Nothing Special   »   [go: up one dir, main page]

KR19990005811A - FET gate oxide film formation method - Google Patents

FET gate oxide film formation method Download PDF

Info

Publication number
KR19990005811A
KR19990005811A KR1019970030029A KR19970030029A KR19990005811A KR 19990005811 A KR19990005811 A KR 19990005811A KR 1019970030029 A KR1019970030029 A KR 1019970030029A KR 19970030029 A KR19970030029 A KR 19970030029A KR 19990005811 A KR19990005811 A KR 19990005811A
Authority
KR
South Korea
Prior art keywords
oxide film
gate
forming
gate oxide
fet
Prior art date
Application number
KR1019970030029A
Other languages
Korean (ko)
Inventor
이종곤
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019970030029A priority Critical patent/KR19990005811A/en
Publication of KR19990005811A publication Critical patent/KR19990005811A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • H10D64/516Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/2822Making the insulator with substrate doping, e.g. N, Ge, C implantation, before formation of the insulator

Landscapes

  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 FET의 게이트 산화막 형성방법에 관한 것으로서, 본 발명의 목적은 FET에서 다른 두께를 갖는 게이트 산화막을 형성할 때 게이트 산화막 형성부분에 이온을 주입하여 이온에 따른 산화속도를 달리함으로서 두께가 다른 산화막을 형성하는 FET의 게이트 산화막 형성방법을 제공함에 있다. 상기와 같은 목적을 실현하기 위한 본 발명은 실리콘 기판위에 게이트가 형성될 영역에만 이온이 주입되도록 하기 위한 마스크를 형성하는 단계와, 형성된 마스크의 노출부분으로 이온을 주입하는 단계와, 상기 결과물을 산화시켜 산화막을 형성하는 단계로 이루어져 한번의 산화공정으로 두께가 다른 게이트 산화막을 형성함으로서 다수번의 산화에 의한 산화막의 열화를 방지할 수 있어 트랜지스터의 특성을 향상시킬 수 있다는 이점이 있다.The present invention relates to a method for forming a gate oxide film of a FET, and an object of the present invention is to inject ions into the gate oxide film forming portion when the gate oxide film having a different thickness is formed in the FET, thereby varying the oxidation rate according to the ions. A method of forming a gate oxide film of a FET for forming an oxide film is provided. According to an aspect of the present invention, there is provided a mask for implanting ions only into a region where a gate is to be formed on a silicon substrate, implanting ions into an exposed portion of the formed mask, and oxidizing the resultant. By forming a gate oxide film having a different thickness in one oxidation process, the oxide film can be prevented from deterioration of the oxide film due to a plurality of oxidations, thereby improving the characteristics of the transistor.

Description

FET의 게이트 산화막 형성방법FET gate oxide film formation method

본 발명은 FET의 게이트 산화막 형성방법에 관한 것으로서, 보다 상세하게는 FET에서 다른 두께를 갖는 게이트 산화막을 형성할 때 게이트 산화막 형성부분에 이온을 주입하여 이온에 따른 산화속도를 달리함으로서 두께가 다른 산화막을 형성하는 FET의 게이트 산화막 형성방법에 관한 것이다.The present invention relates to a method of forming a gate oxide film of a FET, and more particularly, to form a gate oxide film having a different thickness in the FET, by implanting ions into the gate oxide film forming portion to vary the oxidation rate according to the ions, and thus having different thicknesses A method of forming a gate oxide film of a FET for forming a FET.

FET(Field-Effect Transistor; 전계효과 트랜지스터)라 함은 다수 캐리어가 반도체 표면을 따라서 드리프트 하는 것을 게이트 전계에 의해 제어하는 방식의 트랜지스터를 말하는 것으로서 소수캐리어의 주입이 없으므로 축적효과에 의한 응답 속도의 저하가 없고, 잡음이 적은 장점이 있다. 전계효과 트랜지스터에는 게이트의 구조에 의해 접합형 전계효과 트랜지스터(Junction Field-Effect Transistor ; JFET)와 쇼트키 장벽 게이트형 및 절연 게이트형 전계효과 트랜지스터(Insulator Gate Field Effect Transistor ; IGFET)가 있다.FET (Field-Effect Transistor) refers to a transistor in which a majority of carriers drift along the semiconductor surface by a gate electric field, and there is no injection of a small number of carriers, thereby reducing the response speed due to the accumulation effect. There is no noise and low noise. Field effect transistors include junction field-effect transistors (JFETs) and Schottky barrier gate type and insulator gate field effect transistors (IGFETs) by gate structures.

상기 절연 게이트형 전계효과 트랜지스터는 절연막을 삽입하고 게이트 전극을 설치한 구조의 전계효과 트랜지스터로 절연물 층에는 SiO2, Al2O3, Si3N4가 사용된다. 특히 절연막으로 SiO2막을 쓴 것을 MOSFET(Metal Oxide Semiconductor FET)라 부른다. 이러한 형태의 FET는 접합형에 비해 게이트 입력임피던스가 훨씬 더 크고, 확산공정이 1회로 간단하고, 소자간의 분리가 필요없다는 등의 장점을 갖고 있기 때문에 고밀도 집적화에 적합한 특징을 갖고 있다.The insulated gate field effect transistor is a field effect transistor having a structure in which an insulating film is inserted and a gate electrode is used, and SiO 2 , Al 2 O 3 , and Si 3 N 4 are used as the insulator layer. In particular, the SiO 2 film used as the insulating film is called a MOSFET (Metal Oxide Semiconductor FET). This type of FET is suitable for high-density integration because it has advantages such as a much larger gate input impedance, a simple diffusion process, and no separation between devices than a junction type.

도1은 종래의 게이트 산화막 형성방법에 따라 MOSFET의 형성공정중 게이트(40)가 형성되는 단계까지를 나타낸 단면도이다.1 is a cross-sectional view showing a step of forming a gate 40 in a MOSFET forming process according to a conventional gate oxide film forming method.

도1의 (a)는 실리콘 기판(10)위에 절연막으로 SiO2의 산화막(20)을 형성한 상태를 나타낸 단면도이다.FIG. 1A is a cross-sectional view illustrating a state in which an oxide film 20 of SiO 2 is formed as an insulating film on a silicon substrate 10.

도1의 (b)는 도1의 (a)에서 형성된 산화막(20)위에 게이트(40)가 형성될 부분 즉, 산화막(20)의 두께를 두껍게 형성시킬 부분을 제외한 나머지 부분을 식각하기 위해 감광막을 형성한 상태를 나타낸 단면도이다.FIG. 1B is a photosensitive film for etching the remaining portion except for a portion where the gate 40 is to be formed on the oxide film 20 formed in FIG. 1A, that is, a portion in which the thickness of the oxide film 20 is to be formed thick. It is sectional drawing which showed the state formed.

도1의 (c)는 도1의 (b)의 감광막 마스크(30)를 이용하여 선택적으로 식각하여 게이트(40)가 형성될 부분만 남겨놓은 상태를 나타낸 단면도이다.FIG. 1C is a cross-sectional view illustrating a state in which only a portion where the gate 40 is to be formed is left by selectively etching using the photoresist mask 30 of FIG. 1B.

도1의 (d)는 도1의 (c)의 결과물을 다시 산화시켜 두께가 다른 게이트(40) 산화막(20)을 형성한 상태를 나타낸 단면도이다.FIG. 1D is a cross-sectional view showing a state in which the oxide film 20 having a different thickness is formed by oxidizing the resultant product of FIG. 1C again.

도1의 (e)는 도1의 (d)에서 형성된 게이트(40) 산화막(20)위에 게이트(40)를 형성한 상태를 나타낸 단면도이다.FIG. 1E is a cross-sectional view illustrating a state in which the gate 40 is formed on the gate 40 oxide film 20 formed in FIG. 1D.

이와 같은 방법으로 형성된 FET의 게이트(40) 산화막(20)을 사용할 때 얇은 쪽의 게이트(40) 산화막(20)은 한번 산화되어 아무런 문제가 발생하지 않으나 게이트(40)가 형성된 두꺼운 쪽의 산화막(20)은 산화가 두번 이루어져 산화막(20)이 열화되기 쉽기 때문에 열화되어 특성저하가 발생될 수 있다는 문제점이 있다.When the gate 40 oxide film 20 of the FET formed in this manner is used, the thin gate 40 oxide film 20 is oxidized once so that no problem occurs, but the thick oxide film having the gate 40 formed thereon ( 20) there is a problem in that the oxidation is performed twice, so that the oxide film 20 is easily deteriorated, thereby deteriorating and deteriorating characteristics.

본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, 본 발명의 목적은 FET의 게이트가 형성될 부분에 이온을 주입하여 이온에 따른 산화속도를 달리함으로서 두께가 다른 게이트 산화막을 형성하는 FET의 게이트 산화막 형성방법을 제공함에 있다.The present invention has been made to solve the above problems, and an object of the present invention is to inject ions into a portion where a gate of the FET is to be formed, thereby varying the oxidation rate according to the ions, thereby forming a gate oxide film having a different thickness. A method of forming a gate oxide film is provided.

도1은 종래의 게이트 산화막 형성방법에 따른 공정을 단계적으로 나타낸 단면도이다.1 is a cross-sectional view illustrating a process according to a conventional method of forming a gate oxide film in stages.

도2는 본 발명에 의한 게이트 산화막 형성방법에 따른 공정을 단계적으로 나타낸 단면도이다.2 is a cross-sectional view showing a step in a process according to the method for forming a gate oxide film according to the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

10 : 기판 20 : 산화막10 substrate 20 oxide film

30 : 마스크 40 : 게이트30 mask 40 gate

상기와 같은 목적을 실현하기 위한 본 발명은 실리콘 기판위에 게이트가 형성될 영역에만 이온이 주입되도록 하기 위한 마스크를 형성하는 단계와, 형성된 마스크의 노출부분으로 이온을 주입하는 단계와, 상기 결과물을 산화시켜 산화막을 형성하는 단계로 이루어진다.According to an aspect of the present invention, there is provided a mask for implanting ions only into a region where a gate is to be formed on a silicon substrate, implanting ions into an exposed portion of the formed mask, and oxidizing the resultant. To form an oxide film.

상기와 같은 방법으로 게이트 산화막을 형성하면 한번의 산화로 두께가 다른 게이트 산화막이 형성된다. 즉, 이온이 주입된 부분은 산화속도가 이온이 주입되지 않은 부분보다 빠르기 때문에 같은 시간 만큼 산화를 시켰을 때 이온이 주입된 부분은 산화막이 두껍게 형성되고 이온이 주입되지 않은 부분은 산화막이 얇게 형성된다.When the gate oxide film is formed in the same manner as described above, a gate oxide film having a different thickness is formed by one oxidation. That is, since the portion of the ion implanted is faster than the portion without the ion implantation, when the oxidation is performed for the same time, the portion where the ion is implanted is formed with a thick oxide film, and the portion where the ion is not implanted is formed with a thin oxide film. .

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 또한 본 실시예는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시된 것이며 종래 구성과 동일한 부분은 동일한 부호 및 명칭을 사용한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the present embodiment is not intended to limit the scope of the present invention, but is presented by way of example only and the same parts as in the conventional configuration using the same reference numerals and names.

도2는 본 발명에 의한 게이트(40) 산화막(20) 형성방법으로 FET를 형성하는 공정중 게이트(40)가 형성되는 공정까지를 나타낸 단면도이다.2 is a cross-sectional view showing a process of forming a gate 40 and forming a gate FET in the method of forming a gate 40 oxide film 20 according to the present invention.

도2의 (a)는 실리콘 기판(10)위에 이온을 주입할 부분만이 오픈된 마스크(30)를 형성한 상태를 나타낸 단면도이다.FIG. 2A is a cross-sectional view illustrating a state in which a mask 30 in which only a portion to inject ions is opened is formed on the silicon substrate 10.

도2의 (b)는 도2의 (a)에서 형성된 마스크(30)의 오픈된 부분에 염소(Cl) 이온을 주입하여 실리콘 기판(10)의 농도를 변화시킨다.In FIG. 2B, chlorine (Cl) ions are implanted into the open portion of the mask 30 formed in FIG. 2A to change the concentration of the silicon substrate 10.

본 실시예에서 특히 사용한 염소이온은 산화막(20) 내에 존재하여 산화막(20)의 특성을 저하시키는 Na+, K+ 등과 반응하여 안정한 NaCl이나 KCl으로 변환되어 산화막(20)의 특성을 향상시키게 된다.The chlorine ions particularly used in the present embodiment react with Na + and K +, which are present in the oxide film 20 to reduce the properties of the oxide film 20, and are converted into stable NaCl or KCl to improve the properties of the oxide film 20.

도2의 (c)는 도2의 (b)에서 염소 이온이 주입된 실리콘 기판(10)을 산화시켜 농도가 변화되어 산화속도가 빨라져 이온이 주입된 부분은 산화막(20)이 두껍게 형성된 상태를 나타낸 단면도이다.FIG. 2 (c) shows a state in which the oxide film 20 is thickly formed in the portion in which ions are implanted by oxidizing the silicon substrate 10 into which chlorine ions are implanted in FIG. It is sectional drawing shown.

산화막(20)을 형성시킬 때 성장시키는 온도와 산화시키기 전의 온도를 어느정도 올려 어닐링(Annealing)시킴으로서 이온주입에 의한 산화막(20)의 형성 두께 증가를 조절할 수 있다.When the oxide film 20 is formed, the growth temperature and the temperature before oxidation are raised to some extent to anneal, thereby controlling the increase in the thickness of the oxide film 20 formed by ion implantation.

예를 들면, 동일한 양의 염소(Cl) 이온이 주입된 웨이퍼를 산화시킬 때 더 낮은 온도에서 산화시킬수록 이온주입에 의한 두께증가 효과가 크게 된다. 또한 산화시키기전에 설정온도를 일정온도 올려 어닐링시키면 어닐링 온도가 높을수록 두께증가 효과가 적게된다.For example, when oxidizing a wafer into which the same amount of chlorine (Cl) ions are implanted, the oxidization at a lower temperature increases the effect of increasing the thickness by ion implantation. In addition, if the annealing is raised by a predetermined temperature before oxidation, the higher the annealing temperature, the smaller the effect of increasing the thickness.

이와 같은 방법을 이용하면 게이트(40)가 형성될 부분의 두께와 다른 부분의 산화막(20) 두께를 조절할 수 있다.Using this method, the thickness of the portion where the gate 40 is to be formed and the thickness of the oxide film 20 in the other portion can be adjusted.

도2의 (d)는 도2의 (c)에서 형성된 게이트(40) 산화막(20)에 게이트(40)를 형성한 상태를 나타낸 단면도이다.FIG. 2D is a cross-sectional view illustrating a state in which the gate 40 is formed on the gate 40 oxide film 20 formed in FIG. 2C.

그런다음 소오스와 드레인을 형성할 영역의 산화막(20)을 부분식각하여 소오스와 드레인을 형성하여 FET를 형성하게 된다.Then, the oxide film 20 in the region where the source and the drain are to be formed is partially etched to form the source and the drain to form the FET.

상기한 바와 같이 본 발명은 FET의 게이트 산화막의 형성시 게이트가 형성될 부분의 실리콘 기판에 이온을 주입하여 산화속도를 다르게 하여 산화막을 형성함으로서 한번의 산화공정으로 두께가 다른 게이트 산화막을 형성할 수 있게 되어 다수번에 의한 산화막의 열화에 의한 특성저하을 방지할 수 있다는 이점이 있다.As described above, in the present invention, when the gate oxide film of the FET is formed, the oxide film is formed by implanting ions into the silicon substrate of the portion where the gate is to be formed to vary the oxidation rate, thereby forming a gate oxide film having a different thickness in one oxidation process. There is an advantage that it is possible to prevent the deterioration of characteristics due to the deterioration of the oxide film by a number of times.

Claims (2)

실리콘 기판위에 게이트가 형성될 영역에만 이온이 주입되도록 하기 위한 마스크를 형성하는 단계와, 상기 형성된 마스크의 노출부분으로 이온을 주입하는 단계와, 상기 결과물을 산화시켜 산화막을 형성하는 단계로 이루어진 FET의 게이트 산화막 형성방법.Forming a mask for implanting ions only in a region where a gate is to be formed on a silicon substrate, implanting ions into an exposed portion of the formed mask, and oxidizing the resultant to form an oxide film. A method of forming a gate oxide film. 제1항에 있어서, 상기 이온을 주입하는 단계에서 주입하는 이온은 염소이온인 것을 특징으로 한 FET의 게이트 산화막 형성방법.The method of claim 1, wherein the implanted ions are chlorine ions.
KR1019970030029A 1997-06-30 1997-06-30 FET gate oxide film formation method KR19990005811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970030029A KR19990005811A (en) 1997-06-30 1997-06-30 FET gate oxide film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970030029A KR19990005811A (en) 1997-06-30 1997-06-30 FET gate oxide film formation method

Publications (1)

Publication Number Publication Date
KR19990005811A true KR19990005811A (en) 1999-01-25

Family

ID=66039010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970030029A KR19990005811A (en) 1997-06-30 1997-06-30 FET gate oxide film formation method

Country Status (1)

Country Link
KR (1) KR19990005811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200298275A1 (en) * 2019-03-20 2020-09-24 Korea Institute Of Science And Technology Capacitive micromachined ultrasonic transducer and method of fabricating the same
KR20210126423A (en) 2020-04-10 2021-10-20 주식회사 오성전자 Remote controller with waterproof structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340431A (en) * 1989-07-07 1991-02-21 Fuji Electric Co Ltd Formation of oxide film of silicon semiconductor device
JPH05198808A (en) * 1991-11-22 1993-08-06 Toshiba Corp Thin film transistor and manufacturing method thereof
JPH08236640A (en) * 1994-11-30 1996-09-13 At & T Corp Process of forming gate oxides with different thickness on semiconductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340431A (en) * 1989-07-07 1991-02-21 Fuji Electric Co Ltd Formation of oxide film of silicon semiconductor device
JPH05198808A (en) * 1991-11-22 1993-08-06 Toshiba Corp Thin film transistor and manufacturing method thereof
JPH08236640A (en) * 1994-11-30 1996-09-13 At & T Corp Process of forming gate oxides with different thickness on semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200298275A1 (en) * 2019-03-20 2020-09-24 Korea Institute Of Science And Technology Capacitive micromachined ultrasonic transducer and method of fabricating the same
KR20200112027A (en) * 2019-03-20 2020-10-05 한국과학기술연구원 Capacitive Micromachined Ultrasonic Transducer and method of fabricating the same
US11944998B2 (en) 2019-03-20 2024-04-02 Korea Institute Of Science And Technology Capacitive micromachined ultrasonic transducer and method of fabricating the same
KR20210126423A (en) 2020-04-10 2021-10-20 주식회사 오성전자 Remote controller with waterproof structure

Similar Documents

Publication Publication Date Title
US5510280A (en) Method of making an asymmetrical MESFET having a single sidewall spacer
KR950001151B1 (en) Manufacturing method of semiconductor device
JPH02148738A (en) Method for manufacturing field effect transistors
US4559693A (en) Process for fabricating field effect transistors
US6656810B1 (en) Semiconductor device capable of reducing dispersion in electrical characteristics and operating at high speed and method for fabricating the same
US20070224838A1 (en) Method of straining a silicon island for mobility improvement
JP2510599B2 (en) Field effect transistor
KR19990005811A (en) FET gate oxide film formation method
US6656780B2 (en) Method of manufacturing a semiconductor device having nitrogen ions by twice RTA processes
KR19990013312A (en) Manufacturing Method of Semiconductor Device
EP0615288A2 (en) Method of manufacturing a semiconductor device provided with an isolation region
KR0136927B1 (en) Fabrication method of transistor
JPS59231864A (en) Semiconductor device
JPH04280474A (en) Soi structure mosfet
JPH0612826B2 (en) Method of manufacturing thin film transistor
KR100246098B1 (en) Method for forming field effect transistor
KR940002778B1 (en) LDD structure transistor manufacturing method
KR100232174B1 (en) Manufacturing method of thin film transistor
KR940007453B1 (en) MOS transistor manufacturing method with low parasitic capacitance
KR940005292B1 (en) Semiconductor device manufacturing method
KR20000067164A (en) Semiconductor device and method for manufacturing the same
KR100444771B1 (en) Manufacturing Method of Semiconductor Device
KR950005490B1 (en) Enhancement/deplection type fet and its making method
KR0130626B1 (en) Lateral source / drain transistors and method for manufacturing same
JPH058571B2 (en)

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970630

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20020702

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19970630

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040625

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20040922

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20040625

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20041006

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D