Nothing Special   »   [go: up one dir, main page]

KR102292411B1 - High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production - Google Patents

High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production Download PDF

Info

Publication number
KR102292411B1
KR102292411B1 KR1020210070448A KR20210070448A KR102292411B1 KR 102292411 B1 KR102292411 B1 KR 102292411B1 KR 1020210070448 A KR1020210070448 A KR 1020210070448A KR 20210070448 A KR20210070448 A KR 20210070448A KR 102292411 B1 KR102292411 B1 KR 102292411B1
Authority
KR
South Korea
Prior art keywords
steam
gas
supplied
hydrogen
water
Prior art date
Application number
KR1020210070448A
Other languages
Korean (ko)
Inventor
이형옥
이승환
안정환
Original Assignee
제이엔케이히터(주)
한국서부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엔케이히터(주), 한국서부발전 주식회사 filed Critical 제이엔케이히터(주)
Priority to KR1020210070448A priority Critical patent/KR102292411B1/en
Application granted granted Critical
Publication of KR102292411B1 publication Critical patent/KR102292411B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/14Handling of heat and steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The present invention relates to a system for producing high-purity hydrogen through water gas conversion reaction during a process for converting petroleum gas into syngas. Particularly, the system for producing high-purity hydrogen includes: a feed gas supplying unit (10) configured to supply syngas produced in a gasification process of petroleum cokes; a water supplying unit (20) configured to supply feed water; a steam generator (100) configured to produce overheated steam stably by using the feed water supplied from the water supplying unit (20); a high-temperature reactor (210) configured to generate a first gas including hydrogen under a first temperature condition by using the steam generated in the steam generator (100) and the feed gas supplied from the feed gas supplying unit (10) and to discharge the first gas; a low-temperature reactor (220) configured to generate a second gas including high-concentration H_2 under a second temperature condition by using the intermediate product discharged from the high-temperature reactor (210) and the steam generated from the steam generator (100); and a hydrogen separator (400) configured to separate hydrogen in the second gas, wherein the steam generator (100) includes a multi-stage steam generating unit to generate overheated steam stably.

Description

수소생산을 위한 석유코크스 합성가스화 공정 중 수성가스전환반응을 통한 고순도 수소생산 시스템 {High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production}High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production}

본 발명은 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템에 관한 것으로, 더 상세하게는 본 발명은 석유코크스의 가스화를 통해서 생성된 일산화탄소를 포함하는 가스 및 스팀을 포함하는 반응가스를 공급하여 고온촉매 및/또는 저온촉매와 반응시켜 수소로 전환시킨 합성가스를 고농도의 수소생산을 위한 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템에 관한 것이다.The present invention relates to a high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction, and more particularly, the present invention provides a gas containing carbon monoxide generated through gasification of petroleum coke and a reaction gas containing steam It relates to a high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction for high-concentration hydrogen production of syngas converted into hydrogen by reacting with a high-temperature catalyst and/or a low-temperature catalyst.

21세기 주요 에너지원은 천연가스, 전기, 초청정 연료유와 더불어 수소가 대세로서 재생가능에너지원 전기와 CO2의 고부가가치 가스화/연료화가 부각되고 있고 청정하면서 사용이 용이한 가스/액체연료유 사용 확대가 예상되며 특히 수소 에너지원을 저렴하게 확보하여야 할 필요성이 크지만 아직 경제성 미확보로 기술개발과 실증이 요구되고 있다.In the 21st century, hydrogen is the main energy source along with natural gas, electricity, and ultra-clean fuel oil, and the high value-added gasification/fuelization of renewable energy sources electricity and CO2 is emerging. Clean and easy-to-use gas/liquid fuel oil is used. Expansion is expected and there is a great need to secure hydrogen energy sources at a low cost, but technology development and demonstration are required because economic feasibility is not yet secured.

특히, 수소의 생산방향 측면에서 화석연료인 중유, 천연가스를 개질하거나 제철소 또는 정유화학 공정중에서 발생하는 부생수소를 에너지원으로 하는 그레이(Gray) 수소 기술, 미활용에너지원인 저급석탄, 석유코크스, 바이오매스, 폐기물등을 이용하여 합성가스를 생산하고 이를 개질하여 수소를 생산하는 블루(Blue) 수소 기술 및 재생가능한 에너지원을 이용하여 물이 전기분해를 통해 수소를 생산하는 그린(Green) 수소 기술로 통상적으로 분류할 수 있다.In particular, in terms of the production direction of hydrogen, gray hydrogen technology, which uses by-product hydrogen generated during reforming of fossil fuels such as heavy oil and natural gas or steel mills or refining and chemical processes, as an energy source, low-grade coal, petroleum coke, bio Blue hydrogen technology, which produces syngas using mass and waste, and reforms it to produce hydrogen, and green hydrogen technology that produces hydrogen through electrolysis of water using a renewable energy source. can be classified normally.

이에 실증화 단계가 아닌 그린 수소 기술로 진입하기 전에 시장에서 요구하는 수소생산을 위한 블루수소 기술의 개발은 필요할 것으로 판단되며, 수소생산 플랜트 및 합성가스 플랜트 시장의 지속 성장이 예상되고 장기적으로는 수소 플랜트, 단기적으로는 청정합성가스 플랜트가 해외수출 플랜트 시장에서 핵심분야로 판단되며 국내의 경우 자체 합성가스 시장도 크고 수소도시, 수소연료전지자동차 등 수소시장이 급속 성장할 것으로 예상되고 있으므로 실증, 사업화, 해외수출, 국부창출의 플랜트 기술투자 정책에 적합한 분야로 판단된다.Therefore, it is judged that it is necessary to develop blue hydrogen technology for hydrogen production required by the market before entering green hydrogen technology rather than the demonstration stage. Plant, in the short term, clean syngas plants are considered to be a key sector in the overseas export plant market. It is judged to be a suitable field for the plant technology investment policy of overseas export and creation of national wealth.

가스화를 통한 합성가스를 이용하여 수소 생산은 가스화에서 생산되는 합성가스 중 일산화탄소(CO)가 스팀(H2O)과 수성가스전환반응을 진행하여 수소(H2)와 이산화탄소(CO2)를 생산한다. Hydrogen production using syngas through gasification produces hydrogen (H2) and carbon dioxide (CO2) by performing a water gas conversion reaction between carbon monoxide (CO) and steam (H2O) among syngas produced in gasification.

이와 같은 수성가스전환(WGS, water gas shift reaction) 반응식은 다음과 같다.Such a water gas shift (WGS, water gas shift reaction) reaction formula is as follows.

수성가스 전환반응은 일반적으로 고온 수성가스전환(High Temperature Shift, HTS) 반응과 저온 수성가스전환(Low Temperature Shift, LTS) 반응의 두 단계를 거쳐 일산화탄소로부터 수소를 생산한다. 보통의 경우, 상용공정에서 고온 수성가스전환 반응은 300~450℃ 부근에서 수행되며, 다량의 일산화탄소 전환에 이용되고, 저온 수성가스전환 반응은 200~300℃ 부근에서 수행되며, 고온 수성가스 전환에서 반응 후 잔여의 일산화탄소를 전환하여 고순도화에 이용된다.Water gas shift reaction generally produces hydrogen from carbon monoxide through two steps: a high temperature water gas shift (HTS) reaction and a low temperature water gas shift (LTS) reaction. In general, in the commercial process, the high-temperature water gas conversion reaction is carried out at around 300-450 ℃, and is used for a large amount of carbon monoxide conversion, and the low-temperature water gas conversion reaction is performed at around 200-300 ° C., in the high-temperature water gas conversion After the reaction, the residual carbon monoxide is converted and used for high purity.

수성가스전환(WGS) 반응은 평형전환율의 영향을 받아 온도에 민감하게 작동하며, 이에 따라 생성물의 조성이 결정된다. 이의 의미는 상기 서술과 같이 수성가스 전환 반응은 발열반응으로 고온에서는 역반응이 진행되어 H2와 CO2가 반응하여 CO를 생성하는 반응이 일어나게 된다는 것이다. 따라서, 상기 수성가스 전환반응에 있어서는 온도 조건을 저온으로 유지하는 것이 H2 생성 측면에서 보다 유리하다.The water gas shift (WGS) reaction is sensitive to temperature under the influence of the equilibrium conversion rate, and thus the composition of the product is determined. The meaning of this is that, as described above, the water gas conversion reaction is an exothermic reaction, and the reverse reaction proceeds at a high temperature so that H2 and CO2 react to generate CO. Therefore, in the water gas conversion reaction, it is more advantageous in terms of H2 production to maintain the temperature condition at a low temperature.

또한, 일반적으로 CO 분율 대비 2.5~3.0배의 스팀을 투입하여 반응 효율을 향상시킬 수 있다. 따라서 수성가스전환 공정에서 공급되는 스팀의 안정적인 온도는 수성가스전환 반응 효율에 영향을 미치는 중요한 운전조건이다.In addition, in general, it is possible to improve the reaction efficiency by injecting 2.5 to 3.0 times the amount of steam compared to the CO fraction. Therefore, the stable temperature of the steam supplied in the water gas conversion process is an important operating condition that affects the water gas conversion reaction efficiency.

특허문헌 1에서는 제철소 환원공정에서 배출되는 CO, CO2, H2, H2O 및 N2를 포함하는 에프지오가스(FOG, finex off gas)를 원료로 사용하여, 고온용 촉매와 스팀을 이용하여 CO를 H2로 전환시키는 고온개질장치, 상기 고온개질장치에서 생성되는 고온의 가스에 의해 물을 증기로 전환시키는 제2열교환기, 저온용 촉매와 스팀을 이용하여 제2열교환기를 지난 상기 고온개질장치에서 생성되는 가스 내의 CO를 H2로 전환하는 저온개질장치, 저온개질장치를 통과한 가스를 이용하여 전기를 생산하는 발전기 및 H2만을 선택적으로 분리하는 수소분리장치를 포함하는 수성가스 반응시스템을 개시하였다.In Patent Document 1, FG (finex off gas) containing CO, CO2, H2, H2O and N2 discharged from the reduction process of a steel mill is used as a raw material, and CO is converted to H2 using a high-temperature catalyst and steam A high-temperature reformer for converting the gas, a second heat exchanger that converts water into steam by the high-temperature gas generated in the high-temperature reformer, and a gas generated in the high-temperature reformer that passes through the second heat exchanger using a low-temperature catalyst and steam Disclosed is a water gas reaction system including a low-temperature reformer for converting CO in H2 into H2, a generator for generating electricity using the gas that has passed through the low-temperature reformer, and a hydrogen separation device for selectively separating only H2.

특허문헌 2는 가스화 합성가스를 이용하는 다단 유동층 수성가스 반응장치를 개시하였다. 고온촉매가 적층되는 상부반응공간과 혼합가스와 스팀을 공급받는 하부혼합공간으로 구획하고, 하부혼합공간에는 합성가스공급관과 스팀공급관을 각각 연통시켜 예열기로 가열된 합성가스와 스팀을 유입받아 상부반응공간으로 분산공급하도록 하는 고온촉매반응챔버, 격벽으로 구획된 상부챔버로 저온촉매가 적층되고 상측에 연통설치된 저온반응가스배출관을 통해 반응으로 개질된 가스를 배출하도록 하는 저온촉매반응챔버 구성을 포함하고, 고온촉매반응챔버의 상부반응공간에서 배출되는 반응가스의 온도를 낮추는 제1열교환기에서 발생한 스팀을 고온촉매반응챔버와 저온반응가스챔버에 공급하여 수성가스 반응을 하는 기술을 개시하였다.Patent Document 2 discloses a multi-stage fluidized-bed water gas reactor using gasified syngas. The upper reaction space where the high-temperature catalyst is stacked and the lower mixed space supplied with mixed gas and steam are divided into the lower mixed space, and the syngas supply pipe and the steam supply pipe are respectively connected to each other to receive the syngas and steam heated by the preheater for upper reaction. A high-temperature catalytic reaction chamber for distributed supply to the space, a low-temperature catalyst is laminated with an upper chamber partitioned by a partition wall, and a low-temperature catalyst reaction chamber configured to discharge the reformed gas through a low-temperature reaction gas discharge pipe connected to the upper side , disclosed a technology for water gas reaction by supplying steam generated from the first heat exchanger that lowers the temperature of the reaction gas discharged from the upper reaction space of the high-temperature catalytic reaction chamber to the high-temperature catalytic reaction chamber and the low-temperature reaction gas chamber.

상기 특허문헌 1과 특허문헌 2에서는 수성가스전환반응의 효율을 향상시키기 고온 및 저온 2단 반응기를 적용하는 기술을 개시하였으나, 본원발명에서 중요한 문제로 인식하고 있는 수성가스전환 반응기로 과열스팀의 안정적인 공급하는 것과 전체시스템의 효율적인 폐열 회수를 통하여 품질이 안정적인 과열스팀을 생산하는 기술은 아직까지 제시되지 않았다.In Patent Document 1 and Patent Document 2, a technology of applying a high-temperature and low-temperature two-stage reactor to improve the efficiency of the water-gas conversion reaction was disclosed, but the water gas conversion reactor recognized as an important problem in the present invention is a water-gas conversion reactor, which is a stable A technology for producing superheated steam with stable quality through supply and efficient waste heat recovery of the entire system has not yet been proposed.

대한민국 등록특허공보 제10-16328888호(2016.06.17) ('특허문헌 1')Republic of Korea Patent Publication No. 10-16328888 (2016.06.17) ('Patent Document 1') 대한민국 등록특허공보 제10-1103594호(2012.01.02) ('특허문헌 2')Republic of Korea Patent Publication No. 10-1103594 (2012.01.02) ('Patent Document 2')

상기와 같은 종래의 제반 문제점을 해결하기 위한 본 발명의 주된 목적은 석유코크스의 가스화를 통해서 생성된 일산화탄소를 포함하는 합성가스와 수성가스전환반응을 하는 품질이 균일한 스팀을 안정적으로 공급하여 고농도 수소 생산 효율을 향상시킬 수 있는 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템을 제공하는 것을 목적으로 한다.The main object of the present invention to solve the problems of the related art as described above is to stably supply high-concentration hydrogen through a water-gas conversion reaction with syngas containing carbon monoxide generated through gasification of petroleum coke by stably supplying high-concentration hydrogen An object of the present invention is to provide a high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction that can improve production efficiency.

또한, 수성가스전환반응 시스템에서 발생하는 폐열들을 이용하여 수성가스전환반응의 원료로 사용되는 합성가스를 예열하고, 공급수를 예열하여 품질이 안정적인 스팀을 생산함으로써 수성가스전환반응 효율을 향상시킬 수 있는 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템을 제공하는 것을 목적으로 한다.In addition, the efficiency of the water gas conversion reaction can be improved by preheating the synthesis gas used as a raw material for the water gas conversion reaction using the waste heat generated from the water gas conversion reaction system, and preheating the feed water to produce steam with stable quality. It aims to provide a high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction.

본 발명의 그 밖의 목적, 특정한 장점들 및 신규 특징들은 첨부된 도면들과 관련되어 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명확해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments taken in conjunction with the accompanying drawings.

상기와 같은 기술적 과제를 해결하기 위한 본 발명은 석유코크스 가스화공정에서 생산된 합성가스를 공급하는 원료가스 공급부(10); 공급수를 공급하는 워터 공급부(20); 상기 워터 공급부(20)에 공급된 공급수를 이용하여 과열스팀을 안정적으로 생산하는 스팀발생기(100); 상기 공급부(10)에서 공급되는 원료가스와 상기 스팀발생기(100)에서 생산되는 스팀을 이용하여 제1온도조건에서 수소를 포함하는 제1가스를 생성하고, 이를 배출하는 고온반응기(210); 상기 고온반응기(210)에서 배출되는 중간생산물과 상기 스팀발생기(100)에서 생산되는 스팀을 이용하여 제2온도조건에서 고농도 H2를 포함하는 제2가스를 생성하고 이를 배출하는 저온반응기(220); 및 상기 제2가스 내 수소를 분리하는 수소분리기(400);를 포함하고, 상기 스팀발생기(100)는 다단 스팀생산부를 포함하여, 과열 스팀을 안정적으로 생산하는 것을 특징으로 하는 고순도 수소생산 시스템을 제공한다.The present invention for solving the above technical problems is a raw material gas supply unit 10 for supplying syngas produced in the petroleum coke gasification process; a water supply unit 20 for supplying supply water; a steam generator 100 for stably producing superheated steam using the water supplied to the water supply unit 20; a high-temperature reactor 210 for generating a first gas containing hydrogen under a first temperature condition using the raw material gas supplied from the supply unit 10 and the steam produced from the steam generator 100, and discharging it; a low-temperature reactor 220 for generating a second gas containing a high concentration of H2 under a second temperature condition using the intermediate product discharged from the high-temperature reactor 210 and the steam produced from the steam generator 100 and discharging it; and a hydrogen separator 400 for separating hydrogen in the second gas, wherein the steam generator 100 includes a multi-stage steam production unit, and a high-purity hydrogen production system, characterized in that it stably produces superheated steam to provide.

상기 저온반응기(220)에서 배출되는 제2가스를 이용하여 상기 워터 공급부(20)에서 공급되는 공급수를 예열하고, 상기 예열된 공급수는 상기 스팀발생기(100)의 제1스팀생산부(101)에 공급되어 제1스팀을 생산하고, 이를 스팀드럼(110)으로 공급하고, 상기 스팀드럼(110) 내의 혼합스팀의 일부는 상기 스팀발생기(100)의 제2스팀생산부(102)에 공급되어 제2스팀을 생산하고, 이를 상기 스팀드럼(110)에 순환 공급되며, 상기 스팀드럼(110) 내의 혼합스팀의 일부는 상기 스팀발생기(100)의 제3스팀생산부(103)에 공급되어 제3스팀을 생산하여 상기 고온반응기(210) 및 상기 저온반응기(220)에 공급할 수 있다.The supply water supplied from the water supply unit 20 is preheated using the second gas discharged from the low-temperature reactor 220 , and the preheated supply water is the first steam production unit 101 of the steam generator 100 . The first steam is supplied to and supplied to the steam drum 110, and a part of the mixed steam in the steam drum 110 is supplied to the second steam production unit 102 of the steam generator 100 to produce the first steam. 2 steam is produced, and it is circulated and supplied to the steam drum 110, and a part of the mixed steam in the steam drum 110 is supplied to the third steam production unit 103 of the steam generator 100 to provide a third steam can be produced and supplied to the high-temperature reactor 210 and the low-temperature reactor 220 .

상기 고온반응기(210)에서 배출되는 제1가스는 원료가스 공급부(10)에서 공급되는 원료가스와 열교환하여 상기 원료가스를 예열할 수 있다.The first gas discharged from the high-temperature reactor 210 may heat-exchange with the source gas supplied from the source gas supply unit 10 to preheat the source gas.

상기 제1가스와 열교환을 통하여 예열된 원료가스는 상기 스팀발생기(100)에서 열교환하여 2차 예열 될 수 있다.The raw material gas preheated through heat exchange with the first gas may be secondarily preheated by heat exchange in the steam generator 100 .

상기 스팀드럼(110)에는 공급되는 스팀들의 흐름방향을 변경시키는 가이드 베인이 배치될 수 있다.A guide vane for changing the flow direction of the supplied steam may be disposed on the steam drum 110 .

상기 수소분리기(400)는 압력변동을 이용하여 기체성분을 흡착분리하는 PSA(pressure swing adsorption)인 것일 수 있다.The hydrogen separator 400 may be a pressure swing adsorption (PSA) that adsorbs and separates gas components using pressure fluctuations.

상기 수소분리기(400)로부터 생산되는 수소는 순도 99% 이상일 수 있다.Hydrogen produced from the hydrogen separator 400 may have a purity of 99% or more.

상기 수소분리기(400) 후단에는 이산화탄소분리기(600)가 배치되어 이산화탄소를 분리할 수 있다.A carbon dioxide separator 600 is disposed at the rear end of the hydrogen separator 400 to separate carbon dioxide.

본원발명은 또한 상기 과제의 해결 수단을 조합할 수 있는 가능한 조합으로도 제공이 가능하다.The present invention can also be provided as a possible combination capable of combining the means for solving the above problems.

본원발명의 수소생산을 위한 수성가스전환반응에 온도가 안정적인 스팀을 연속적으로 공급할 수 있어, 수성가스전환반응 효율을 향상시켜, 고농도의 수소를 생산할 수 있는 효과가 있다.It is possible to continuously supply steam with a stable temperature to the water gas conversion reaction for hydrogen production of the present invention, thereby improving the water gas conversion reaction efficiency, and there is an effect of producing a high concentration of hydrogen.

또한, 시스템에서 발생되는 폐열을 회수하여, 수성가스전환반응의 원료물질 스팀을 생산함으로써, 전체 시스템 에너지 효율을 향상시킬 수 있는 효과가 있다.In addition, by recovering the waste heat generated in the system to produce the raw material steam of the water gas conversion reaction, there is an effect that can improve the overall system energy efficiency.

수성가스전환반응의 효율 향상으로 고농도의 수소를 생산할 수 있을 뿐만 아니라, 후단 CO2를 고농도로 분리할 수 있는 효과가 있다. By improving the efficiency of the water gas conversion reaction, it is possible to produce high concentration of hydrogen, and there is an effect that can separate the downstream CO2 at a high concentration.

도 1은 기존 단일 공정의 수소 분리공정의 개념도이다.
도 2는 본원발명의 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템에 따른 개념도이다.
1 is a conceptual diagram of a hydrogen separation process of a conventional single process.
2 is a conceptual diagram according to the high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction of the present invention.

이하 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 첨부된 도면은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 또한 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. However, the accompanying drawings are only examples for easily explaining the content and scope of the technical idea of the present invention, and thereby the technical scope of the present invention is not limited or changed. In addition, it will be natural for those skilled in the art that various modifications and changes are possible within the scope of the technical spirit of the present invention based on these examples.

또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예는 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.In addition, the terms or words used in the present specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventor appropriately defines the concept of the term in order to best describe his invention. Based on the principle that it can be done, it should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, since the embodiment described in this specification is only the most preferred embodiment of the present invention and does not represent all the technical spirit of the present invention, there are various equivalents and modifications that can be substituted for them at the time of the present application. It should be understood that

도 2는 본원발명의 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템에 따른 개념도이다.2 is a conceptual diagram according to the high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction of the present invention.

도 2를 참조하면, 석유코크스 가스화 및 수성가스전환반응을 통한 고순도 수소생산 시스템은 주로 스팀발생기(100), 고온반응기(210), 저온반응기(220), 원료가스예열기(310), 공급수예열기(330), 수소분리장치(400) 및 이산화탄소분리기(600)를 포함할 수 있다. 2, the high-purity hydrogen production system through petroleum coke gasification and water gas conversion reaction is mainly a steam generator 100, a high-temperature reactor 210, a low-temperature reactor 220, a raw material gas preheater 310, and a feed water preheater. 330 , a hydrogen separation device 400 and a carbon dioxide separator 600 may be included.

우선 스팀발생기(100)에 관해서 상세하게 설명한다.First, the steam generator 100 will be described in detail.

스팀발생기(100)의 연소부(미도시)에서 연료공급부(30)에서 공급된 연료와 공기공급부(40)에서 공급된 공기가 연소반응을 하고, 스팀발생기(100)는 3단 스팀발생기로 제1스팀생산부(101), 제2스팀생산부(102) 및 제3스팀생산부(103)를 포함할 수 있다.In the combustion unit (not shown) of the steam generator 100, the fuel supplied from the fuel supply unit 30 and the air supplied from the air supply unit 40 undergo a combustion reaction, and the steam generator 100 is a three-stage steam generator. It may include a first steam production unit 101 , a second steam production unit 102 , and a third steam production unit 103 .

우선 워터공급부(20)에서 공급되는 공급수(W)는 후술 저온반응기(220)에서 배출되는 저온생성가스(LPG)와 공급수예열기(330)에서 열교환을 진행하여 예열되어 열수(HW)를 생성하고, 상기 열수(HW)SMS 열수버퍼탱크(120)에 공급된다. 여기서 열수버퍼탱크(120)에 수용된 열수(HW)SMS 열수공급펌프(130)에 의해 스팀발생기(100)에 공급한다. 스팀발생기(100)에 공급된 상기 열수(HW)는 스팀발생기(100)의 제1스팀생산부(101)에서 가열되어 1차스팀(1S)을 생산하고, 생산된 상기 1차스팀(1S)은 스팀드럼(110)에 공급되어 후술 제2스팀(2S)과 혼합되어 혼합스팀을 형성한다. 또한 상기 스팀드럼(110)내의 상기 혼합스팀의 일부는 스팀발생기(100)의 제2스팀생산부(102)에 공급되어 재차 가열되어 포화상태의 제2스팀(2S)을 생산하고, 생산된 상기 제2스팀(2S)은 스팀드럼(110)에 순환 공급되어 스팀드럼(110)내에 수용된 스팀들의 포화도를 향상시키고, 포화도가 높은 포화스팀을 생성하는데 유리하다. 상기 혼합스팀 내의 일부는 스팀발생기(100)의 제3스팀생산부(103)에 공급되어 과열상태의 제3스팀(3S)을 생산하고, 상기 과열상태의 제3스팀(3S)은 후단의 고온반응기(210)에 공급된다. 도면에 도시되지 않았지만, 스팀드럼(110)에는 스팀 가이드 베인이 위치할 수 있다. 상기 가이드 베인은 상기 제1스팀(1S)이 공급되는 입구측 및 상기 제2스팀(2S)이 공급되는 입구측에 위치할 수 있고, 나선형으로 구성되어 상기 제1스팀(1S) 및 상기 제2스팀(2S)이 스팀드럼(110) 내부에서 회전 흐름을 형성하게 하여 스팀들의 혼합도를 향상시키고, 스팀드럼(110) 내부 스팀들의 포화도를 균일하게 하는 역할을 할 수 있다.First, the feed water (W) supplied from the water supply unit 20 is preheated by heat exchange with the low-temperature product gas (LPG) discharged from the low-temperature reactor 220 to be described later in the feed water preheater 330 to generate hot water (HW). and supplied to the hot water (HW) SMS hot water buffer tank 120 . Here, the hot water (HW) received in the hot water buffer tank 120 is supplied to the steam generator 100 by the hot water supply pump 130 . The hot water (HW) supplied to the steam generator 100 is heated in the first steam production unit 101 of the steam generator 100 to produce the first steam 1S, and the produced first steam 1S is It is supplied to the steam drum 110 and mixed with the second steam 2S to be described later to form mixed steam. In addition, a part of the mixed steam in the steam drum 110 is supplied to the second steam production unit 102 of the steam generator 100 and heated again to produce the saturated second steam 2S, and the produced product The 2 steam 2S is circulated and supplied to the steam drum 110 to improve the saturation of the steam accommodated in the steam drum 110 and is advantageous in generating saturated steam having a high degree of saturation. A portion of the mixed steam is supplied to the third steam production unit 103 of the steam generator 100 to produce the third steam 3S in an overheated state, and the third steam 3S in the overheated state is a high-temperature reactor at the rear stage. 210 is supplied. Although not shown in the drawing, a steam guide vane may be located in the steam drum 110 . The guide vane may be located on an inlet side to which the first steam 1S is supplied and an inlet side to which the second steam 2S is supplied, and is configured in a spiral shape to form the first steam 1S and the second steam. The steam 2S may form a rotational flow inside the steam drum 110 to improve the mixing degree of the steams, and may serve to uniform the saturation of the steams inside the steam drum 110 .

스팀발생기(100)의 제3스팀생산부(103)에서 생성된 과열상태의 제3스팀(3S)은 고온혼합기(140)에서 후술 2차예열원료가스(2HG)와 혼합된 후 고온반응기(210)에 공급될 수 있다. 상기 제3스팀(3S)은 메인 스팀배관(미도시)을 통해 공급되고, 상기 스팀배관에는 컨트롤밸브가 배치되며, 상기 컨트롤밸브의 개방정도를 조절하여 제3스팀(3S)의 공급량을 조절할 수 있다. 여기서 상기 메인 스팀배관에서 분지된 분지 스팀배관(미도시)이 위치할 수 있고, 상기 분지 스팀배관을 통해 제3스팀(3S)이 후술 저온반응기(220)에 공급된다.The third steam 3S in an overheated state generated by the third steam production unit 103 of the steam generator 100 is mixed with a secondary preheating raw material gas (2HG) to be described later in the high-temperature mixer 140 and then the high-temperature reactor 210 can be supplied to The third steam 3S is supplied through a main steam pipe (not shown), and a control valve is disposed in the steam pipe, and the supply amount of the third steam 3S can be adjusted by adjusting the degree of opening of the control valve. have. Here, a branched steam pipe (not shown) branched from the main steam pipe may be located, and the third steam 3S is supplied to the low-temperature reactor 220 to be described later through the branched steam pipe.

상기 원료가스는 원료가스 공급부(10)를 통해서 공급될 수 있고, 고온반응기(210)에서 배출되는 고온의 생성가스와 원료가스예열기(310)에서 열교환을 진행하여 1차예열원료가스(1HG)를 형성하고, 상기 1차예열원료가스(1HG)는 스팀발생기(100)의 원료가스 열교환부(104)에 공급되어 가열되어 2차예열원료가스(2HG)를 형성한다. 2차예열원료가스(2HG)는 고온혼합기(140)에 공급되어 상기 제3스팀(3S)과 혼합되어 수성전환원료(SG)를 형성한다. The raw material gas may be supplied through the raw material gas supply unit 10, and heat exchange is performed between the high-temperature product gas discharged from the high-temperature reactor 210 and the raw material gas preheater 310 to generate the primary preheating raw material gas (1HG). The primary preheating raw material gas 1HG is supplied to the raw material gas heat exchange unit 104 of the steam generator 100 and heated to form the secondary preheating raw material gas 2HG. The secondary preheating raw material gas 2HG is supplied to the high-temperature mixer 140 and mixed with the third steam 3S to form an aqueous conversion raw material SG.

본원발명에서 원료가스는 석유코크스 가스화에서 생산된 합성가스이다. 상기 합성가스는 H2, CO, CO2 및 기타 조성을 포함할 수 있다.In the present invention, the raw material gas is syngas produced from petroleum coke gasification. The synthesis gas may include H2, CO, CO2 and other compositions.

본원발명에서 상기 수성전환원료(SG)는 고온반응기(210)에서 고온용 촉매를 통과하면서 CO를 H2로 전환시키는 반응을 하고, 약 400℃ 정도의 온도조건에서 운전된다.In the present invention, the aqueous conversion raw material (SG) undergoes a reaction to convert CO into H2 while passing through a high-temperature catalyst in the high-temperature reactor 210, and is operated at a temperature of about 400°C.

상기 고온반응기(210)는 발열반응에 의해 약 470℃ 정도 온도의 고온생성가스(HPG)를 배출시키고, 상술한바와 같이 원료가스예열기(310)를 통과하면서 원료가스(G)를 예열시킨다.The high-temperature reactor 210 discharges high-temperature product gas (HPG) having a temperature of about 470° C. by an exothermic reaction, and preheats the source gas G while passing through the source gas preheater 310 as described above.

상기 원료가스예열기(310)를 통과한 고온생성가스(HPG)는 온도조절기(320)를 통과하여 냉각된 후 후단으로 공급된다.The high temperature product gas (HPG) passing through the raw material gas preheater 310 passes through the temperature controller 320 and is cooled and then supplied to the rear end.

여기서 상기 온도조절기(320)는 열교환기 형태로서, 별도의 냉가스를 이용할 수 있고, 워터공급부(20)에서 공급되는 공급수(W)의 일부를 분지하여 이용할 수 있다. 또한 원료공급부(10)에서 공급되는 원료가스(G)를 통과시켜 고온생성가스(HPG)를 냉각시킬 수 있다.Here, the temperature controller 320 is in the form of a heat exchanger, and can use a separate cold gas, and can be used by branching a part of the supply water W supplied from the water supply unit 20 . In addition, the raw material gas (G) supplied from the raw material supply unit 10 may pass to cool the high temperature product gas (HPG).

상기 온도조절기(320)를 통과한 고온생성가스(HPG)는 저온혼합기(150)에 공급되어, 스팀발생기(100)에서 배출되는 과열상태의 제3스팀(3S)과 혼합된 후 저온반응기(220)에 공급된다. 여기서 상기 제3스팀(3S)은 상술한 분지 스팀배관(미도시)을 통해 공급되고, 상기 분지 스팀배관에 배치된 컨트롤밸브(미도시)의 개방정도를 조절하여 제3스팀(3S)의 공급량을 조절할 수 있다.The high temperature product gas (HPG) passing through the temperature controller 320 is supplied to the low temperature mixer 150, mixed with the third steam 3S in an overheated state discharged from the steam generator 100, and then the low temperature reactor 220 ) is supplied to Here, the third steam 3S is supplied through the above-described branch steam pipe (not shown), and the supply amount of the third steam 3S is adjusted by adjusting the opening degree of a control valve (not shown) disposed in the branch steam pipe. can be adjusted.

저온반응기(220)의 촉매층에서 CO는 H2로 전환하는 반응을 하고, 230℃ 정도의 온도조건에서 운전된다.In the catalyst layer of the low-temperature reactor 220, CO is converted into H2 and is operated at a temperature of about 230°C.

저온반응기(220)를 통과한 저온생성가스(LPG)는 공급수예열기(330)를 통과하면서 워터공급부(20)에서 공급된 공급수를 예열한다. 공급수예열기(330)의 후단에는 냉각기(340)가 추가 배치되어 수성전환반응 과정에서 생성된 생성물질들을 냉각시켜 후단 응축기(350)로 공급한다. 응축기(350)에서는 상기 생성물질 중의 수분을 응축시켜 분리한 가스는 후단으로 공급한다. 응축기에서 분리된 상기 응축수는 워터공급부(20)에서 공급되는 공급수(W)와 혼합되어 공급수예열기(330)에 공급될 수 있다. The low-temperature product gas (LPG) passing through the low-temperature reactor 220 preheats the feed water supplied from the water supply unit 20 while passing through the feed water preheater 330 . A cooler 340 is additionally disposed at the rear end of the feed water preheater 330 to cool the products generated in the aqueous conversion reaction process and supply it to the downstream condenser 350 . In the condenser 350, the gas separated by condensing moisture in the product is supplied to the rear end. The condensed water separated from the condenser may be mixed with the feed water W supplied from the water supply unit 20 and supplied to the feed water preheater 330 .

상기 응축기(350)에서 배출되는 가스는 후단 수소분리기(400)에 공급된다. 여기서 수소분리기(400)는 PSA(pressure swing adsorption)방식으로 CO, CO2, H2, O 등의 혼합가스에서 H2만을 선택적으로 분리하여 고순도 H2를 생산할 수 있다.The gas discharged from the condenser 350 is supplied to the rear-stage hydrogen separator 400 . Here, the hydrogen separator 400 selectively separates only H2 from a mixed gas such as CO, CO2, H2, O by a pressure swing adsorption (PSA) method to produce high-purity H2.

상기 PSA 방식의 흡착공정에 의한 H2의 분리는 흡착제에 대한 각 성분들의 흡착선택도에 의해서 이뤄지는데, 상기 가스를 흡착제가 충진된 흡착탑으로 통과시키면, 가스 내 H2 성분은 흡착제에 흡착되고 그외 성분은 배출된다.The separation of H2 by the PSA-type adsorption process is made by the adsorption selectivity of each component with respect to the adsorbent. is emitted

H2 흡착이 끝난 흡착탑은 흡착된 H2를 탈착시켜 흡착제를 재생하여 다음 흡착을 시작하고, 흡착 분리 공정은 흡착기능과 탈착기능을 반복함으로써 이뤄지며, 크게 보면 PSA공정은 승압, 흡착, 감압, 세정의 4단계를 포함할수 있다.After H2 adsorption, the adsorption tower desorbs the adsorbed H2 and regenerates the adsorbent to start the next adsorption process, and the adsorption separation process is accomplished by repeating the adsorption and desorption functions. may include steps.

상기 수소분리기(400)에서 배출된 가스는 이산화탄소분리기(600)에 공급되어 CO2를 제거할 수 있다. 이산화탄소분리기(600)의 운전 조건에 따라 상기 수소분리기(400)에서 배출된 가스는 가압펌프(500)에 공급되어 가압된 후 이산화탄소분리기(600)에 공급될 수 있다. The gas discharged from the hydrogen separator 400 may be supplied to the carbon dioxide separator 600 to remove CO2. According to the operating conditions of the carbon dioxide separator 600 , the gas discharged from the hydrogen separator 400 may be supplied to the pressurization pump 500 and pressurized, and then supplied to the carbon dioxide separator 600 .

본원발명에서 CO2를 효과적으로 분리할 수 있다면, 그 방법은 특히 한정되지 않는다.In the present invention, if CO2 can be effectively separated, the method is not particularly limited.

이산화탄소분리기(600)에서 배출되는 가스는 스팀발생기(100)의 연소부(미도시)에 공급되어 잔여 H2, CO 및 기타 가연성 물질을 연소시킨다. The gas discharged from the carbon dioxide separator 600 is supplied to a combustion unit (not shown) of the steam generator 100 to burn residual H2, CO and other combustible materials.

이상에서 대표적인 실시예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다.Although the present invention has been described in detail through representative embodiments above, those of ordinary skill in the art to which the present invention pertains can make various modifications to the above-described embodiments without departing from the scope of the present invention. will understand

그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments and should be defined by the claims described below as well as the claims and equivalents.

10: 원료가스 공급부
20: 워터공급부
30: 연료공급부
40: 공기공급부
100: 스팀발생기
101: 제1스팀생산부
102: 제2스팀생산부
103: 제3스팀생산부
104: 원료가스 열교환부
110: 스팀드럼
120: 열수버퍼탱크
130: 열수공급펌프
140: 고온혼합기
150: 저온혼합기
210: 고온반응기
220: 저온반응기
310: 원료가스예열기
320: 온도조절기
330: 공급수예열기
340: 냉각기
350: 응축기
400: 수소분리기
500: 가압펌프
600: 이산화탄소분리기
700: 가스버퍼
A: 공기
F: 연료
G: 원료가스
1HG: 1차예열원료가스
2HG: 2차예열원료가스
W: 공급수
HW: 열수
1S: 제1스팀
2S: 제2스팀
3S: 제3스팀
SG: 수성전환원료
HPG: 고온생성가스
LPG: 저온생성가스
10: source gas supply unit
20: water supply unit
30: fuel supply unit
40: air supply
100: steam generator
101: 1st steam production department
102: 2nd steam production department
103: 3rd steam production department
104: source gas heat exchange unit
110: steam drum
120: hot water buffer tank
130: hot water supply pump
140: high temperature mixer
150: low temperature mixer
210: high-temperature reactor
220: low temperature reactor
310: raw material gas preheater
320: thermostat
330: supply water preheater
340: cooler
350: condenser
400: hydrogen separator
500: pressure pump
600: carbon dioxide separator
700: gas buffer
A: Air
F: fuel
G: raw material gas
1HG: Primary preheating raw material gas
2HG: Secondary preheating raw material gas
W: feed water
HW: hot water
1S: 1st steam
2S: 2nd steam
3S: 3rd Steam
SG: water-based conversion raw material
HPG: high-temperature gas
LPG: low-temperature gas

Claims (8)

석유코크스 가스화공정에서 생산된 합성가스를 공급하는 원료가스 공급부(10);
공급수를 공급하는 워터 공급부(20);
상기 워터 공급부(20)에 공급된 공급수를 이용하여 과열스팀을 안정적으로 생산하는 스팀발생기(100);
상기 공급부(10)에서 공급되는 원료가스와 상기 스팀발생기(100)에서 생산되는 스팀을 이용하여 제1온도조건에서 수소를 포함하는 제1가스를 생성하고, 이를 배출하는 고온반응기(210);
상기 고온반응기(210)에서 배출되는 중간생산물과 상기 스팀발생기(100)에서 생산되는 스팀을 이용하여 제2온도조건에서 고농도 H2를 포함하는 제2가스를 생성하고 이를 배출하는 저온반응기(220); 및
상기 제2가스 내 수소를 분리하는 수소분리기(400);를 포함하고,
상기 스팀발생기(100)는 다단 스팀생산부를 포함하고,
상기 저온반응기(220)에서 배출되는 제2가스를 이용하여 상기 워터 공급부(20)에서 공급되는 공급수를 예열하고,
상기 예열된 공급수는 상기 스팀발생기(100)의 제1스팀생산부(101)에 공급되어 제1스팀을 생산하고, 이를 스팀드럼(110)으로 공급하며,
상기 스팀드럼(110) 내의 혼합스팀의 일부는 상기 스팀발생기(100)의 제2스팀생산부(102)에 공급되어 제2스팀을 생산하고, 이를 상기 스팀드럼(110)에 순환 공급되며,
상기 스팀드럼(110) 내의 혼합스팀의 일부는 상기 스팀발생기(100)의 제3스팀생산부(103)에 공급되어 제3스팀을 생산하여 상기 고온반응기(210) 및 상기 저온반응기(220)에 공급하는 과열 스팀을 안정적으로 생산하는 것을 특징으로 하는 고순도 수소생산 시스템.
a raw material gas supply unit 10 for supplying syngas produced in the petroleum coke gasification process;
a water supply unit 20 for supplying supply water;
a steam generator 100 for stably producing superheated steam using the water supplied to the water supply unit 20;
a high-temperature reactor 210 for generating a first gas containing hydrogen under a first temperature condition using the raw material gas supplied from the supply unit 10 and the steam produced from the steam generator 100, and discharging it;
a low-temperature reactor 220 for generating a second gas containing a high concentration of H2 under a second temperature condition using the intermediate product discharged from the high-temperature reactor 210 and the steam produced from the steam generator 100 and discharging it; and
Including; a hydrogen separator 400 for separating hydrogen in the second gas;
The steam generator 100 includes a multi-stage steam production unit,
Preheating the supply water supplied from the water supply unit 20 using the second gas discharged from the low-temperature reactor 220,
The preheated supply water is supplied to the first steam production unit 101 of the steam generator 100 to produce the first steam, and is supplied to the steam drum 110,
A part of the mixed steam in the steam drum 110 is supplied to the second steam production unit 102 of the steam generator 100 to produce the second steam, which is circulated and supplied to the steam drum 110,
A part of the mixed steam in the steam drum 110 is supplied to the third steam production unit 103 of the steam generator 100 to produce the third steam and supplied to the high-temperature reactor 210 and the low-temperature reactor 220 . A high-purity hydrogen production system, characterized in that it stably produces superheated steam.
삭제delete 제1항에 있어서,
상기 고온반응기(210)에서 배출되는 제1가스는 원료가스 공급부(10)에서 공급되는 원료가스와 열교환하여 상기 원료가스를 예열하는 것을 특징으로 하는 고순도 수소생산 시스템.
According to claim 1,
The high-purity hydrogen production system, characterized in that the first gas discharged from the high-temperature reactor (210) is heat-exchanged with the source gas supplied from the source gas supply unit (10) to preheat the source gas.
제3항에 있어서,
상기 제1가스와 열교환을 통하여 예열된 원료가스는 상기 스팀발생기(100)에서 열교환하여 2차 예열되는 것을 특징으로 하는 고순도 수소생산 시스템.
4. The method of claim 3,
The raw material gas preheated through heat exchange with the first gas is heat-exchanged in the steam generator (100) to be secondarily preheated.
제1항에 있어서,
상기 스팀드럼(110)에는 공급되는 스팀들의 흐름방향을 변경시키는 가이드 베인이 배치되는 것을 특징으로 하는 고순도 수소생산 시스템.
According to claim 1,
A high-purity hydrogen production system, characterized in that a guide vane for changing the flow direction of the supplied steam is disposed in the steam drum (110).
제1항에 있어서,
상기 수소분리기(400)는 압력변동을 이용하여 기체성분을 흡착분리하는 PSA(pressure swing adsorption)인 것을 특징으로 고순도 수소생산 시스템.
According to claim 1,
The hydrogen separator 400 is a high-purity hydrogen production system, characterized in that it is a pressure swing adsorption (PSA) that adsorbs and separates gas components using pressure fluctuations.
제6항에 있어서,
상기 수소분리기(400)로부터 생산되는 수소는 순도 99% 이상인 것을 특징으로 하는 고순도 수소생산 시스템.
7. The method of claim 6,
High-purity hydrogen production system, characterized in that the hydrogen produced from the hydrogen separator 400 has a purity of 99% or more.
제1항에 있어서,
상기 수소분리기(400) 후단에는 이산화탄소분리기(600)가 배치되어 이산화탄소를 분리하는 것을 특징으로 하는 고순도 수소생산 시스템.
According to claim 1,
A high-purity hydrogen production system, characterized in that a carbon dioxide separator (600) is disposed at the rear end of the hydrogen separator (400) to separate carbon dioxide.
KR1020210070448A 2021-05-31 2021-05-31 High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production KR102292411B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210070448A KR102292411B1 (en) 2021-05-31 2021-05-31 High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210070448A KR102292411B1 (en) 2021-05-31 2021-05-31 High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production

Publications (1)

Publication Number Publication Date
KR102292411B1 true KR102292411B1 (en) 2021-08-24

Family

ID=77506823

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210070448A KR102292411B1 (en) 2021-05-31 2021-05-31 High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production

Country Status (1)

Country Link
KR (1) KR102292411B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430685B1 (en) 2022-05-26 2022-08-11 고등기술연구원연구조합 High concentration hydrogen sulfide removal device in solution bath type
KR102434113B1 (en) 2022-05-26 2022-08-22 고등기술연구원연구조합 Float type level transmitter equipped with a measurement error resolution device due to particle adhesion
KR102438343B1 (en) 2022-05-31 2022-09-02 고등기술연구원연구조합 Petroleum Coke Slurry Manufacturing Equipment
KR102466732B1 (en) 2022-06-07 2022-11-17 주식회사 아스페 H2 and CO2 separation method with VPSA applied to increase hydrogen recovery rate
KR102586878B1 (en) 2023-03-28 2023-10-11 제이엔케이히터(주) High-purity hydrogen production high temperature reactor through water gas shift reaction during the syngas production process using petroleum coke
KR102593782B1 (en) 2023-03-28 2023-10-26 제이엔케이히터(주) High-purity hydrogen production system through water gas shift reaction during the syngas production process using petroleum coke
KR20240149259A (en) 2023-04-05 2024-10-14 고등기술연구원연구조합 Real-time absorption-regeneration integrated reactor and compact continuous sulfur recovery system with gas-liquid contact retention time securing structure for removing hydrogen sulfide from harmful gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015148A (en) * 2009-08-07 2011-02-15 한국에너지기술연구원 Multi fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
KR101632888B1 (en) 2014-12-22 2016-06-24 주식회사 포스코 Energy reduction high efficiency water gas shift reaction system
KR20180047995A (en) * 2016-11-02 2018-05-10 선문대학교 산학협력단 Multi-stage steam generator
KR20200000749A (en) * 2018-06-25 2020-01-03 한국전력공사 Integrated CO-Shift Reactor with Multi-Stage Temperature Control Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110015148A (en) * 2009-08-07 2011-02-15 한국에너지기술연구원 Multi fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
KR101103594B1 (en) 2009-08-07 2012-01-10 한국에너지기술연구원 Multi fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
KR101632888B1 (en) 2014-12-22 2016-06-24 주식회사 포스코 Energy reduction high efficiency water gas shift reaction system
KR20180047995A (en) * 2016-11-02 2018-05-10 선문대학교 산학협력단 Multi-stage steam generator
KR20200000749A (en) * 2018-06-25 2020-01-03 한국전력공사 Integrated CO-Shift Reactor with Multi-Stage Temperature Control Device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102430685B1 (en) 2022-05-26 2022-08-11 고등기술연구원연구조합 High concentration hydrogen sulfide removal device in solution bath type
KR102434113B1 (en) 2022-05-26 2022-08-22 고등기술연구원연구조합 Float type level transmitter equipped with a measurement error resolution device due to particle adhesion
KR102438343B1 (en) 2022-05-31 2022-09-02 고등기술연구원연구조합 Petroleum Coke Slurry Manufacturing Equipment
KR102466732B1 (en) 2022-06-07 2022-11-17 주식회사 아스페 H2 and CO2 separation method with VPSA applied to increase hydrogen recovery rate
KR102586878B1 (en) 2023-03-28 2023-10-11 제이엔케이히터(주) High-purity hydrogen production high temperature reactor through water gas shift reaction during the syngas production process using petroleum coke
KR102593782B1 (en) 2023-03-28 2023-10-26 제이엔케이히터(주) High-purity hydrogen production system through water gas shift reaction during the syngas production process using petroleum coke
KR20240149259A (en) 2023-04-05 2024-10-14 고등기술연구원연구조합 Real-time absorption-regeneration integrated reactor and compact continuous sulfur recovery system with gas-liquid contact retention time securing structure for removing hydrogen sulfide from harmful gas

Similar Documents

Publication Publication Date Title
KR102292411B1 (en) High-purity hydrogen production system through water gas conversion reaction during petroleum coke synthesis gasification process for hydrogen production
CA2660293C (en) Hydrogen production method and facility
US11053119B2 (en) Process for producing a synthesis gas
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
KR20020054366A (en) Hydrogen production from carbonaceous material
CA3185308C (en) Low carbon hydrogen fuel
CN104937078A (en) Hybrid plant for liquid fuel production and method for operating it where a gasification unit in the hybrid plant is operating at less than its design capacity or is not operational
US8268896B2 (en) Co-production of fuels, chemicals and electric power using gas turbines
TW202319334A (en) Method for hydrogen production coupled with co2capture
CN113896197B (en) Method for preparing carbon monoxide by reforming hydrocarbon carbon dioxide
US11554954B2 (en) Process for producing a synthesis gas
CA3205154A1 (en) Method for preparing a synthesis gas
Barelli et al. Study of the carbonation–calcination reaction applied to the hydrogen production from syngas
Jabarivelisdeh et al. Ammonia production processes from energy and emissions perspectives: a technical brief
JP7474013B1 (en) E-fuel production system with power generation facility and e-fuel production method with power generation facility
CN112678771B (en) Hydrogen production method and integrated system of SMR and methanol steam reforming
EP4375235A2 (en) Integration of hydrogen fueled gas turbine with a hydrocarbon reforming process
WO2024141174A1 (en) A method and a system for carbon neutral power generation
CN117380113A (en) Methanol preparation system
CN117414778A (en) Flexible carbon storage methanol preparation system and method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant