain)은 생전분과 RS3형 저항전분을 첨가한 제품군의 경우에는 대조구와 유사한 균일성을 보였고 RS4형 저항전분을 첨가한 제품군의 경우에는 대조구보다 좋지 않았다. 빵의 구수(roasted)한 향은 0.1% 시트르산을 처리한 RS3형 저항전분을 첨가한 제품군에서 구수한 맛이 가장 강한 것으로 나타났고, 생전분을 첨가한 제품군에서 가장 약한 것으로 평가되었다. 이취는 첨가량이 증가함에 따라 강해졌으나 0.1% 시트르산을 처리한 RS3형 전분을 첨가한 제품군에서 더 강하게 나타났다. 맛은 전 제품군에서 RS형 전분을 첨가했을 때 구수한 맛이 증가된다고 평가되었다. 경도는 생전분이나 RS형 전분이 첨가됨에 따라 증가되었으나 RS형 전분보다는 생전분의 첨가량이 증가함에 따라서 더 강해졌다. 탄성은 RS3형 전분을 첨가한 제품군에서는 증가하였고 RS4형 전분은 첨가한 제품군에서는 감소하였다. 촉촉함은 RS3형 전분을 첨가하였을 때는 첨가량에 따라 증가하였고, 생전분과 RS4형 전분을 첨가하였을때는 감소하였다. 전체적인 기호도 평가에서는 RS3형 전분 특히 0.1% 시트르산으로 처리한 저항전분을 첨가한 제품이 높은 평가를 받았다.Sensory evaluation results are shown in Table 12. The shape balance of the evaluation family showed the lowest nonuniformity in the product group added with RS4 resistive starch (Samples 4-1, Sample 4-2), and showed good balance in the product group with HMT treated RS3 resistive starch. . The crust color was brighter than the control in the RS3-type starch, and darker in the RS4-type starch. The change was not significant. The crumb color showed similar characteristics in the whole product group, but was brighter than the control in the product group containing RS4 type resistance starch. The pores (grain) showed uniformity similar to that of the control group in the raw starch and RS3-resistant starch, and worse than the control in the RS4-type starch. The roasted flavor of bread was found to be the strongest in the range of RS3-type starch treated with 0.1% citric acid, and the weakest in the range of fresh starch. Off-flavor became stronger as the amount added increased, but was stronger in the family containing RS3 starch treated with 0.1% citric acid. Taste was evaluated to increase taste when added RS type starch in the whole product range. Hardness increased with the addition of raw starch or RS starch, but became stronger as the amount of raw starch increased than that of RS starch. Elasticity was increased in the product group added with RS3 starch and decreased in the product group added RS4 starch. Moisture increased with addition of RS3 starch and decreased with addition of raw starch and RS4 starch. In overall palatability evaluation, RS3-type starch, especially the product containing the resistance starch treated with 0.1% citric acid, was highly evaluated.
<표 12> 관능검사표<Table 12> Sensory Test Table
본 발명에 의하면 저칼로리원으로 인체에 유익한 저항성 전분을 밀가루에 첨가함으로써 밀가루 식품의 노화억제 및 보습성을 좋게 하고, 제품의 명도를 밝게 하여 상품성을 제고할 수 있으며, 수분 흡수율의 증가로 인한 수율의 증가가 기대된다.According to the present invention, by adding low-calorie resistant starch, which is beneficial to the human body, to flour, it improves anti-aging and moisturization of flour food, improves the brightness of the product, improves the commerciality, and improves yield by increasing moisture absorption. An increase is expected.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020007136A KR20030067235A (en) | 2002-02-07 | 2002-02-07 | Wheat Flour Premix Composition Containing Enzyme Resistance Starch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020007136A KR20030067235A (en) | 2002-02-07 | 2002-02-07 | Wheat Flour Premix Composition Containing Enzyme Resistance Starch |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030067235A true KR20030067235A (en) | 2003-08-14 |
Family
ID=32220939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020007136A KR20030067235A (en) | 2002-02-07 | 2002-02-07 | Wheat Flour Premix Composition Containing Enzyme Resistance Starch |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030067235A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05236908A (en) * | 1991-03-25 | 1993-09-17 | Unilever Nv | Ingestible material |
WO1994014342A1 (en) * | 1992-12-24 | 1994-07-07 | Goodman Fielder Limited | Food compositions including resistant starch |
KR940013332A (en) * | 1992-12-24 | 1994-07-15 | 김정순 | Premix composition |
KR19990001814A (en) * | 1997-06-17 | 1999-01-15 | 신말식 | How to increase the content of starch resistant to starch degrading enzyme |
US6013299A (en) * | 1997-11-04 | 2000-01-11 | Nabisco Techology Company | Process for making enzyme-resistant starch for reduced-calorie flour replacer |
-
2002
- 2002-02-07 KR KR1020020007136A patent/KR20030067235A/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05236908A (en) * | 1991-03-25 | 1993-09-17 | Unilever Nv | Ingestible material |
WO1994014342A1 (en) * | 1992-12-24 | 1994-07-07 | Goodman Fielder Limited | Food compositions including resistant starch |
KR940013332A (en) * | 1992-12-24 | 1994-07-15 | 김정순 | Premix composition |
US6303174B1 (en) * | 1992-12-24 | 2001-10-16 | Goodman Fielder Limited | Food compositions including resistant starch |
KR19990001814A (en) * | 1997-06-17 | 1999-01-15 | 신말식 | How to increase the content of starch resistant to starch degrading enzyme |
US6013299A (en) * | 1997-11-04 | 2000-01-11 | Nabisco Techology Company | Process for making enzyme-resistant starch for reduced-calorie flour replacer |
Non-Patent Citations (3)
Title |
---|
Journal of the Korean Culinary Science Association, vol.16(2), pp.188~194, 2000. * |
Journal of the Korean Society for Food and Nutrition, vol.30(4), pp.623~629, 2001 * |
Journal of the Korean Society for Food Science and Technology, vol.33(1), pp.157~160, 2001. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Goswami et al. | Barnyard millet based muffins: Physical, textural and sensory properties | |
Kurek et al. | The application of dietary fiber in bread products. | |
Wang et al. | Effect of the addition of different fibres on wheat dough performance and bread quality | |
Singh et al. | Effect of corn bran as dietary fiber addition on baking and sensory quality | |
JP4682117B2 (en) | Flour substitute for bakery food and bakery food | |
Noor Aziah et al. | Quality evaluation of steamed wheat bread substituted with green banana flour. | |
Pycia et al. | Effect of adding potato maltodextrins on baking properties of triticale flour and quality of bread | |
KR20160129001A (en) | Bakery product and method for manufacturing same | |
MX2007016524A (en) | Fibre-rich backed product and method for the production thereof. | |
Wang et al. | Effect of whole wheat flour on the quality of traditional Chinese Sachima | |
CA2584783A1 (en) | Baked products containing rice flour | |
Gómez | Gluten-free bakery products: Ingredients and processes | |
Zaki et al. | Chemical, rheological and sensory properties of wheat-oat flour composite cakes and biscuits | |
JP2009273421A (en) | Bakery product having excellent texture, and method for producing the same | |
Milde et al. | Nutritional characterization of gluten free non-traditional pasta | |
Shukri et al. | Dough rheology and physicochemical properties of steamed buns fortified with cross-linked rice starch | |
Farimani et al. | Research Full Papers A new study on the quality, physical and sensory characteristics of cupcakes with Althaea officinalis mucilage | |
KR101220418B1 (en) | Rice flour mixed with soybean flour and method for manufacturing the rice cracker made with the rice flour | |
Moghaddasi et al. | Effect of inulin and resistant starch on some of qualitative properties of baguette bread | |
US6383547B1 (en) | Process for preparing aspirated bran as a flour additive | |
CA2513913A1 (en) | Use of a crosslinked or inhibited starch product | |
KR101736561B1 (en) | Gluten-free english muffine using rice and method for preparing the same | |
Iancu | Effect of potato (Solanum tuberosum) addition on dough properties, sensory qualities and resistant starch content of bread | |
Lamsal | Preparation and Quality Evaluation of Oats Flour Incorporated Muffin | |
KR20030067235A (en) | Wheat Flour Premix Composition Containing Enzyme Resistance Starch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |