Nothing Special   »   [go: up one dir, main page]

KR101898004B1 - Sliding Element, in Particular a Piston Ring, Having a Coating - Google Patents

Sliding Element, in Particular a Piston Ring, Having a Coating Download PDF

Info

Publication number
KR101898004B1
KR101898004B1 KR1020137016075A KR20137016075A KR101898004B1 KR 101898004 B1 KR101898004 B1 KR 101898004B1 KR 1020137016075 A KR1020137016075 A KR 1020137016075A KR 20137016075 A KR20137016075 A KR 20137016075A KR 101898004 B1 KR101898004 B1 KR 101898004B1
Authority
KR
South Korea
Prior art keywords
metal
dlc layer
layer
free
thickness
Prior art date
Application number
KR1020137016075A
Other languages
Korean (ko)
Other versions
KR20140005186A (en
Inventor
마르쿠스 케네디
미셸 진나볼드
Original Assignee
페데랄-모굴 부르샤이트 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페데랄-모굴 부르샤이트 게엠베하 filed Critical 페데랄-모굴 부르샤이트 게엠베하
Publication of KR20140005186A publication Critical patent/KR20140005186A/en
Application granted granted Critical
Publication of KR101898004B1 publication Critical patent/KR101898004B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은, 내부로부터 바깥쪽으로, 접착층(10), 금속 함유 DLC 층(12), 및 적어도 일부에서 질소가 도핑된 무금속 DLC 층(14, 16)을 포함하는 코팅을 적어도 일면에 가지고 있는, 예를 들어, 피스톤 링과 같은 슬라이딩 소자에 관한 것으로, 상기 무금속 DLC 층에서 질소 함량이 구획되어 있는 것을 특징으로 한다.The present invention is directed to a method of manufacturing a semiconductor device having a coating comprising at least one surface comprising an adhesive layer (10), a metal containing DLC layer (12), and a nitrogen-doped non- For example, it relates to a sliding element such as a piston ring, characterized in that the nitrogen content is partitioned in the metal-free DLC layer.

Figure R1020137016075
Figure R1020137016075

Description

코팅을 포함하는 슬라이딩 소자 및 피스톤 링 {Sliding Element, in Particular a Piston Ring, Having a Coating}[0001] The present invention relates to a sliding element and a piston ring,

본 발명은 적어도 하나의 구동면(running surface)에 코팅을 포함하는 슬라이딩 소자(sliding element), 특히, 피스톤 링에 관한 것이다.The invention relates to a sliding element, in particular a piston ring, which comprises a coating on at least one running surface.

예를 들어, 내연기관의 피스톤 링, 피스톤 또는 실린더 라이너 등과 같은 슬라이딩 소자들은 가능하면 낮은 마찰과 낮은 마모성을 가지면서 긴 사용 시간에 걸쳐 작동하여야 한다. 내연기관에서 연료 소모와 직접 연결되는 마찰은 DLC (diamond-like carbon) 코팅에 의해 낮게 유지될 수 있다. 또한, 원리상으로 40 마이크로미터까지의 층 두께가 달성될 수 있다. 그러나, 5 마이크로미터를 초과하는 층 두께를 가지면, 예를 들어, 층의 구조 및 조성 측면에서 층 특성이 변화하고, 그로 인해 요구되는 수명이 달성되지 못하는 문제점이 있다. 이는 5 마이크로미터 미만의 층 두께에도 유사하게 적용된다.For example, sliding elements such as piston rings, piston or cylinder liners of internal combustion engines should be operated over a long service life with as low friction and low wear as possible. The friction directly connected to fuel consumption in the internal combustion engine can be kept low by a diamond-like carbon (DLC) coating. Also, layer thicknesses of up to 40 micrometers can be achieved in principle. However, having a layer thickness exceeding 5 micrometers has the problem that, for example, the layer properties change in terms of the structure and composition of the layer, and therefore the required lifetime is not achieved. This applies similarly to layer thicknesses less than 5 micrometers.

이와 관련하여, 대부분 크롬 나이트라이드를 포함하는 견고한 물질에 기반한 PVD 코팅이 알려져 있다. 그러한 층들은 필요한 내마모성을 가지지만, 그럼에도 불구하고 요구되는 낮은 마찰계수를 가지지 못한다.In this regard, PVD coatings based on rigid materials, including mostly chromium nitride, are known. Such layers have the necessary abrasion resistance, but nevertheless do not have the required low coefficient of friction.

우수한 런-인(run-in) 거동을 보여주는 DLC 코팅을 포함하는 슬라이딩 소자가 DE 10 2005 063 123 B3에 개시되어 있다. 그러나, 전반적으로, 낮은 마찰계수의 내구성(durability)은 더욱 향상될 수 있다.A sliding element comprising a DLC coating showing excellent run-in behavior is disclosed in DE 10 2005 063 123 B3. However, overall, the durability of the low coefficient of friction can be further improved.

DE 10 2008 016 864는 내부에서 바깥쪽으로 접착층, 금속 함유 DLC 층 및 무금속 DLC 층을 포함하는 코팅을 가진 슬라이딩 소자와 관련이 있다.DE 10 2008 016 864 relates to a sliding element with a coating comprising an adhesive layer, a metal-containing DLC layer and a metal-free DLC layer from the inside to the outside.

또한, DE 197 35 962 A1에는, 수소화 무정형 카본의 경직한 카본 막이 플라즈마 CVD 공정에 의해 내면에 형성되어 있는 가이드 부시(guide bush)와, 가이드 부시의 내면에 경직한 카본막을 형성하는 방법이 개시되어 있다.DE 197 35 962 A1 discloses a guide bush in which a rigid carbon film of hydrogenated amorphous carbon is formed on the inner surface by a plasma CVD process and a method of forming a rigid carbon film on the inner surface of the guide bush have.

끝으로, WO 2006/125683 A1은, 내부에서 바깥쪽으로, IVB족, VB족 또는 VIB족 원소를 포함하는 층, 다아이몬드형 나노복합체(diamond-like nanocomposite) 조성을 포함하는 중간층, 및 DLC 층을 가진 피스톤을 개시하고 있다.Finally, WO 2006/125683 A1 discloses, from the inside outwards, a layer comprising a Group IVB, VB or VIB group element, an intermediate layer comprising a diamond-like nanocomposite composition, and a DLC layer A piston having a piston.

아직 공개되지는 않았지만 본 출원인의 DE 10 2009 028 504는 본원의 제1항의 전제부에 해당하는 슬라이딩 소자와 관련이 있다.Although not yet disclosed, the applicant's DE 10 2009 028 504 relates to a sliding element corresponding to the premise of claim 1 of the present application.

이러한 선행기술들에 대해, 본 발명은 마찰계수와 마모 특성들의 조합 측면에서 더욱 향상된 슬라이딩 소자를 제공하는 것을 목적으로 한다.With respect to these prior arts, the present invention aims to provide a sliding device that is further improved in terms of the combination of friction coefficient and wear characteristics.

이러한 목적은 제1항에 기재되어 있는 슬라딩 소자에 의해 달성된다.This object is achieved by the sliding element according to claim 1.

제 1 항에 따르면, 슬라이딩 소자는, 내부로부터 바깥쪽으로, 접착층, 금속, 특히 텅스텐을 함유한 DLC 층, 및 무금속(metal-free) DLC 층을 포함하는 코팅을 적어도 일면에 가지고 있다. 이러한 코팅은 특히 적어도 하나의 구동면(running surface) 상에 제공될 수 있다. 그러나, 그것의 대체 또는 보충으로, 적어도 하나의 측면(flank)을 코팅하는 것도 가능하다. 접착층은 바람직하게는 크롬 접착층이다. 금속 함유 DLC 층은 무정형 탄소를 포함하고 있고 a-C:H:M로 설정될 수 있으며, 바람직하게는 텅스텐 함유 DLC 층, a-C:H:W로 설정될 수 있다. 최외층 또는 상단 층 또한 무정형 탄소를 포함하고 a-C:H로 설정될 수 있다. 마찰 및 마모 측면에서 특히 바람직한 물성들은 기재된 수치들로 결정되었다. 이러한 마찰 공학적 특성들은 두꺼운 상단 층에 의해 더욱 긴 수명 쪽으로 영향을 줄 수 있다. 그러나, 이러한 상단 층이 중간 층과 비교하여 너무 두꺼우면, 층의 높은 잔류 응력이 접착력을 줄이기 때문에, 마모 수치를 열화시키고, 이는 박리(delamination)를 초래할 수도 있다.According to claim 1, the sliding element has on at least one side a coating comprising an adhesive layer, a DLC layer containing a metal, in particular tungsten, and a metal-free DLC layer, from the inside to the outside. This coating can be provided on at least one running surface in particular. However, it is also possible to coat at least one side (flank) with its replacement or supplementation. The adhesive layer is preferably a chromium adhesive layer. The metal-containing DLC layer may contain amorphous carbon and may be set to a-C: H: M, preferably a tungsten-containing DLC layer, and a-C: H: W. The outermost or top layer also contains amorphous carbon and may be set to a-C: H. Particularly desirable properties in terms of friction and wear have been determined with the stated values. These tribological properties can affect the longer lifetime by the thicker top layer. However, if this top layer is too thick compared to the intermediate layer, the high residual stress of the layer will reduce the adhesion force, thus degrading the wear values, which may lead to delamination.

무금속 DLC 층의 도핑과 관련하여, 층의 잔류 응력이 바람직하게 줄어들도록 특히 질소의 사용을 위해 결정될 수 있었다. 층의 긴 수명을 보장할 수 있기 위하여, 특히 임계 층 두께에 도달하자마자, 무금속 DLC 층은 질소로 도핑된다. 이러한 수단에 의해, 앞서 언급한 바와 같이, 잔류 응력이 줄어들고, 그에 따라 높은 층 두께가 형성될 수 있다. 응력 시험에서 행해진 초기 시험들은 좋은 결과를 양산하였다. 질소 도핑 및 그것에 의해 달성될 수 있는 잇점들에 대한 자세한 내용과 관련하여, Journal of Physics, vol. 30, No. 3, Sao Paulo 2000에서 D.F. Franceschini에 의한 논문 “Plasma-deposited a-C(N):H films”이 본 출원의 주요 내용으로 합체된다.With respect to the doping of the metal-free DLC layer, it could be determined especially for the use of nitrogen so that the residual stress of the layer is preferably reduced. To be able to ensure a long lifetime of the layer, the metal-free DLC layer is doped with nitrogen, especially as soon as the critical layer thickness is reached. By this means, as mentioned above, the residual stress can be reduced and thus a higher layer thickness can be formed. Initial tests performed in the stress test produced good results. For more information on nitrogen doping and the benefits that can be achieved thereby, see Journal of Physics, vol. 30, No. 3, D.F. in Sao Paulo 2000. The article "Plasma-deposited a-C (N): H films" by Franceschini is incorporated into the main content of the present application.

슬라이딩 소자의 적어도 하나의 구동면에 적어도 일부에 코팅이 형성되는 동안에, 코팅은 전체 구동면에 걸쳐 확장될 수 있고, 특히 구동면에 인접한 면들, 예를 들어, 피스톤 링의 측면들 및/또는 구동면으로부터 그것에 인접한 면들로의 전이부(the transition)에서 전체적으로 또는 부분적으로 형성될 수도 있다.While the coating is formed on at least one portion of the at least one driving surface of the sliding element, the coating may extend over the entire driving surface and may be particularly worn on the surfaces adjacent to the driving surface, e.g., the sides of the piston ring and / May be wholly or partially formed at the transition from the surface to its adjacent surfaces.

더욱이, 무금속 DLC 층에서의 분획된 질소 함량(graduated nitrogen content)은 잔류 응력의 좋은 경로를 추가적으로 보장하는 것으로 현재 기대된다. Moreover, the fractionated nitrogen content in the metal-free DLC layer Nitrogen content is now expected to additionally ensure a good path of residual stress.

본 발명에 따른 슬라이딩 소자의 바람직한 예들이 나머지 청구항들에 기재되어 있다.Preferred examples of sliding elements according to the present invention are described in the remaining claims.

주철(cast iron) 또는 강철(steel)은 슬라이딩 소자, 특히, 피스톤 링의 기재 물질(base material)로서 현재 바람직하다. 특히 우수한 물성들이 이들 소재들에 대해 결정될 수 있었다.Cast iron or steel is presently preferred as a base material for sliding elements, especially piston rings. Particularly good properties could be determined for these materials.

층의 경도(hardness) 측면에서, 1400 HV0.02 내지 2900 HV0.02의 수치가 무금속 (a-C:H, 상단) DLC 층에 대해 바람직하고, 및/또는 800 내지 1600 HV0.02의 수치가 금속 함유 (a-C:H:Me) DLC 층에 대해 바람직한 바, 이는 층 접착(adhesion)과 결합(cohesion)에서의 요건들이 이들 수치들에서 충족스럽게 만족되었기 때문이다.In view of the hardness of the layer, a value of 1400 HV 0.02 to 2900 HV 0.02 is preferred for a metal-free (aC: H, upper) DLC layer and / or a value of 800 to 1600 HV 0.02 is preferred for metal (AC: H: Me) DLC layer, because the requirements in layer adhesion and cohesion are satisfactorily satisfied at these values.

금속 함유 및 무금속 DLC 층 모두 수소를 포함할 수 있고, 이는 시험을 통해 이점이 있음이 입증되었다.Both metal-containing and metal-free DLC layers can contain hydrogen, which has proved advantageous through testing.

더욱이, 텅스텐 함유 DLC 층은 나노결정성 텅스텐 카바이드 침적물들(precipitates)을 포함하는 것이 바람직하고, 이는 물성면에서 이롭다.Moreover, the tungsten-containing DLC layer preferably comprises nanocrystalline tungsten carbide precipitates, which is beneficial in terms of physical properties.

접착층, 특히, 크롬 접착층의 두께는, 최대 1 마이크로미터가 바람직하다.The thickness of the adhesive layer, particularly the chromium adhesive layer, is preferably at most 1 micrometer.

마찰계수와 마모 특성들 사이의 균형이 특히 만족스러운 방식으로 충족될 수 있도록, 5 내지 40 마이크로미터, 특히, 대략 10 내지 20 마이크로미터의 전체 코팅 두께가 바람직하다.A total coating thickness of from 5 to 40 micrometers, especially about 10 to 20 micrometers, is preferred so that the balance between the coefficient of friction and the wear characteristics can be met in a particularly satisfactory manner.

코팅의 효율적인 구현 측면에서, 접착층은 금속 증착(metal vapor deposition)에 의해 형성되는 것이 현재 시점에서는 바람직하다.In view of the efficient implementation of the coating, it is presently preferred that the adhesive layer be formed by metal vapor deposition.

본 발명에 따른 코팅의 유리한 제조는, 이들 층들이 PVD 및/또는 PA-CVD 공정 수단에 의해 구현된다면, 금속 함유 및/또는 무금속 DLC 층의 측면에서 더욱 보장된다. 특히, 앞서 언급한 두 공정들은 본 발명에 따른 코팅의 개별적 층 또는 둘 이상의 층들에 대해 조합될 수 있다. 질소 도핑을 위해, 플라즈마에서 아세틸렌의 이온화로부터 초래되는 탄소에 부가하여, 질소가 침적되고 층이 앞서 설명한 바와 같이 도핑되도록, 공정 중에 본질적으로 가스로서 질소가 부가된다. 공정의 상세한 설명은 Material Science and Engineering R 37 (2002), pages 129-281에서 J. Robertson의 논문 “Diamond-like amorphous carbon”에서 확인할 수 있다.Advantageous manufacture of the coatings according to the invention is further ensured in terms of metal-containing and / or metal-free DLC layers, if these layers are realized by PVD and / or PA-CVD process means. In particular, the two processes mentioned above can be combined for the individual layers or two or more layers of the coating according to the invention. For nitrogen doping, in addition to carbon resulting from the ionization of acetylene in the plasma, nitrogen is essentially added as a gas during the process so that nitrogen is deposited and the layer is doped as previously described. A detailed description of the process can be found in J. Robertson's article "Diamond-like amorphous carbon" in Material Science and Engineering R 37 (2002), pages 129-281.

무금속 DLC 층과 금속 함유 DLC 층의 두께 비율은 바람직하게는 0.7 내지 1.5이고, 무금속 DLC 층과 코팅 전체의 두께 비율은 0.4 내지 0.6이다. 중간 층과 상단 층이 거의 동일한 두께를 가진 경우, 특히 우수한 마모 수치가 얻어질 수 있어서, 대략 1.0, 특히, 0.9 내지 1.1 의 두께 비율, 또는 전체 층에 대한 상단 층의 두께 비율이 대략 0.5, 특히, 0.45 내지 0.55인 것이 여기서 바람직하다. 금속 함유 DLC 층이 전체 층의 대략 40 내지 70%를 담당하고 무금속 DLC 층이 대략 4.4 내지 7.6 마이크로미터의 두께를 가진 상태로, 예를 들어, 10 내지 20 마이크로미터의 전체 두께가 현재 시점에서 특히 바람직하다.The thickness ratio of the metal-free DLC layer to the metal-containing DLC layer is preferably 0.7 to 1.5, and the thickness ratio of the metal-free DLC layer to the entire coating is 0.4 to 0.6. Particularly good wear values can be obtained when the intermediate layer and the top layer have approximately the same thickness, so that a ratio of thickness of approximately 1.0, in particular 0.9-1.1, or a thickness ratio of the top layer to the total layer is approximately 0.5, , And 0.45 to 0.55. The metal-containing DLC layer accounts for approximately 40 to 70% of the total layer, and the metal-free DLC layer has a thickness of approximately 4.4 to 7.6 micrometers, for example, a total thickness of 10 to 20 micrometers, Particularly preferred.

마찰 측면에서, 상기 범위의 코팅을 위해, 내연 기관에서 발생하는 손상을 만족시키고 특히 거의 일정한 마찰계수를 설정하는 것이 가능하였다. 반대로, 상기 범위를 벗어나는 경우, 높은 마찰계수 피크들과 일정하지 않은 마찰 특성들이 단기간의 시간 이후에도 설정되었다.In terms of friction, it has been possible to satisfy the damage occurring in the internal combustion engine and to set a particularly constant friction coefficient, especially for the above range of coatings. Conversely, when out of the range, high friction coefficient peaks and non-uniform friction characteristics were set after a short period of time.

이러한 거동에 대한 설명으로서, 본 발명이 비록 이에 한정되지는 않지만, 현재 시점에서는, 무금속 DLC 층이 우선 전체 시스템, 즉, 전체 코팅 내로 도입되고, 최외층의 두께에 유사한 금속 함유 DLC 층의 층 두께의 경우에, 강도(strength)와 강인성(toughness) 간의 조합에 대해 최적 상태로 코팅이 구현되는 방식으로 매우 높은 잔류 응력이 보상될 수 있다고 생각된다. 따라서, 이것으로 코팅된 슬라이딩 소자, 특히, 피스톤 링은 우수한 내마모성을 가진다. 무금속 및 금속 함유 DLC 층 간의 층 두께 비율이 < 0.7이거나 및/또는 전체 층에 대한 상단 층의 두께 비율이 < 0.4이라면, 최외층의 무금속 DLC 층이 높은 내마모성을 가지지만 그럼에도 불구하고 충분한 층 두께를 가지지 못하기 때문에 슬라이딩 소자의 수명은 매우 짧다. 이와 반대로, 무금속 및 금속 함유 DLC 층 간의 층 두께 비율이 > 1.5이거나 및/또는 상단 층과 전체 층 간의 층 두께 비율이 > 0.6이라면, 금속 함유 DLC 층의 두께는 잔류 응력을 보상하기에 충분치 않다. 이는, 최외층의 큰 두께에도 불구하고 전체적으로 DLC 층의 이른 마모를 초래하거나 또는 작동 중에 지나치게 높은 로드의 결과로 DLC 층의 제거(flaking-off)를 초래한다. 무금속 a-C:H 층의 층 두께가 더 증가한다면, 이는 질소 도핑 수단에 의해 가능할 수 있는 바, 잔류 응력이 그러한 수단에 의해 줄어들고 상단 층의 향상된 도전성로 인해 코팅 공정이 더욱 안정하기 때문이다. 더욱이, 잔류 응력의 감소는 향상된 마찰 거동을 유도한다.As a description of this behavior, although the invention is not limited in this respect, at present, the metal-free DLC layer is first introduced into the overall system, i.e. the entire coating, and the layer of the metal- containing DLC layer In the case of thickness, it is believed that very high residual stresses can be compensated in such a way that the coating is optimally realized for the combination between strength and toughness. Therefore, the sliding element coated with this, especially the piston ring, has excellent abrasion resistance. If the ratio of the layer thickness between the metal-free and metal-containing DLC layers is < 0.7 and / or the thickness ratio of the top layer to the total layer is < 0.4, then the outermost layer of the non- metal DLC layer has high abrasion resistance, The lifetime of the sliding element is very short because it does not have a thickness. Conversely, if the layer thickness ratio between the metal-free and metal containing DLC layers is > 1.5 and / or the layer thickness ratio between the top layer and the total layer is > 0.6, then the thickness of the metal- containing DLC layer is not sufficient to compensate for the residual stress . This results in premature wear of the DLC layer as a whole, despite the large thickness of the outermost layer, or a flaking-off of the DLC layer as a result of an excessively high load during operation. If the layer thickness of the metal-free a-C: H layer is further increased, this may be possible by nitrogen doping means, because the residual stress is reduced by such means and the coating process is more stable due to the improved conductivity of the top layer. Moreover, the reduction of the residual stress leads to improved friction behavior.

또한, 5 at% 초과 및/또는 최대 40 at%의 질소 함량은 초기 시험들에서 성공적인 것으로 입증되었다. 특히, 10 at% 내지 25 at%가 현 시점에서 바람직하다.In addition, the nitrogen content of greater than 5 at% and / or at most 40 at% has been demonstrated to be successful in initial tests. In particular, 10 at% to 25 at% is preferred at this point in time.

바람직하게는 무금속 DLC 층의 바깥 부위가 질소로 도핑될 수 있다.Preferably, the outer portion of the metal-free DLC layer may be doped with nitrogen.

무금속 DLC 층에서 도핑 부위로 설명되는 두께 부위에 대해, 비도핑 부위의 10 내지 90%의 두께가 바람직하다. 초기 시험들은 이들 수치에 대해 우수한 결과를 양산하였다.For a thickness region described as a doping region in the metal-free DLC layer, a thickness of 10 to 90% of the non-doped region is preferred. Initial tests yielded excellent results for these figures.

이상에서 설명한 바와 같이, 본 발명에 따른 슬라이딩 소자는 향상된 마찰계수와 마모 특성들의 조합적인 물성을 제공한다.As described above, the sliding element according to the present invention provides a combined physical property of improved friction coefficient and wear characteristics.

본 발명의 바람직한 실시예들을 도면을 참조하여 이하에서 더욱 자세히 설명한다.
도면은 본 발명의 하나의 실시예에 따른 코팅의 구조를 모식적으로 보여주고 있다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings.
The drawings schematically show the structure of a coating according to one embodiment of the present invention.

도면에 모식적으로 표현된 바와 같이, 본 발명에 따른 코팅은 기재(8) 상에, 내부에서 바깥쪽으로, 접착층(10), 금속 함유 DLC 층(12), 및 무금속 DLC 층인 상단 층(14, 16)을 포함하고 있다. 도시되어 있는 예시에서, 바깥쪽 부위(16)는 질소로 도핑되어 있고, 안쪽 부위(14)는 질소로 도핑되어 있지 않다. 도시되어 있는 예에서, 도핑 부위의 질소 농도는 대략 15%이고, 도핑 부위로부터 비도핑 부위로의 전이에서 단지 약간 구획되어 있다. 달리 말하면, 질소 함량은 상대적으로 작은 두께 범위에서 0으로 떨어진다. 그러나, 이러한 진행은 다행히도 구획될 수 있다.
As schematically depicted in the figure, a coating according to the present invention comprises, on a substrate 8, an adhesive layer 10, a metal-containing DLC layer 12, and a top layer 14, which is a metal-free DLC layer, , 16). In the example shown, the outer region 16 is doped with nitrogen and the inner region 14 is not doped with nitrogen. In the example shown, the nitrogen concentration at the doping site is approximately 15% and is only slightly partitioned in the transition from the doping site to the undoped site. In other words, the nitrogen content falls to zero in a relatively small thickness range. However, this progress can fortunately be compartmentalized.

실시예Example

본 발명에 따른 코팅의 특성들을 다음과 같이 체크하였다. 시험은 2개의 피스톤 링들, 즉, 하나는 구동 면의 코팅의 상단 층이 도핑된 것과 도핑되지 않은 것을 가지고 수행하였다. The properties of the coatings according to the invention were checked as follows. The test was carried out with two piston rings, one doped with the top layer of the coating on the drive side and one undoped.

도핑된 것에서 대략 20%의 마찰계수가 측정되었다. 이는 sp2-혼성화 탄소 원자들의 농도가 질소 도핑에 의해 증가한다는 사실에 의해 설명될 수 있다. sp2-혼성화 탄소 원자들은 흑연상(graphite-like) 결정 구조를 가지는 바, 이는 전단 응력의 경우에 개개의 결정면들이 하나의 공간 방향으로 미끄러지는 것을 가능하게 만들고, 기계적 에너지가 결정면들의 이동에 의해 흡수될 수 있음을 의미한다. 이는 낮은 sp2 함량을 가진 층 시스템보다 낮은 마찰을 초래한다. 내마모성은 sp2 함량에 의해 줄어들기 때문에 sp2 함량이 너무 높게 정해지지 말아야 함을 주목하여야 한다.
A coefficient of friction of about 20% was measured for the doped. This can be explained by the fact that the concentration of sp2-hybridized carbon atoms increases by nitrogen doping. The sp2-hybridized carbon atoms have a graphite-like crystal structure, which makes it possible for individual crystal faces to slip in one spatial direction in the case of shear stress, and that the mechanical energy is absorbed . This results in lower friction than a layer system with lower sp2 content. It should be noted that the abrasion resistance is reduced by the sp2 content and therefore the sp2 content should not be set too high.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (16)

내부로부터 바깥쪽으로, 접착층(10), 금속 함유 DLC 층(12), 및 무금속(metal-free) DLC 층(14, 16)을 포함하는 코팅을 적어도 일면에 가지고 있는 슬라이딩 소자에 있어서,
상기 무금속 DLC 층(14, 16)은 적어도 일부에서 질소가 도핑된 무금속 DLC 층(16)과 질소가 도핑되지 않은 무금속 DLC 층(14)을 포함하고,
상기 무금속 DLC 층에서 질소 함량은 구획(graduate) 되어있고,
상기 슬라이딩 소자는 피스톤 링이고,
상기 적어도 일부에서 질소가 도핑된 무금속 DLC 층(16)은 바깥쪽 부위가 도핑되어 있고,
질소의 도핑 농도(doping concentration)는 상기 적어도 일부에서 질소가 도핑된 무금속 DLC 층(16)과 상기 질소가 도핑되지 않은 무금속 DLC 층(14) 사이의 경계 영역에서 급격하게(steeply) 변화하는 것을 특징으로 하는 슬라이딩 소자.
1. A sliding element having on at least one side a coating comprising an adhesive layer (10), a metal-containing DLC layer (12), and a metal-free DLC layer (14, 16)
The metal-free DLC layers 14 and 16 include at least a portion of a nitrogen-free metal-free DLC layer 16 and a nitrogen-free metal-free DLC layer 14,
The nitrogen content in the metal-free DLC layer is graduated,
Wherein the sliding element is a piston ring,
The at least a portion of the nitrogen-doped metal-free DLC layer (16) is doped with an outer region,
The doping concentration of nitrogen varies steeply in the boundary region between the nitrogen-doped non-metal DLC layer 16 and the nitrogen-undoped non-metal DLC layer 14 at least in part .
제 1 항에 있어서, 상기 슬라이딩 소자는 기재 물질로서 주철(cast iron) 또는 강철(steel)을 포함하는 것을 특징으로 하는 슬라이딩 소자.The sliding element according to claim 1, wherein the sliding element comprises cast iron or steel as a base material. 제 1 항 또는 제 2 항에 있어서,
상기 무금속 DLC 층은 1400 HV0.02 내지 2900 HV0.02의 경도(hardness)를 가지거나 또는
상기 금속 함유 DLC 층은 800 내지 1600 HV0.02의 경도를 가지거나 또는
상기 무금속 DLC 층은 1400 HV0.02 내지 2900 HV0.02의 경도(hardness)를 가지고 상기 금속 함유 DLC 층은 800 내지 1600 HV0.02의 경도를 가지는 것을 특징으로 하는 슬라이딩 소자.
3. The method according to claim 1 or 2,
The metal-free DLC layer has a hardness of 1400 HV 0.02 to 2900 HV 0.02, or
Wherein the metal-containing DLC layer has a hardness of 800 to 1600 HV0.02 or
Wherein the metal-free DLC layer has a hardness of 1400 HV 0.02 to 2900 HV 0.02 and the metal-containing DLC layer has a hardness of 800 to 1600 HV 0.02.
제 1 항에 있어서,
상기 금속 함유 DLC 층 및 무금속 DLC 층 중 적어도 하나는 수소를 함유하고 있는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein at least one of the metal-containing DLC layer and the metal-free DLC layer contains hydrogen.
제 1 항에 있어서,
상기 금속함유 DLC 층은 나노결정성 텅스텐 카바이드 침적물(precipitates)을 포함하는 텅스텐 함유 DLC 층인 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the metal-containing DLC layer is a tungsten-containing DLC layer comprising nanocrystalline tungsten carbide precipitates.
제 1 항에 있어서,
상기 접착층은 최대 1 마이크로미터의 두께를 가진 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the adhesive layer has a thickness of at most 1 micrometer.
제 1 항에 있어서,
전체 코팅 두께는 5 마이크로미터 내지 40 마이크로미터인 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the total coating thickness is between 5 micrometers and 40 micrometers.
제 1 항에 있어서,
상기 접착층은 금속 증착(metal vapor deposition)에 의해 형성되는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the adhesive layer is formed by metal vapor deposition.
제 1 항에 있어서,
상기 금속 함유 DLC 층 및 무금속 DLC 층 중 적어도 하나는 PVD 공정 수단, 또는 PA-CVD 공정 수단 또는 PVD 공정 수단과 PA-CVD 공정 수단에 의해 형성되는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein at least one of the metal-containing DLC layer and the metal-free DLC layer is formed by PVD process means, or PA-CVD process means or PVD process means and PA-CVD process means.
제 1 항에 있어서,
상기 금속 함유 DLC 층의 두께에 대한 무금속 DLC 층의 두께는 0.7 내지 1.5의 비율을 가지거나 또는,
전체 코팅 두께에 대한 무금속 DLC 층의 두께는 0.4 내지 0.6의 비율을 가지거나 또는,
상기 금속 함유 DLC 층의 두께에 대한 무금속 DLC 층의 두께는 0.7 내지 1.5의 비율을 가지고 전체 코팅 두께에 대한 무금속 DLC 층의 두께는 0.4 내지 0.6의 비율을 가지는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
The thickness of the metal-free DLC layer relative to the thickness of the metal-containing DLC layer has a ratio of 0.7 to 1.5,
The thickness of the metal-free DLC layer relative to the total coating thickness has a ratio of 0.4 to 0.6,
Wherein the thickness of the metal-free DLC layer is in the range of 0.7 to 1.5 with respect to the thickness of the metal-containing DLC layer, and the thickness of the metal-free DLC layer is 0.4 to 0.6 with respect to the total coating thickness.
제 1 항에 있어서,
상기 무금속 DLC 층은 5 at% 초과 및 최대 40 at%의 질소 함량을 가지는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the metal-free DLC layer has a nitrogen content of greater than 5 at% and a maximum of 40 at%.
삭제delete 제 1 항에 있어서,
상기 무금속 DLC 층의 도핑 부위의 두께는 무금속 DLC 층의 비도핑 부위의 두께의 10 내지 90%인 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the thickness of the doped region of the metal-free DLC layer is 10 to 90% of the thickness of the non-doped region of the metal-free DLC layer.
삭제delete 제 1 항에 있어서,
상기 접착층은 최대 1 마이크로미터의 두께를 가지는 크롬 접착층인 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the adhesive layer is a chromium adhesive layer having a thickness of at most 1 micrometer.
제 1 항에 있어서,
상기 무금속 DLC 층은 10 at% 및 25 at% 사이의 질소 함량을 가지는 것을 특징으로 하는 슬라이딩 소자.
The method according to claim 1,
Wherein the metal-free DLC layer has a nitrogen content between 10 at% and 25 at%.
KR1020137016075A 2010-11-29 2011-11-24 Sliding Element, in Particular a Piston Ring, Having a Coating KR101898004B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010062114.5 2010-11-29
DE201010062114 DE102010062114B4 (en) 2010-11-29 2010-11-29 Sliding element, in particular piston ring, with a coating
PCT/EP2011/070921 WO2012072483A1 (en) 2010-11-29 2011-11-24 Sliding element, in particular a piston ring, having a coating

Publications (2)

Publication Number Publication Date
KR20140005186A KR20140005186A (en) 2014-01-14
KR101898004B1 true KR101898004B1 (en) 2018-09-12

Family

ID=45094602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137016075A KR101898004B1 (en) 2010-11-29 2011-11-24 Sliding Element, in Particular a Piston Ring, Having a Coating

Country Status (10)

Country Link
US (1) US9103442B2 (en)
EP (1) EP2646597B1 (en)
JP (1) JP6057911B2 (en)
KR (1) KR101898004B1 (en)
CN (1) CN103261476B (en)
BR (1) BR112013013370B1 (en)
DE (1) DE102010062114B4 (en)
PT (1) PT2646597T (en)
RU (1) RU2585603C2 (en)
WO (1) WO2012072483A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076453B4 (en) * 2011-05-25 2013-08-01 Federal-Mogul Burscheid Gmbh Piston ring with composite coating
DE102012210796A1 (en) * 2012-06-26 2014-01-02 Schaeffler Technologies AG & Co. KG Method for producing a tribologically loaded layer composite, layer composite and use of an organometallic compound for producing a functional layer of the layer composite
JP5564099B2 (en) * 2012-12-28 2014-07-30 株式会社リケン Combination of cylinder and piston ring
JP5965378B2 (en) * 2013-10-31 2016-08-03 株式会社リケン Piston ring and manufacturing method thereof
DE102014200607A1 (en) * 2014-01-15 2015-07-16 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring
DE102014213822A1 (en) 2014-07-16 2016-01-21 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and method for producing the same
DE102014217040A1 (en) * 2014-08-27 2016-03-03 Bayerische Motoren Werke Aktiengesellschaft Coating for metal components, method for coating a metal component, pistons for internal combustion engines and motor vehicles
JP5918326B2 (en) 2014-09-16 2016-05-18 株式会社リケン Covered sliding member
US9551419B2 (en) * 2015-04-22 2017-01-24 Federal-Mogul Corporation Coated sliding element
DE102016107874A1 (en) * 2016-04-28 2017-11-16 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring
BR102017007599B1 (en) * 2017-04-12 2022-07-26 Mahle Metal Leve S.A. PISTON RING FOR INTERNAL COMBUSTION ENGINES
CN107288774A (en) * 2017-07-26 2017-10-24 安庆雅德帝伯活塞有限公司 A kind of skirt section laser treatment piston and its processing method
CN107387255A (en) * 2017-07-26 2017-11-24 安庆雅德帝伯活塞有限公司 A kind of engine piston skirt section friction coat
CN107686972A (en) * 2017-09-07 2018-02-13 蚌埠玻璃工业设计研究院 A kind of preparation method of co-doped diamond film
WO2020014448A1 (en) 2018-07-11 2020-01-16 Board Of Trustees Of Michigan State University Vertically oriented plasma reactor
DE102018125631A1 (en) * 2018-10-16 2020-04-16 Schaeffler Technologies AG & Co. KG Layer system, rolling element and process
CN109306455B (en) * 2018-10-24 2020-04-28 同济大学 Iron-doped amorphous carbon film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032907A (en) * 2000-05-10 2002-01-31 Fujitsu Ltd Carbon protective film, magnetic recording medium, method for manufacturing them and magnetic disk device
JP3649873B2 (en) 1997-09-22 2005-05-18 三洋電機株式会社 Thin film formation method by CVD and thin film and sliding parts
WO2009121719A2 (en) * 2008-04-02 2009-10-08 Federal-Mogul Burscheid Gmbh Piston ring

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1494554A1 (en) * 1986-08-20 1994-03-15 Г.К. Дмитриев Abrasive tool
US5249554A (en) * 1993-01-08 1993-10-05 Ford Motor Company Powertrain component with adherent film having a graded composition
US5941647A (en) 1996-08-19 1999-08-24 Citizen Watch Co., Ltd. Guide bush and method of forming hard carbon film over the inner surface of the guide bush
US6354008B1 (en) * 1997-09-22 2002-03-12 Sanyo Electric Co., Inc. Sliding member, inner and outer blades of an electric shaver and film-forming method
JPH11130590A (en) * 1997-10-30 1999-05-18 Daido Steel Co Ltd Dustproof hard carbon film
JP3555844B2 (en) * 1999-04-09 2004-08-18 三宅 正二郎 Sliding member and manufacturing method thereof
US6974642B2 (en) * 2000-03-15 2005-12-13 Fujitsu Limited Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
DE10018143C5 (en) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC layer system and method and apparatus for producing such a layer system
JP4304598B2 (en) * 2001-09-27 2009-07-29 株式会社豊田中央研究所 High friction sliding member
JP4300762B2 (en) * 2002-07-10 2009-07-22 日新電機株式会社 Carbon film-coated article and method for producing the same
CN101208461B (en) 2005-05-26 2011-07-06 萨尔泽曼塔普拉斯有限公司 Piston ring having hard multi-layer coating
JP2007070667A (en) * 2005-09-05 2007-03-22 Kobe Steel Ltd Formed article with hard multilayer film of diamond-like carbon, and production method therefor
DE102005063123B3 (en) 2005-12-30 2007-05-31 Federal-Mogul Burscheid Gmbh Piston ring for sealing chamber in cylinder has running-in layer containing hydrogen and nanocrystalline carbide phases
DE102008011921A1 (en) 2008-02-29 2009-09-10 Ks Kolbenschmidt Gmbh Coating of components of an internal combustion engine to reduce friction, wear and adhesion tendency
JP4536819B2 (en) 2008-08-19 2010-09-01 株式会社神戸製鋼所 Nitrogen-containing amorphous carbon film, amorphous carbon film and sliding member
DE102008042747A1 (en) * 2008-10-10 2010-04-15 Federal-Mogul Burscheid Gmbh Sliding element in an internal combustion engine, in particular piston ring
DE102009028504C5 (en) 2009-08-13 2014-10-30 Federal-Mogul Burscheid Gmbh Piston ring with a coating
DE102009046281B3 (en) * 2009-11-02 2010-11-25 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and combination of a sliding element with a running partner
CN101705471B (en) * 2009-11-30 2011-06-15 沈阳大学 Preparation method of chromium nitride titanium aluminum nitrogen gradient hard reaction film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3649873B2 (en) 1997-09-22 2005-05-18 三洋電機株式会社 Thin film formation method by CVD and thin film and sliding parts
JP2002032907A (en) * 2000-05-10 2002-01-31 Fujitsu Ltd Carbon protective film, magnetic recording medium, method for manufacturing them and magnetic disk device
WO2009121719A2 (en) * 2008-04-02 2009-10-08 Federal-Mogul Burscheid Gmbh Piston ring
JP2011519394A (en) 2008-04-02 2011-07-07 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング piston ring

Also Published As

Publication number Publication date
CN103261476A (en) 2013-08-21
DE102010062114A1 (en) 2012-05-31
JP2014505837A (en) 2014-03-06
WO2012072483A1 (en) 2012-06-07
BR112013013370A2 (en) 2016-09-06
DE102010062114B4 (en) 2014-12-11
US20130316156A1 (en) 2013-11-28
EP2646597A1 (en) 2013-10-09
RU2013129841A (en) 2015-01-10
RU2585603C2 (en) 2016-05-27
KR20140005186A (en) 2014-01-14
PT2646597T (en) 2016-10-24
BR112013013370B1 (en) 2020-11-03
EP2646597B1 (en) 2016-09-14
US9103442B2 (en) 2015-08-11
JP6057911B2 (en) 2017-01-11
CN103261476B (en) 2016-08-10

Similar Documents

Publication Publication Date Title
KR101898004B1 (en) Sliding Element, in Particular a Piston Ring, Having a Coating
KR101719696B1 (en) Sliding element, in particular a piston ring, having a coating
US10131988B2 (en) Sliding element, in particular piston ring, and combination of a sliding element with a mating running element
JP5452734B2 (en) Process for manufacturing slide elements with a coating, in particular piston rings, and slide elements
US9103015B2 (en) Sliding element and method for coating a sliding element
US9476504B2 (en) Sliding element, in particular piston ring, having resistant coating
RU2599687C2 (en) Sliding element with coating of diamond-like carbon
JP2008286354A (en) Sliding member
KR20160106737A (en) Sliding Element, in Particular Piston ring
US9004465B2 (en) Helical compression spring for an oil scraper ring of a piston in an internal combustion engine and method for coating a helical compression spring
CN112534084A (en) Component, in particular for a valve train system, and method for producing such a component
US9938626B2 (en) Method for coating a sliding element using a nanoparticles infused coating
CN102959124B (en) Sliding members
Srinivas et al. Mechanical, Anticorrosion, and Tribological Properties of Nanostructured WC-Co/Cr3C2-NiCr Multilayered Graded Coating on Aluminum Substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant