KR101827744B1 - Method for preparing tolimidone on large scale - Google Patents
Method for preparing tolimidone on large scale Download PDFInfo
- Publication number
- KR101827744B1 KR101827744B1 KR1020160143433A KR20160143433A KR101827744B1 KR 101827744 B1 KR101827744 B1 KR 101827744B1 KR 1020160143433 A KR1020160143433 A KR 1020160143433A KR 20160143433 A KR20160143433 A KR 20160143433A KR 101827744 B1 KR101827744 B1 KR 101827744B1
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- compound
- added
- present
- reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/32—One oxygen, sulfur or nitrogen atom
- C07D239/34—One oxygen atom
- C07D239/36—One oxygen atom as doubly bound oxygen atom or as unsubstituted hydroxy radical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/513—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
본 발명은 고순도 및 균일한 입자 분포를 유지하는 톨리미돈(tolimidone)의 대량 제조 방법에 관한 것으로, 보다 상세하게는 테트라부틸암모늄 브로마이드 촉매 및 에탄올 재결정을 사용함으로써, 종래 기술 대비 보다 짧은 시간에 고순도의 톨리미돈을 수분 함유량 및 입도 분포를 일정하게 유지하면 제조할 수 있어 산업적 대량 생산에 적합한 방법에 관한 것이다.The present invention relates to a mass production method of tolimidone which maintains a high purity and a uniform particle distribution. More specifically, by using a tetrabutylammonium bromide catalyst and ethanol recrystallization, The present invention relates to a method suitable for industrial mass production since it can be produced by keeping the water content and the particle size distribution constant.
하기 화학식 1의 톨리미돈(tolimidone)은 Lyn 키나아제(kinase)를 활성화시켜 혈당을 낮추는 작용 기전을 통해 당뇨 질환 유도 동물 모델에서 우수한 혈당 강하 효과를 보여주고 있다(The Journal of Pharmacology and Experimental Therapeutics, 2012, Vol. 342, No. 1, pp. 23-32).Tolimidone of the following formula (1) shows an excellent blood glucose lowering effect in an animal model of diabetes mellitus disease through the action of lowering blood glucose by activating Lyn kinase (The Journal of Pharmacology and Experimental Therapeutics, 2012 , Vol. 342, No. 1, pp. 23-32).
[화학식 1] [Chemical Formula 1]
현재까지 알려진 톨리미돈의 제조는 다음의 반응식 1에서 나타낸 바와 같이 출발물질로 화학식 6과 화학식 5의 화합물을 반응시켜 화학식 4의 중간체를 얻고, 이어서 빌스마이어 반응(Vilsmeir reaction)을 통하여 화학식 3의 알데히드(aldehyde) 중간체를 얻는다. 다음으로 화학식 3의 중간체와 요소(urea)를 소듐 에톡사이드(sodium ethoxide)/에탄올(ethanol) 조건하에서 환류 교반하여 화학식 2의 소듐 염을 얻은 후, 6N 염산 수용액 또는 아세트산(acetic acid)을 이용하여 소듐 금속을 탈염시켜 화학식 1의 톨리미돈을 얻는다. (미국특허 3,922,345호; Journal of Medicinal Chemistry, 1980, Vol. 23, pp. 1026-1031)To date, the preparation of tollimidone is carried out by reacting a compound of the formula (VI) with a compound of the formula (V) as a starting material as shown in the following
[반응식 1] [Reaction Scheme 1]
그러나 상기 제조방법 중 첫번째 반응의 경우 화학식 4의 중간체를 얻기 위하여, 수산화 칼륨 존재하에 화학식 6의 메타-크레졸(meta-cresol)과 화학식 5의 출발물질을 딘-스탁 장치(Dean-Stark apparauts)하에 140~150℃ 고온에서 물을 제거하는 과정이 대량 생산 공정으로 적합하지 않다.However, in the case of the first reaction, meta-cresol of
다음으로 화학식 2의 소듐 염을 염산이나 아세트산을 이용하여 탈염하여 화학식 1의 톨리미돈을 얻는 단계에서 대량 생산시 여과과정에서 세척에 사용한 물을 건조 과정을 통하여 완벽히 제거하는 게 용이하지 않다. 또한, 상기 제조방법에 의해 얻어진 화학식 1의 톨리미돈은 입도 분포가 불균일하며, 입도 분포의 재현성(reproducibility) 역시 떨어진다.Next, it is not easy to completely remove the water used for washing in the filtration process during the mass production, in the step of desalting the sodium salt of formula (2) using hydrochloric acid or acetic acid to obtain the tollimidone of formula (1). In addition, the tollimon of the formula (1) obtained by the above production method has a nonuniform particle size distribution and a low reproducibility of the particle size distribution.
일반적으로 약물의 입도 분포는 약물의 용출률, 생체이용률, 안정성등에 영향을 주는 것으로 알려져 있다(JOURNAL OF PHARMACEUTICAL SCIENCES 2010, 99 (1), 51~75; INTERNATIONAL JOURNAL OF PHARMACEUTICS 1995, 122 (1-2), 35~47). 따라서 화학식 1의 톨리미돈의 균일한 입도 분포는 임상약물의 용출, 생체이용률 등을 균일하게 유지하게 위하여 매우 중요하다.In general, the particle size distribution of the drug is known to affect the drug dissolution rate, bioavailability and stability (JOURNAL OF PHARMACEUTICAL SCIENCES 2010, 99 (1), 51 ~ 75; INTERNATIONAL JOURNAL OF PHARMACEUTICS 1995, 122 (1-2) , 35-47). Therefore, the uniform particle size distribution of the tollimon of formula (1) is very important to keep the dissolution and bioavailability of the clinical drug uniform.
이에 본 발명은 고순도의 톨리미돈을 수분 함유량 및 입도 분포를 일정하게 유지하면서 대량 생산할 수 있는데 적합한 방법을 제공하는 것을 그 기술적 과제로 한다.Accordingly, it is a technical object of the present invention to provide a method suitable for mass production of high purity toluimidone while maintaining moisture content and particle size distribution constant.
또한, 본 발명은 상기 방법에 의해 제조된 톨리미돈을 포함하는 약제학적 조성물을 제공하는 것을 다른 기술적 과제로 한다.In addition, another object of the present invention is to provide a pharmaceutical composition comprising the tollimidone produced by the above method.
상기 과제를 해결하기 위하여 본 발명은 In order to solve the above problems,
i) 화학식 6의 화합물과 화학식 5의 화합물을 테트라부틸암모늄 브로마이드 촉매하에 반응시켜 화학식 4의 화합물을 제조하고;i) reacting a compound of
ii) 제조된 화학식 4의 화합물을 빌스마이어(Vilsmeier) 반응을 통하여 화학식 3의 화합물을 제조하며;ii) reacting the prepared compound of
iii) 제조된 화학식 3의 화합물을 요소 및 소듐 에톡사이드와 함께 환류 교반하여 화학식 2의 소듐 염 화합물을 제조하고;iii) refluxing the thus prepared compound of formula (III) with urea and sodium ethoxide to prepare a sodium salt compound of formula (2);
iv) 제조된 화학식 2의 소듐 염 화합물을 탈염하여 화학식 1의 톨리미돈을 수득한 다음 에탄올로 재결정하는 것을 포함하는 톨리미돈의 제조 방법을 제공한다:iv) desalting the sodium salt compound of formula (2) to obtain the tollimoid of formula (1), followed by recrystallization with ethanol:
[화학식 6][Chemical Formula 6]
[화학식 5][Chemical Formula 5]
[화학식 4][Chemical Formula 4]
[화학식 3](3)
[화학식 2](2)
[화학식 1][Chemical Formula 1]
또한, 본 발명은 상기 방법에 의하여 제조된 톨리미돈 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition comprising the tollimidone prepared by the above method and a pharmaceutically acceptable carrier.
이하에서 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 톨리미돈 제조 방법의 (i) 단계에서는 화학식 6의 메타-크레졸(meta-cresol)과 화학식 5의 디메틸(또는 에틸)클로로아세트알데히드 출발물질을 테트라부틸암모늄 브로마이드 촉매하에 반응시켜 화학식 4의 화합물을 제조한다. 테트라부틸암모늄 브로마이드 촉매 반응은 바람직하게는 톨루엔 용매에서 수산화칼륨 존재하에 수행된다.In step (i) of the method for preparing tollimonine according to the present invention, the meta-cresol of
기존에 공지된 방법에서는 화학식 6의 화합물과 화학식 5의 화합물을 딘-스탁 장치(Dean-Stark apparauts)하에 140~150℃의 고온에서 장시간, 예를 들면 160 g 정도의 화학식 6의 화합물과 300 g 정도의 화학식 5의 화합물을 사용시 12 내지 16 시간의 반응을 진행하면서 딘-스탁 장치에서 분리된 화학식 4의 반응물질을 다시 고온의 반응기에 넣어주는 과정을 통해 완결할 수 있기에 대량 생산에는 적합하지 않다.In a known method, the compound of the formula (6) and the compound of the formula (5) are reacted at a high temperature of 140 to 150 DEG C for a long period of time, for example, about 160 g of the compound of the formula Of the compound of formula (5) is reacted for 12 to 16 hours while the reaction material of formula (4) separated in the Dean-Stark apparatus is fed back into the reactor at a high temperature, so that it is not suitable for mass production .
본 발명에서는 테트라부틸암모늄 브로마이드 촉매하에 반응시켜 바람직하게는 100 내지 120℃의 온도, 더 바람직하게는 약 105 내지 110℃의 온도에서 상기와 동량의 화학식 6의 화합물과 화학식 5의 화합물을 사용시 약 6시간 만에 반응을 완결할 수 있어 대량 생산에 적합하다.In the present invention, the reaction is carried out in the presence of tetrabutylammonium bromide catalyst, preferably at a temperature of 100 to 120 DEG C, more preferably at a temperature of about 105 to 110 DEG C, It is suitable for mass production because the reaction can be completed in time.
본 발명에 따른 톨리미돈 제조 방법의 (ii) 단계에서는 화학식 4의 화합물을 빌스마이어(Vilsmeier) 반응을 통하여 화학식 3의 화합물을 제조한다. 화학식 4의 화합물을 N,N-디메틸포름아미드 및 포스포릴 클로라이드(phosphryl chloride)와 반응시켜 화학식 3의 알데히드 중간체를 얻을 수 있다.In step (ii) of the method for preparing tollimonine according to the present invention, the compound of formula (IV) is prepared through the reaction of the compound of formula (IV) with Vilsmeier. The aldehyde intermediate of formula (3) may be obtained by reacting the compound of formula (4) with N, N-dimethylformamide and phosphryl chloride.
본 발명에 따른 톨리미돈 제조 방법의 (iii) 단계에서는 화학식 3의 화합물을 요소 및 소듐 에톡사이드와 함께 환류 교반하여 화학식 2의 소듐 염 화합물을 제조한다.In step (iii) of the method for preparing tollimonine according to the present invention, the compound of formula (3) is refluxed with urea and sodium ethoxide to prepare a sodium salt compound of formula (2).
본 발명에 따른 톨리미돈 제조 방법의 (iv) 단계에서는 화학식 2의 톨리미돈 소듐 염을 탈염하여 화학식 1의 톨리미돈을 수득한 다음 에탄올로 재결정한다.In step (iv) of the method for preparing tollimonine according to the present invention, the tolumidon sodium salt of formula (2) is desalted to obtain the tollimoid of formula (1), followed by recrystallization from ethanol.
본 발명에서는 화학식 2의 톨리미돈 소듐 염을 바람직하게는 염산 또는 아세트산을 사용하여 탈염한다. 탈염 후에는 물로 세척하는 단계가 필요하고, 세척 후 사용한 물을 건조과정을 통하여 제거를 하여야 하는데 소량 반응, 예컨대 15 g의 화학식 3의 화합물을 이용한 반응에서는 65℃에서 14시간 진공 건조시 수분 잔류량이 0.1% 미만으로 수분 제거가 용이하다.In the present invention, the sodium salt of the tolrimidon of formula (2) is desalted, preferably using hydrochloric acid or acetic acid. After desalting, washing with water is required. In the reaction using 15 g of the compound of formula (3), the residual water amount during vacuum drying for 14 hours at 65 ° C Less than 0.1% water removal is easy.
그러나 톨리미돈의 대량 생산, 예컨대 수십 내지 수백 kg 단위의 제조에 있어서는 완벽한 수분 제거가 어렵다. 원료의약품(API, active pharmaceutical ingredients)의 경우 수분 함유량을 일정하게 유지하는 것이 품질을 관리하는데 있어 매우 중요하다.However, in the mass production of tollimidone, for example in the production of tens to hundreds of kilograms, complete water removal is difficult. In the case of active pharmaceutical ingredients (API), maintaining a constant water content is very important for quality control.
본 발명에서는 톨리미돈 소듐 염의 탈염 후 물로 세척하고 나서 수분을 완전히 건조하지 않고 에탄올에서 환류 교반하며 재결정하여 수분을 용이하게 제거할 수 있다.In the present invention, after desalting the sodium salt of tolumidon and washing it with water, the water can be easily removed by recrystallization with refluxing stirring in ethanol without completely drying it.
한편, 기존에 공지된 방법으로 제조된 톨리미돈은 불순물을 포함하고 있어서 정제공정이 필요하나 본 발명에서는 에탄올 재결정을 통하여 대부분의 불순물을 제거할 수 있다. 또한, 기존에 공지된 방법으로 제조된 톨리미돈의 경우 입도 분포가 불균일하며 입도 분포의 재현성 역시 떨어져서 약품으로 제조시 용출률이나 생체이용률 등을 균일하게 유지하는 것에 문제가 있을 수 있으나 본 발명에서는 에탄올 재결정을 통하여 입도 분포를 균일하게 할 수 있다. 본 발명에 따라 제조된 톨리미돈의 입도 분포는 바람직하게는 d(0.5)가 5~30 ㎛이다. On the other hand, the tollimidone prepared by a known method includes an impurity and needs a purification process, but in the present invention, most impurities can be removed through ethanol recrystallization. In addition, in the case of tollimone prepared by a known method, the particle size distribution is uneven and the reproducibility of the particle size distribution is also lowered, so that there may be a problem in maintaining the dissolution rate and bioavailability uniformly in the manufacture of the drug. However, The particle size distribution can be made uniform through recrystallization. The particle size distribution of the tollimon in accordance with the present invention is preferably d (0.5) of 5 to 30 mu m.
본 발명의 다른 측면에 따르면, 상기 방법에 의해서 제조된 톨리미돈 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물이 제공된다. According to another aspect of the present invention, there is provided a pharmaceutical composition comprising a tollimoid and a pharmaceutically acceptable carrier prepared by the above method.
본 발명에서 약제학적으로 허용되는 담체는 장용성 목적으로 사용되는 매트릭스 기제로서 히드록시프로필메틸셀룰로오스 프탈레이트, 히드록시프로필메틸셀룰로오스 아세테이트 숙시네이트, 폴리비닐아세테이트 프탈레이트, 셀룰로오스아세테이트 프탈레이트, 폴리(메타크릴산, 메틸메타크릴레이트) 공중합체 및 폴리(메타크릴산, 에틸아크릴레이트) 공중합체, 쉘락 및 이의 혼합물이 사용될 수 있으나 이에 제한되는 것은 아니다. 상기 약제학적으로 허용되는 담체 중에서 서방성 목적으로는 소수성 물질, 친수성 고분자 중에서 선택된 성분을 사용할 수 있다. 상기 소수성 물질은 약학적으로 허용 가능한 것으로 폴리비닐 아세테이트, 에틸셀룰로오스 및 셀룰로오스아세테이트, 폴리메타크릴레이트 공중합체로서 폴리(에틸아크릴레이트, 메틸 메타크릴레이트) 공중합체, 폴리(에틸아크릴레이트, 메틸 메타크릴레이트, 트리메틸아미노에틸메타크릴레이트)공중합체, 지방산 및 지방산 에스테르류, 지방산 알코올류, 왁스류 등을 선택 사용할 수 있으나 이에 제한되는 것은 아니다. 보다 구체적으로, 지방산 및 지방산 에스테르류로서 글리세릴 팔미토스테아레이트, 글리세릴 스테아레이트, 글리세릴 비헤네이트, 세틸 팔미테이트, 글리세릴 모노 올레이트 및 스테아르산 등, 지방산 알코올류로서 세토스테아릴 알코올, 세틸알코올 및 스테아릴알코올 등, 왁스류로서 카르나우바왁스, 밀납 및 미결정왁스 등 중에서 선택된 1 종 이상을 선택하여 사용할 수 있으나 이에 제한 되는 것은 아니다. 상기 친수성 고분자는 당류, 셀룰로오스 유도체, 검류, 폴리비닐 유도체, 폴리메타크릴레이트 공중합체, 폴리에틸렌 유도체 및 카르복시비닐중합체 등을 선택 사용할 수 있으며, 구체적으로 당류로서 덱스트린, 폴리덱스트린, 덱스트란, 펙틴 및 펙틴 유도체, 알긴산염, 폴리갈락투론산, 자일란, 아라비노자일란, 아라비노갈락탄, 전분, 히드록시프로필스타치, 아밀로오스, 아밀로펙틴 등을 선택 사용할 수 있고, 셀룰로오스 유도체로서 히드록시프로필메틸셀룰로오스, 히드록시프로필셀룰로오스, 히드록시메틸셀룰로오스, 히드록시에틸셀룰로오스, 메틸셀룰로오스, 카르복시메틸셀룰로오스 나트륨, 히드록시프로필 메틸셀룰로오스 아세테이트 숙시네이트, 히드록시에틸메틸셀룰로오스 등을 선택하여 사용할 수 있고, 검류로서 구아검, 로커스트 콩 검, 트라가칸타, 카라기난, 아카시아검, 아라비아검, 젤란검, 잔탄검 등을 선택 사용할 수 있고, 폴리비닐 유도체로서 폴리비닐 알코올, 폴리비닐 피롤리돈 및 폴리비닐아세탈디에틸아미노아세테이트 등을 선택 사용할 수 있고, 폴리메타크릴레이트 공중합체로서 폴리(부틸 메타크릴레이트,(2-디메틸아미노에틸)메타크릴레이트, 메틸메타크릴레이트) 공중합체 등을 선택하여 사용할 수 있고, 폴리에틸렌 유도체로서 폴리에틸렌 옥사이드 등을 선택 사용할 수 있으며, 카르복시비닐중합체로서 카보머를 사용할 수 있으나 이에 제한되는 것은 아니다. 또한, 본 발명에 따른 약제학적 조성물은 필요에 따라, 예를 들면 희석제, 결합제, 붕해제, 유동화제, pH 조절제 등을 추가로 포함할 수 있다. In the present invention, pharmaceutically acceptable carriers include hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, polyvinylacetate phthalate, cellulose acetate phthalate, poly (methacrylic acid, methyl Methacrylate) copolymers and poly (methacrylic acid, ethyl acrylate) copolymers, shellac, and mixtures thereof may be used, but are not limited thereto. Among the above-mentioned pharmaceutically acceptable carriers, for the purpose of sustained release, a hydrophobic substance or a hydrophilic polymer may be used. The hydrophobic substance is pharmaceutically acceptable and includes polyvinyl acetate, ethyl cellulose and cellulose acetate, a poly (methacrylate) copolymer, a poly (ethyl acrylate, methyl methacrylate) copolymer as a polymethacrylate copolymer, (Trimethylaminoethyl methacrylate) copolymer, fatty acid and fatty acid esters, fatty acid alcohols, waxes, and the like can be used, but the present invention is not limited thereto. More specifically, examples of fatty acid and fatty acid esters include glyceryl palmitostearate, glyceryl stearate, glyceryl behenate, cetyl palmitate, glyceryl monooleate and stearic acid, fatty acid alcohols such as cetostearyl alcohol, Cetyl alcohol and stearyl alcohol, and waxes such as carnauba wax, bees wax and microcrystalline wax may be selected and used, but the present invention is not limited thereto. The hydrophilic polymer may be selected from saccharides, cellulose derivatives, gums, polyvinyl derivatives, polymethacrylate copolymers, polyethylene derivatives and carboxyvinyl polymers. Specific examples of the hydrophilic polymer include dextrin, polydextrin, dextran, pectin and pectin Hydroxypropyl starch, amylose, amylopectin and the like can be selected from among cellulose derivatives such as hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, Hydroxypropylmethylcellulose acetate succinate, hydroxyethylmethylcellulose, and the like can be selected. As the gums, guar gum, locust bean gum, sword Acacia gum, gum arabic, gellan gum, xanthan gum, and the like can be selected. As the polyvinyl derivative, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl acetal diethylaminoacetate and the like can be selectively used Poly (butyl methacrylate, (2-dimethylaminoethyl) methacrylate, methyl methacrylate) copolymer, etc. may be selected as the polymethacrylate copolymer, and polyethylene oxide and the like may be used as the polyethylene derivative And carbomers may be used as the carboxyvinyl polymer, but the present invention is not limited thereto. In addition, the pharmaceutical composition according to the present invention may further comprise, for example, a diluent, a binder, a disintegrant, a fluidizing agent, a pH adjusting agent and the like, if necessary.
본 발명에 따른 약제학적 조성물은 우수한 혈당 강하 효과로 당뇨병의 예방 또는 치료에 효과적으로 사용될 수 있다.The pharmaceutical composition according to the present invention can be effectively used for prevention or treatment of diabetes due to its excellent blood glucose lowering effect.
본 발명의 톨리미돈 제조 방법은 고온에서의 장시간에 걸친 반응을 보다 낮은 온도에서 효율적으로 반응 시간을 단축하여 톨리미돈의 대량 생산에 매우 적합하다. 본 발명에 따르면 고순도의 톨리미돈을 낮은 수분 함유량 및 입도 분포를 일정하게 유지하면서 제조할 수 있다.The method for producing tollimonine of the present invention is suitable for mass production of tollimidone by efficiently shortening the reaction time at a high temperature at a lower temperature for a long time. According to the present invention, high purity toluimidone can be produced while maintaining a low water content and a uniform particle size distribution.
도 1은 톨리미돈의 에탄올 재결정 전/후의 입도 분포를 분석한 결과이다.
도 2는 비교예 3에서 제조된 톨리미돈의 순도 측정을 위하여 HPLC 분석을 한 결과이다.
도 3은 실시예 4에서 제조된 에탄올 재결정 후의 톨리미돈의 순도 측정을 위하여 HPLC 분석을 한 결과이다.Fig. 1 shows the results of analyzing the particle size distribution of tollimone before and after ethanol recrystallization.
2 shows the results of HPLC analysis for measuring the purity of the tollimidone prepared in Comparative Example 3. Fig.
Fig. 3 shows the result of HPLC analysis for measuring purity of tollimidone after ethanol recrystallization prepared in Example 4. Fig.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 본 발명의 범위가 이에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described more specifically by way of examples. However, the following examples are given to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
실시예Example 1- One- 1: 11: 1 -(2,2-- (2,2- 다이메톡시에톡시Dimethoxyethoxy )-3-메틸벤젠의 소량 제조() -3-methylbenzene in a small amount ( 테트라부틸암모니움Tetrabutylammonium 브로마이드 촉매반응) Bromide catalyst reaction)
1,500 mL 반응 플라스크에 메타-크레졸(165 g, 1.53 mol)과 톨루엔 330 mL을 넣은 다음 테트라부틸암모늄 브로마이드(49.5 g)을 넣었다. 이어서 수산화칼륨(85%, 100.7 g)을 서서히 넣어주고, 클로로아세트알데히드 디메틸아세탈(302.1 g)을 넣어주었다. 반응온도를 110℃로 올려 환류교반하면서 6시간 반응을 통해 반응완결을 TLC를 통하여 확인하였다. 반응온도를 실온으로 냉각한 후, 톨루엔 층을 분리하여 5% 수산화나트륨 수용액 300 mL로 세척한 다음 염수 300 mL로 세척하였다. 이어서 유기층에 황산마그네슘 30 g을 첨가하여 수분을 제거 후 여과하였다. 유기용매를 감압 증류하여 목적 화합물(278.4 g, 93%)을 얻었다.Meta-cresol (165 g, 1.53 mol) and 330 mL of toluene were placed in a 1,500 mL reaction flask, and tetrabutylammonium bromide (49.5 g) was added thereto. Potassium hydroxide (85%, 100.7 g) was then slowly added thereto, and chloroacetaldehyde dimethylacetal (302.1 g) was added thereto. The reaction temperature was elevated to 110 ° C and reaction completion was confirmed by TLC for 6 hours while stirring under reflux. After the reaction temperature was cooled to room temperature, the toluene layer was separated, washed with 300 mL of 5% sodium hydroxide aqueous solution, and then washed with 300 mL of brine. Subsequently, 30 g of magnesium sulfate was added to the organic layer to remove moisture, followed by filtration. The organic solvent was distilled under reduced pressure to obtain the desired compound (278.4 g, 93%).
1H-NMR 500 MHz (CDCl3): 7.15 (m, 1H), 6.75 (m, 3H), 4.68 (t, 1H), 3.97 (d, 2H), 3.40 (s, 6H), 2.29 (s, 3H) 1 H-NMR 500 MHz (CDCl 3): 7.15 (m, 1H), 6.75 (m, 3H), 4.68 (t, 1H), 3.97 (d, 2H), 3.40 (s, 6H), 2.29 (s, 3H)
실시예Example 1- One- 2: 12: 1 -(2,2-- (2,2- 다이메톡시에톡시Dimethoxyethoxy )-3-메틸벤젠의 대량 제조() -3-methylbenzene < / RTI > ( 테트라부틸암모니움Tetrabutylammonium 브로마이드 촉매반응) Bromide catalyst reaction)
반응기에 메타-크레졸(72.5 kg)을 투입하고 교반하면서 수산화칼륨(125.43 kg)을 투입하였다. 이어서 테트라부틸암모늄 브로마이드(21.75 kg)와 톨루엔(145 L)을 투입하였다. 클로로아세트알데히드 디메틸아세탈(135.58 kg)을 투입하고 온도를 105℃ 이상으로 유지하면서 22시간 환류 교반하였다 (반응은 6시간 이후 완결 확인). 반응기 내부 온도를 15~25℃로 낮추고 정제수(363 L)를 투입하고, 30분 교반 후 하층인 수층을 다른 반응기로 옮겼다. 수층을 옮긴 반응기에 톨루엔(145 L)을 투입하고 추출 후 유기층을 합쳤다. 황산 나트륨(72.5 kg)과 실리카겔 (72.5 kg)을 투입하고 1시간 이상 교반하였다. 이어서 여과기를 통하여 여과 후, 여액을 반응기로 옮겼다. 반응기 내부 온도를 65℃ 이하로 유지하면서 감압 농축하여 목적화합물 118 kg을 얻었다.Meta-cresol (72.5 kg) was added to the reactor and potassium hydroxide (125.43 kg) was added with stirring. Tetrabutylammonium bromide (21.75 kg) and toluene (145 L) were then added. Chloroacetaldehyde dimethylacetal (135.58 kg) was added thereto, and the mixture was refluxed for 22 hours while keeping the temperature at 105 ° C or higher (reaction confirmed after 6 hours). The internal temperature of the reactor was lowered to 15 to 25 ° C. and purified water (363 L) was added. After stirring for 30 minutes, the lower aqueous layer was transferred to another reactor. Toluene (145 L) was added to the reactor in which the water layer was transferred, and the organic layers were combined after extraction. Sodium sulfate (72.5 kg) and silica gel (72.5 kg) were added and stirred for 1 hour or more. After filtration through a filter, the filtrate was transferred to a reactor. While maintaining the internal temperature of the reactor at 65 캜 or lower, the reaction mixture was concentrated under reduced pressure to obtain 118 kg of the target compound.
비교예Comparative Example 1: 11: 1 -(2,2-- (2,2- 다이메톡시에톡시Dimethoxyethoxy )-3-메틸벤젠의 제조(딘-스탁(Dean-Stark)장치 이용)) -3-methylbenzene (using a Dean-Stark apparatus)
1,000 mL 반응 플라스크에 메타-크레졸(160 g, 1.48 mol)을 넣고 교반하면서 수산화칼륨(85%, 107.4 g)을 서서히 투입하고, 100~130℃에서 1시간 교반하여 수산화칼륨을 완전히 용해시키고 클로로아세트알데히드 디메틸아세탈(298.8 g)을 서서히 적가하였다. 반응액의 온도를 140~150℃로 유지하고 16시간 반응을 진행하면서 딘-스탁 장치를 이용하여 수층을 제거하고 유기층은 다시 반응액에 넣어주었다. 반응 완결을 TLC를 통하여 확인하고, 반응 온도를 실온으로 냉각한 후, 톨루엔 300 mL와 정제수 400 mL를 넣어주었다. 유기층을 분리하여 5% 수산화나트륨 수용액 200 mL로 세척 후 유기층을 염수 200 mL로 세척하였다. 이어서 유기층에 황산 마그네슘 30 g을 첨가하여 수분을 제거 후, 여과하였다. 유기용매를 감압 증류하여 목적 화합물(272 g, 94%)을 얻었다.Potassium hydroxide (85%, 107.4 g) was slowly added with stirring to a meta-cresol (160 g, 1.48 mol) in a 1,000 mL reaction flask and stirred at 100 to 130 ° C for 1 hour to completely dissolve potassium hydroxide. Aldehyde dimethylacetal (298.8 g) was slowly added dropwise. The temperature of the reaction solution was maintained at 140 to 150 ° C., and the reaction was carried out for 16 hours. The water layer was removed using a Dean-Stark apparatus and the organic layer was added to the reaction solution again. The completion of the reaction was confirmed by TLC, and after cooling the reaction temperature to room temperature, 300 mL of toluene and 400 mL of purified water were added. The organic layer was separated, washed with 200 mL of 5% aqueous sodium hydroxide solution, and then the organic layer was washed with 200 mL of brine. Subsequently, 30 g of magnesium sulfate was added to the organic layer to remove moisture, followed by filtration. The organic solvent was distilled under reduced pressure to obtain the desired compound (272 g, 94%).
실시예Example 2: ( 2: ( EE )-3-() -3- ( 다이메틸아미노Dimethylamino )-2-()-2-( 메타Meta -- 톨릴옥시Tolyloxy )아크릴알데히드의 대량 제조) Mass production of acrylic aldehyde
반응기에 클로로포름 246.5 kg을 투입하고 N,N-디메틸포름아미드 131.95 kg을 넣어주었다. 반응액의 온도를 30℃ 이하로 유지하면서 포스포릴 클로라이드(277.68 kg)를 서서히 적가하였다. 적가 완료 후 반응액의 온도가 55℃에서 2시간 교반하였다. 실시예 1-2에서 얻은 1-(2,2-디메톡시에톡시)-3-메틸벤젠을 반응액에 서서히 적가 후, 반응액의 온도를 65~70℃로 유지하면서 2시간 환류 교반하였다. 이어서 톨루엔 145 L를 투입하고 반응액의 온도를 10℃ 이하로 냉각하였다. 내부 온도를 10℃ 이하로 유지한 또 다른 반응기에 정제수 580 L를 투입하고 반응액을 서서히 적가하였다. 이때, 내부 온도는 50℃ 이하로 유지하였다. 반응기에 톨루엔 435 L를 추가로 투입하고, 수산화 칼륨 수용액(정제수 1,367 L에 수산화 칼륨 836.65 kg 용해시킴)을 서서히 적가하였다. 1시간 교반후, 유기층을 분리하여 10% 염수 500 L로 세척하였다. 유기층에 황산 나트륨(72.5 kg)과 실리카겔(72.5 kg)을 투입하고 1시간 교반 후 여과하였다. 여액을 감압 증류하여 유기용매를 제거하고 농축 잔사에 에틸 아세테이트 136 L를 투입하였다. 이어서 헵탄(29.73 kg)을 투입하고 내부온도 15~25℃에서 2시간 이상 교반하였다. 반응물을 0℃로 냉각하고 1시간 교반 후 생성된 고체를 여과 및 진공 건조하여 목적 화합물(80.9 kg)을 얻었다.246.5 kg of chloroform was added to the reactor, and 131.95 kg of N, N-dimethylformamide was added thereto. Phosphoryl chloride (277.68 kg) was slowly added dropwise while maintaining the temperature of the reaction solution at 30 ° C or lower. After completion of dropwise addition, the temperature of the reaction solution was stirred at 55 캜 for 2 hours. 1- (2,2-dimethoxyethoxy) -3-methylbenzene obtained in Example 1-2 was slowly added dropwise to the reaction solution, and the mixture was refluxed and stirred for 2 hours while maintaining the temperature of the reaction solution at 65 to 70 ° C. 145 L of toluene was then added, and the temperature of the reaction solution was cooled to 10 캜 or lower. 580 L of purified water was added to another reactor in which the internal temperature was kept at 10 캜 or lower, and the reaction solution was gradually added dropwise. At this time, the internal temperature was maintained at 50 캜 or lower. 435 L of toluene was further added to the reactor, and an aqueous potassium hydroxide solution (836.65 kg of potassium hydroxide dissolved in 1,367 liters of purified water) was gradually added dropwise. After stirring for 1 hour, the organic layer was separated and washed with 500 L of 10% brine. Sodium sulfate (72.5 kg) and silica gel (72.5 kg) were added to the organic layer and stirred for 1 hour and then filtered. The filtrate was distilled under reduced pressure to remove the organic solvent, and 136 L of ethyl acetate was added to the concentrated residue. Subsequently, heptane (29.73 kg) was added and stirred at an internal temperature of 15 to 25 ° C for 2 hours or more. The reaction mixture was cooled to 0 ° C and stirred for 1 hour, and the resulting solid was filtered and vacuum dried to obtain the desired compound (80.9 kg).
1H-NMR 500 MHz (Acetond-d6): 8.79 (s, 1H), 7.12 (m, 1H), 6.92 (s, 1H), 6.68~6.76 (m, 3H), 3.08 (s, 6H), 2.27 (s, 3H) 1 H-NMR 500 MHz (Acetond-d 6): 8.79 (s, 1 H), 7.12 (m, 1 H), 6.92 (s, 3 H)
실시예Example 3: 3: 톨리미돈Tolimidon 소듐 염의 대량 제조 Mass production of sodium salts
반응기에 (E)-3-(다이메틸아미노)-2-(메타-톨릴옥시)아크릴알데히드(126 kg), 요소(urea)(110.9 kg) 및 에탄올(99.5%)(99.5 kg)을 투입하고 10분 이상 교반하였다. 반응기 내부온도를 15~25℃로 유지하며 소듐 에톡사이드(sodium ethoxide, 21% in ethanol)(688 kg)를 투입하였다. 반응기 내부온도를 70℃로 올리고 4시간 환류 교반하였다. 이어서 정제수 16.4 L를 투입하고 3시간 교반하였다. 반응기 내부온도를 15~25℃로 낮추고 생성된 고체를 여과 후, 65℃에서 14시간 진공 건조하여 톨리미돈 소듐 염(78.13 kg, 56.8%)을 얻었다.To the reactor was charged 126 kg of ( E ) -3- (dimethylamino) -2- (meta-tolyloxy) acrylaldehyde, 110.9 kg of urea and 99.5 kg of ethanol (99.5% The mixture was stirred for 10 minutes or more. Sodium ethoxide (21% in ethanol) (688 kg) was added while maintaining the internal temperature of the reactor at 15 to 25 ° C. The internal temperature of the reactor was raised to 70 캜 and refluxed and stirred for 4 hours. 16.4 L of purified water was then added and stirred for 3 hours. The internal temperature of the reactor was lowered to 15 to 25 ° C, and the resulting solid was filtered and vacuum-dried at 65 ° C for 14 hours to obtain sodium salt of tollimidone (78.13 kg, 56.8%).
비교예Comparative Example 2: 2: 톨리미돈Tolimidon 소듐 염의 소량 제조 Small amounts of sodium salts
반응기에 요소(8.78g, 0.146 mol)를 가한 후, 소듐 에톡사이드(21% in ethanol, 54.6 mL, 0.146 mol)를 천천히 투입한다. 이어서 (E)-3-(다이메틸아미노)-2-(메타-톨릴옥시)아크릴알데히드(15.0 g, 0.073 mol)을 천천히 투입하고, 2시간 동안 약 77℃에서 환류 교반하였다. 반응액에 정제수 2.65 mL를 투입하고 2시간 동안 약 77℃에서 추가 교반한다, 서서히 실온으로 냉각하고 형성된 고체를 여과하여 톨리미돈 소듐 염 (9.84 g, 60%)을 얻었다.After adding urea (8.78 g, 0.146 mol) to the reactor, slowly add sodium ethoxide (21% in ethanol, 54.6 mL, 0.146 mol). Then, ( E ) -3- (dimethylamino) -2- (meta-tolyloxy) acrylaldehyde (15.0 g, 0.073 mol) was slowly added thereto and the mixture was refluxed at 77 ° C for 2 hours. To the reaction solution was added 2.65 mL of purified water and further stirred at 77 DEG C for 2 hours. The mixture was gradually cooled to room temperature, and the solid formed was filtered to obtain a toluimidon sodium salt (9.84 g, 60%).
실시예Example 4: 4: 톨리미돈의Tolimidon 대량 제조 Mass production
정제수 1,659 L에 톨리미돈 소듐 염(78.13 kg)을 투입하고 60℃로 승온하여 용해시킨 후, 아세트산(26.5 kg)을 서서히 투여하였다. 내부 온도를 15~25℃로 냉각 후, 생성된 고체를 여과하고 정제수 630 L로 세척하였다. 이어서 65℃에서 32시간 진공 건조하였음에도 수득한 톨리미돈(57.23 kg)의 수분 함량은 4%이였다. 이어서 건조된 톨리미돈을 반응기에 투입하고, 에탄올(99.5%) 994 L를 투입 후, 70℃로 승온하여 용해하였다. 온도를 15~25℃로 서서히 낮춘 후 2시간 교반하여 재결정을 진행하였다. 반응액의 온도를 0℃로 낮추고 1시간 교반 후 여과하였다. 65℃ 오븐에서 14시간 진공 건조하여 최종 화합물(44.7 kg, 63%)을 얻었다.The toluimidon sodium salt (78.13 kg) was added to 1,659 L of purified water, and the mixture was heated to 60 DEG C to dissolve, and then acetic acid (26.5 kg) was gradually administered. After cooling the internal temperature to 15-25 ° C., the resulting solid was filtered and washed with 630 L of purified water. Subsequently, the water content of the obtained tollimidone (57.23 kg) was 4% even after vacuum drying at 65 ° C for 32 hours. Then, the dried tollimon was added to the reactor, 994 L of ethanol (99.5%) was added, and the temperature was raised to 70 ° C to dissolve. The temperature was gradually lowered to 15 to 25 占 폚, followed by stirring for 2 hours to perform recrystallization. The temperature of the reaction solution was lowered to 0 캜, stirred for 1 hour, and then filtered. And vacuum dried in an oven at 65 ° C for 14 hours to obtain the final compound (44.7 kg, 63%).
1H-NMR 500 MHz (DMSO-d6): 12.01 (s, 1H), 8.30 (m, 2H), 6.79~7.25 (m, 4H), 2.28 (s, 3H) 1 H-NMR 500 MHz (DMSO-d 6 ): 12.01 (s, 1 H), 8.30 (m, 2H), 6.79-7.25
비교예Comparative Example 3: 3: 톨리미돈의Tolimidon 소량 제조 Small quantity production
비교예 2에서 얻은 톨리미돈 소디움 염을 정제수 150 mL에 교반하면서 60℃에서 용해시켰다. 완전히 용해된 후, 아세트산을 적가하여 약 pH 6.0에서 결정을 석출시켰다. 반응액을 실온까지 서서히 냉각 후, 석출된 결정을 여과하고 정제수 130 mL로 세척하였다. 이어서 얻어진 결정을 65℃ 오븐에서 14시간 진공 건조하여 톨리미돈 7.6 g(수율: 85.6%)을 얻었다. The tollimidonoside salt obtained in Comparative Example 2 was dissolved in purified water (150 mL) while stirring at 60 占 폚. After complete dissolution, acetic acid was added dropwise to precipitate crystals at about pH 6.0. The reaction solution was slowly cooled to room temperature, and the precipitated crystals were filtered and washed with 130 mL of purified water. Subsequently, the obtained crystals were vacuum-dried in an oven at 65 ° C for 14 hours to obtain 7.6 g of tolymidon (yield: 85.6%).
비교예Comparative Example 4: 4: 비교예Comparative Example 2 및 3의 동일 반복 시험 The same repeated test of 2 and 3
비교예 2 및 3과 동일한 방법을 반복하여 톨리미돈 7.4 g(수율: 50.1%)을 얻었다.The same procedure as in Comparative Examples 2 and 3 was repeated to obtain 7.4 g (yield: 50.1%) of tolymidon.
실시예Example 5: 에탄올 재결정 5: Ethanol recrystallization
상기 비교예 3 및 4에서 얻은 톨리미돈 5.0 g을 에탄올 40 mL에서 환류 교반하여 녹인 후, 서서히 상온으로 온도를 낮추고 2시간 교반 후 여과하여 각각의 목적 화합물(4.2 g, 4.3 g)을 얻었다.5.0 g of the toluimidon obtained in the above Comparative Examples 3 and 4 was dissolved by refluxing in 40 mL of ethanol with stirring and then slowly cooled to room temperature. The mixture was stirred for 2 hours and filtered to obtain the desired compound (4.2 g, 4.3 g).
실험예Experimental Example 1: 수분 함유량 측정 1: Moisture content measurement
소량(비교예 3) 및 대량(실시예 4)으로 제조된 톨리미돈 및 에탄올 재결정 후의 톨리미돈을 65℃ 오븐에서 건조한 다음 수분 함유량을 측정하여 그 결과를 다음의 표 1에 나타내었다.Tolimidon prepared in a small amount (Comparative Example 3) and large amount (Example 4) and tollimidone after ethanol recrystallization were dried in an oven at 65 ° C., and the moisture content was measured. The results are shown in Table 1 below.
상기 표 1에서 볼 수 있듯이, 톨리미돈을 소량으로 제조시에는 탈염 과정에서 사용된 물을 용이하게 제거할 수 있으나, 대량 제조시에는 물을 건조 과정을 통하여 완벽히 제거하는게 용이하지 않았다. 그러나 에탄올 재결정을 통해서는 대량 제조에 있어서도 수분을 용이하게 제거할 수 있음을 알 수 있었다.As can be seen from the above Table 1, water used in the desalting process can be easily removed at the time of preparation of the tollimon in a small amount, but it is not easy to completely remove the water through the drying process at the time of mass production. However, it was found that ethanol recrystallization can easily remove moisture even in mass production.
실험예Experimental Example 2: 입도 분석 2: Particle size analysis
비교예 3 및 4에서 제조된 톨리미돈과 실시예 5의 에탄올 재결정 후의 톨리미돈의 입도 분포를 입도분석기(Malvern사, AWM2000(MAL140253))를 이용하여 다음의 조건으로 건식 측정 후 그 결과를 표 2 및 도 1에 나타내었다.The particle size distributions of the tollimidone prepared in Comparative Examples 3 and 4 and the tollimidone after ethanol recrystallization in Example 5 were dry-measured under the following conditions using a particle size analyzer (Malvern, AWM2000 (MAL140253)), Table 2 and Fig.
Measurement:Measurement:
- Measurement time: 3초- Measurement time: 3 seconds
- Measurement snaps: 3000- Measurement snaps: 3000
- Background time: 5초- Background time: 5 seconds
- Background snaps: 5000- Background snaps: 5000
Measurement cycles (Repeats):Measurement cycles (Repeats):
- Aliquots: 1 per SOP- Aliquots: 1 per SOP
- Measurements: 3 per aliquot- Measurements: 3 per aliquot
- Delay: 5초- Delay: 5 seconds
상기 표 2 및 도 1에서 볼 수 있듯이, 비교예 3 및 4에서 제조된 톨리미돈은 입도 분포가 불균일하며 배치(batch)에 따라 입도가 큰 차이를 보여 입도 분포의 재현성(reproducibility) 역시 떨어졌으나, 에탄올 재결정 후에는 입도 분포가 균일하게 나타났다. 실시예 4에서 제조된 에탄올 재결정 후의 톨리미돈의 경우 B-1 및 B-2와 유사한 입도 분포를 보였다.As can be seen from the above Table 2 and FIG. 1, the toluimidon produced in Comparative Examples 3 and 4 had uneven particle size distributions and showed large particle sizes depending on the batch, and the reproducibility of the particle size distribution was also decreased , And after ethanol recrystallization, the particle size distribution was uniform. In the case of tollimidon after ethanol recrystallization prepared in Example 4, particle sizes similar to those of B-1 and B-2 were shown.
실험예 3: 순도 측정Experimental Example 3: Purity measurement
비교예 3에서 제조된 톨리미돈 및 실시예 4에서 제조된 에탄올 재결정 후의 톨리미돈을 다음의 조건으로 HPLC 분석을 수행하여 그 결과를 각각 도 2 및 3에 나타내었다.The tollimidone prepared in Comparative Example 3 and the tollimon after ethanol recrystallization prepared in Example 4 were subjected to HPLC analysis under the following conditions, and the results are shown in FIGS. 2 and 3, respectively.
- 칼럼: Agilent ZORBAX Eclipse Plus C18 (4.6 x 250 mm, 5 ㎛)Column: Agilent ZORBAX Eclipse Plus C18 (4.6 x 250 mm, 5 탆)
- 검출 파장: 274 nm- Detection wavelength: 274 nm
- 칼럼 온도: 30℃- Column temperature: 30 ° C
- 유속: 2 mL/min- Flow rate: 2 mL / min
- 이동상 용매: A용매는 0.1% 인산-증류수, B용매는 100% 아세토니트릴을 사용하여 농도구배 조건으로 분석- mobile phase solvent: 0.1% phosphoric acid-distilled water for solvent A and 100% acetonitrile for B solvent
도 2 및 3에서 볼 수 있듯이, 비교예 3에서 제조된 톨리미돈의 경우 불순물을 포함하고 있으나 에탄올 재결정을 통하여 대부분의 불순물이 제거됨을 확인할 수 있었다.As can be seen from FIGS. 2 and 3, the toluimidon prepared in Comparative Example 3 contains impurities, but most impurities are removed by ethanol recrystallization.
Claims (5)
ii) 제조된 화학식 4의 화합물을 빌스마이어(Vilsmeier) 반응을 통하여 화학식 3의 화합물을 제조하며;
iii) 제조된 화학식 3의 화합물을 요소 및 소듐 에톡사이드와 함께 환류 교반하여 화학식 2의 소듐 염 화합물을 제조하고;
iv) 제조된 화학식 2의 소듐 염 화합물을 탈염하여 화학식 1의 톨리미돈을 수득한 다음 에탄올로 재결정하는 것을 포함하는 톨리미돈의 제조 방법:
[화학식 6]
[화학식 5]
[화학식 4]
[화학식 3]
[화학식 2]
[화학식 1]
i) reacting a compound of formula 6 with a compound of formula 5 under a tetrabutylammonium bromide catalyst to produce a compound of formula 4;
ii) reacting the prepared compound of formula 4 with a compound of formula 3 via Vilsmeier reaction;
iii) refluxing the thus prepared compound of formula (III) with urea and sodium ethoxide to prepare a sodium salt compound of formula (2);
iv) desalting the sodium salt compound of formula (2) to obtain the tollimon of formula (1), followed by recrystallization from ethanol.
[Chemical Formula 6]
[Chemical Formula 5]
[Chemical Formula 4]
(3)
(2)
[Chemical Formula 1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160143433A KR101827744B1 (en) | 2016-10-31 | 2016-10-31 | Method for preparing tolimidone on large scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160143433A KR101827744B1 (en) | 2016-10-31 | 2016-10-31 | Method for preparing tolimidone on large scale |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101827744B1 true KR101827744B1 (en) | 2018-02-09 |
Family
ID=61198944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160143433A KR101827744B1 (en) | 2016-10-31 | 2016-10-31 | Method for preparing tolimidone on large scale |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101827744B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019139185A1 (en) * | 2018-01-11 | 2019-07-18 | Bukwang Pharmaceutical Co., Ltd. | Method for preparing tolimidone on large scale |
US12031128B2 (en) | 2021-04-07 | 2024-07-09 | Battelle Memorial Institute | Rapid design, build, test, and learn technologies for identifying and using non-viral carriers |
US12109223B2 (en) | 2020-12-03 | 2024-10-08 | Battelle Memorial Institute | Polymer nanoparticle and DNA nanostructure compositions and methods for non-viral delivery |
-
2016
- 2016-10-31 KR KR1020160143433A patent/KR101827744B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019139185A1 (en) * | 2018-01-11 | 2019-07-18 | Bukwang Pharmaceutical Co., Ltd. | Method for preparing tolimidone on large scale |
US11254645B2 (en) | 2018-01-11 | 2022-02-22 | Bukwang Pharmaceutical Co., Ltd. | Method for preparing tolimidone on large scale |
US12109223B2 (en) | 2020-12-03 | 2024-10-08 | Battelle Memorial Institute | Polymer nanoparticle and DNA nanostructure compositions and methods for non-viral delivery |
US12031128B2 (en) | 2021-04-07 | 2024-07-09 | Battelle Memorial Institute | Rapid design, build, test, and learn technologies for identifying and using non-viral carriers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9416097B2 (en) | Crystalline minocycline base and processes for its preparation | |
KR101827744B1 (en) | Method for preparing tolimidone on large scale | |
WO2011095059A1 (en) | Polymorphs of dasatinib, preparation methods and pharmaceutical compositions thereof | |
WO2010083752A1 (en) | High-purity febuxostat and the method for preparation | |
WO2018073574A1 (en) | Polymorphic forms of palbociclib | |
WO2010069280A2 (en) | A method for the preparation of tizanidine hydrochloride | |
JP2012509930A (en) | Novel method and pure polymorphism | |
US11254645B2 (en) | Method for preparing tolimidone on large scale | |
JP2018515566A (en) | Pharmaceutical composition | |
EP1726591B1 (en) | Process for manufacturing paroxetine hydrochloride hemihydrate | |
JP4208976B2 (en) | d4 T polymorph Form I method | |
TW201228999A (en) | Separation of triazine derivatives enantiomers using tartaric acid | |
CN106336411A (en) | Preparation method and use of CDK4/6 inhibitor palbociclib highly-pure raw drug | |
JP2018518515A (en) | Polymorphs of phenylaminopyrimidine compounds or salts thereof | |
EP2610239A1 (en) | Preparation Of Rasagiline Hemitartrate | |
EP2860184B1 (en) | Dihydrogenphosphate salt of Tenofovir disoproxil | |
KR20170124999A (en) | Method for producing amorphous linagliptin | |
CN113943270B (en) | Acetinib crystal form | |
US20220169603A1 (en) | Novel salts, crystalline forms and premix of hypolipidemic agent | |
KR102727487B1 (en) | Method for preparing polymorph form B of treprostinil diethanolamine salt | |
WO2024094181A1 (en) | Method for preparing finerenone by means of resolving racemate with diastereomeric tartaric ester | |
CN113121456B (en) | Acipimox urea eutectic | |
WO2011004281A1 (en) | A process for the preparation of amorphous form of rabeprazole sodium | |
WO2006134212A2 (en) | Preparation of tamsulosin hydrochloride from tamsulosi | |
CN108863946B (en) | Preparation method of dibazole impurity reference substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |