KR101819358B1 - High-strength thin steel sheet having excellent formability and method for manufacturing the same - Google Patents
High-strength thin steel sheet having excellent formability and method for manufacturing the same Download PDFInfo
- Publication number
- KR101819358B1 KR101819358B1 KR1020160102946A KR20160102946A KR101819358B1 KR 101819358 B1 KR101819358 B1 KR 101819358B1 KR 1020160102946 A KR1020160102946 A KR 1020160102946A KR 20160102946 A KR20160102946 A KR 20160102946A KR 101819358 B1 KR101819358 B1 KR 101819358B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- less
- temperature
- hot
- annealing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
본 발명은 고강도 박강판 및 그 제조방법에 관한 것으로, 보다 상세하게는, 자동차용 외판재 등의 소재로 바람직하게 적용될 수 있는 성형성이 우수한 고강도 박강판 및 그 제조방법에 관한 것이다.
The present invention relates to a high-strength thin-gauge steel sheet and a method of manufacturing the same, and more particularly, to a high-strength thin-gauge steel sheet excellent in moldability which can be preferably applied to a material for automobile outer plates and the like, and a method of manufacturing the same.
자동차의 내,외판재(도어, 후드, 펜더, 플로어 등)의 소재로서 적용되는 강에는 높은 강도뿐만 아니라 우수한 성형성이 요구된다. 이는 사고로부터 승객의 안전을 도모하고, 차체 경량화를 통한 연비 향상을 꾀하기 위함이다. Steel that is used as a material for inner and outer plates (doors, hoods, fenders, floors, etc.) of automobiles is required not only high strength but also good formability. This is to ensure the safety of passengers from accidents, and to improve the fuel efficiency by lightening the weight of the vehicle.
그러나, 강판 강도의 증가는 성형성의 악화를 초래하기 때문에 상기 두 인자(강도, 성형성) 모두를 동시에 만족시키기란 매우 어려우며, 특히 도어 내판(Door Inner)이나 리어 플로어 (Rear Floor) 등과 같이 보다 고성형성을 요구하는 부품에서는 가공시 크랙이 발생하는 등 성형 불량이 자주 발생하여 이들 부품에의 고강도강의 적용은 아직 미미한 실정이다.
However, it is very difficult to satisfy both of the above factors (strength and formability) at the same time because the increase in the strength of the steel sheet causes deterioration of the formability. Particularly, Cracks occur during machining in the parts requiring the formation, and therefore the application of high strength steels to these parts is still insufficient.
현재까지 개발된 강도 및 성형성이 우수한 공지의 강판으로는 소위 IF 강(Interstitial Free Steel)이 있다. 이는 강력한 탄질화물 형성원소인 티타늄(Ti) 및/또는 니오븀(Nb) 등을 첨가하여 탄소(C), 질소(N), 황(S) 등의 고용원소를 제거하여 강도 및 성형성을 동시에 확보하는 것으로써, 대표적으로 특허문헌 1 내지 4에 개시되어 있다. 그러나, 상기 IF강은 평균 소성이방성 계수(Lankford value, r값)이 1.5~1.8을 나타내며, 기존의 DDQ(Deep Drawing Quality)급의 연질냉연강판이 사용되던 부품을 대체하기에는 대단히 미흡한 수준이었다.
A known steel sheet having excellent strength and formability developed so far includes so-called Interstitial Free Steel. This is achieved by adding strong carbonitride forming elements such as titanium (Ti) and / or niobium (Nb) to remove solid elements such as carbon (C), nitrogen (N) and sulfur (S) And are typically disclosed in
본 발명의 목적 중 하나는, 성형성이 우수한 고강도 박강판과 이를 제조하는 방법을 제공하는 것이다.
One of the objects of the present invention is to provide a high strength thin steel sheet excellent in moldability and a method of manufacturing the same.
본 발명의 일 측면은, 중량%로, C: 0.001~0.004%, Si: 0.5% 이하(0% 제외), Mn: 1.2% 이하(0% 제외), P: 0.005~0.12%, S: 0.01% 이하, N: 0.01% 이하, 산 가용 Al: 0.1% 이하(0% 제외), Ti: 0.01~0.04%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 Ti, N 및 S의 함량은 하기 관계식 1을 만족하며, 판두께 방향으로 t/4(t: 박강판의 두께) 지점에서 (001)[1-10]~(110)[1-10] 방위군의 평균 랜덤 강도비(a)에 대한 (111)[1-10]~(111)[-1-12] 방위군의 평균 랜덤 강도비(b)의 비(b/a)가 2.3 이상이고, 소부경화량(BH)이 4MPa 이상인 고강도 박강판을 제공한다. An aspect of the present invention is a steel sheet comprising, by weight%, 0.001 to 0.004% of C, 0.5% or less of Si (excluding 0%), 1.2% or less of Mn (excluding 0%), 0.005 to 0.12% % Of Ti, 0.01 to 0.04% of Ti, and the balance of Fe and inevitable impurities, and the contents of Ti, N and S satisfy the following
[관계식 1] -0.02≤[Ti]-(24/7)[N]-(3/2)[S]≤0.025[Relation 1] -0.02? [Ti] - (24/7) [N] - (3/2) [S]? 0.025
(여기서, [Ti], [N] 및 [S] 각각은 해당 원소의 함량(중량%)을 의미함)
(Where each of [Ti], [N] and [S] means the content (weight%) of the corresponding element)
본 발명의 다른 일 측면은, 중량%로, C: 0.001~0.004%, Si: 0.5% 이하(0% 제외), Mn: 1.2% 이하(0% 제외), P: 0.005~0.12%, S: 0.01% 이하, N: 0.01% 이하, 산 가용 Al: 0.1% 이하(0% 제외), Ti: 0.01~0.04%, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 열간압연하여 열연강판을 얻는 단계, 상기 열연강판을 450~750℃의 온도에서 권취하는 단계, 상기 권취된 열연강판을 75% 이상의 압하율로 냉간압연하여 냉연강판을 얻는 단계, 상기 냉연강판을 830~880℃의 소둔 온도까지 승온한 후, 상기 소둔 온도에서 30~80sec의 소둔 시간 동안 유지하여 연속 소둔하는 단계, 상기 연속 소둔된 냉연강판을 650℃ 이하의 온도까지 2~10℃/sec의 속도로 냉각하는 단계, 상기 냉각된 냉연강판을 0.3~1.6%의 압하율로 조질압연하는 단계를 포함하고, 상기 냉연강판의 승온시, (재결정 개시 온도+20)℃부터 소둔 온도까지의 평균 냉각 속도가 5℃/sec 이하인 것을 특징으로 하는 고강도 박강판의 제조방법을 제공한다.
Another aspect of the present invention provides a method of manufacturing a semiconductor device, comprising: 0.001 to 0.004% of C, 0.5% or less of Si (excluding 0%), 1.2% or less of Mn (excluding 0%), 0.005 to 0.12% Hot rolling a steel slab containing 0.01% or less of N, 0.01% or less of N, 0.1% or less of acid soluble Al (excluding 0%), 0.01 to 0.04% of Ti, Fe and unavoidable impurities, Rolling the rolled hot-rolled steel sheet at a temperature of 450 to 750 ° C, cold-rolling the rolled hot-rolled steel sheet at a reduction ratio of 75% or more to obtain a cold-rolled steel sheet, raising the cold-rolled steel sheet to an annealing temperature of 830 to 880 ° C Continuously cooling the cold-rolled steel sheet at a temperature of 650 ° C or lower at a rate of 2 to 10 ° C / sec, cooling the cold-rolled steel sheet to a temperature of 650 ° C or lower, And temper rolling the steel sheet at a reduction ratio of 0.3 to 1.6%, wherein at the time of heating the cold-rolled steel sheet, from the (recrystallization starting temperature + 20) The average cooling rate to provide a method for manufacturing a high strength steel sheet characterized in that not more than 5 ℃ / sec.
본 발명의 여러 효과 중 하나로서, 본 발명에 따른 박강판은 강도 및 성형성이 우수하여 자동차용 외판재 등의 소재로 바람직하게 적용될 수 있다.
As one of the various effects of the present invention, the thin steel sheet according to the present invention is excellent in strength and moldability and can be suitably applied to materials for automobile exterior panels and the like.
도 1은 발명예 1의 집합조직의 발달 정도를 분석한 그래프이다.FIG. 1 is a graph showing the developmental degree of the group organization of Inventive Example 1. FIG.
본 발명자들은 상술한 종래기술의 문제점을 해결하기 위해 깊이 연구한 결과, 강 중 강력한 탄질화물 형성원소인 티타늄(Ti)을 단독으로 첨가하거나, 티타늄(Ti) 및 니오븀(Nb)을 복합으로 첨가하여 탄소(C), 질소(N), 황(S) 등의 고용 원소를 제거하되, 고용 원소 제거의 결과로 생성되는 탄화물 등의 위치 분포를 적절히 제어하고, 집합 조직을 제어함으로써 강도 및 드로잉성을 현저히 개선할 수 있으며, 소둔 중 재용해된 고용 탄소를 적정 수준 잔존케 함으로써 소부경화성을 현저히 개선할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
As a result of deep research to solve the problems of the prior art described above, the inventors of the present invention have found that the addition of titanium (Ti), which is a strong carbonitride forming element in steel, alone or in combination with titanium (Ti) and niobium It is necessary to remove the solid elements such as carbon (C), nitrogen (N) and sulfur (S), and appropriately control the position distribution of the carbide or the like generated as a result of the removal of the solid element, It is possible to remarkably improve the hardenability of the sintered body, and it has been confirmed that the hardening of the sintering can be remarkably improved by leaving the dissolved carbon to be remained at an appropriate level during the annealing, and the present invention has been accomplished.
이하, 본 발명의 일 측면인 성형성이 우수한 고강도 박강판에 대하여 상세히 설명한다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a high strength steel sheet excellent in formability which is one aspect of the present invention will be described in detail.
먼저, 고강도 박강판의 합금 성분 및 바람직한 함량 범위에 대하여 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝혀둔다.
First, the alloy component and the preferable content range of the high strength steel sheet will be described in detail. It is to be noted that the content of each component described below is based on weight unless otherwise specified.
C: 0.001~0.004%C: 0.001 to 0.004%
탄소는 침입형 고용 원소로써 냉연 및 소둔 과정에서 강판의 집합조직의 형성에 큰 영향을 미친다. 특히, 강 중 고용 탄소량이 많아지면, 드로잉 가공성에 유리한 {111} 집합조직을 가진 결정립의 성장이 억제되고, {110} 및 {100} 집합조직을 가진 결정립의 성장이 촉진되어 박강판의 드로잉성이 열화될 수 있다. 더욱이, 탄소 함량이 지나치게 과다할 경우, 이를 탄화물로 석출시키기 위해 필요한 Ti 함량이 과다해져 경제성 측면에서 불리할 뿐 아니라, 미세 TiC 탄화물이 강 중 다량 분포하여 드로잉성을 급격히 열화시키는 문제가 있다. 따라서, 본 발명에서는 탄소 함량의 상한을 0.004%로 제어하며, 바람직하게는 0.0035%로 제어한다. 한편, 탄소 함량이 낮을 수록 드로잉성 개선에는 유리할 수 있으나, 그 함량이 지나치게 낮을 경우 박강판의 소부경화성이 급격히 열화되는 문제가 있다. 따라서, 본 발명에서는 탄소 함량의 하한을 0.001%로 제어하며, 바람직하게는 0.0012%로 제어한다.
Carbon is an invasive solid element and has a great influence on the formation of aggregate structure of steel sheet during cold rolling and annealing. Particularly, when the amount of solid carbon in the steel increases, the growth of grains having a {111} texture that is advantageous for drawing workability is suppressed and the growth of grains having {110} and {100} texture is promoted, Can be deteriorated. Further, when the carbon content is excessively excessive, the Ti content necessary for precipitating the carbide is excessively disadvantageous from the viewpoint of economical efficiency, and there is also a problem that the fine TiC carbide is distributed in a large amount in the steel and drastically deteriorates the drawability. Therefore, in the present invention, the upper limit of the carbon content is controlled to 0.004%, preferably 0.0035%. On the other hand, the lower the carbon content, the better the improvement of the drawability, but if the content is too low, the hardening of the hardening of the thin steel sheet drastically deteriorates. Therefore, in the present invention, the lower limit of the carbon content is controlled to 0.001%, preferably 0.0012%.
Si: 0.5% 이하 (0% 제외)Si: 0.5% or less (excluding 0%)
실리콘은 고용 강화에 의해 박강판의 강도 상승에 기여한다. 다만, 그 함량이 과다할 경우 표면 스케일 결함을 유발하여 도금 표면 특성이 열화되는 문제가 있으므로, 본 발명에서는 그 상한을 0.5%로 제어하며, 바람직하게는 0.05%로 제어한다. 한편, 본 발명에서는 실리콘 함량의 하한에 대해서는 특별히 한정하지 않으나, 바람직하게는 0.001%일 수 있으며, 보다 바람직하게는 0.002%일 수 있다.
Silicon contributes to the strength increase of the steel sheet by solid solution strengthening. However, if the content thereof is excessive, there is a problem that surface scale defects are caused to deteriorate the surface characteristics of the plating. Therefore, in the present invention, the upper limit is controlled to 0.5%, preferably 0.05%. In the present invention, the lower limit of the silicon content is not particularly limited, but may be 0.001%, and more preferably 0.002%.
Mn: 1.2% 이하(0% 제외)Mn: 1.2% or less (excluding 0%)
망간은 고용강화 원소로써 강의 강도 향상에 기여할 뿐 아니라, 강 중 S를 MnS로 석출시켜 열간압연시 S에 의한 판파단 발생 및 고온 취화를 억제시키는 역할을 한다. 다만, 그 함량이 과다할 경우 과잉의 Mn이 고용되어 드로잉성을 열화시키는 문제가 있다. 본 발명에서는 망간 함량의 상한을 1.2% 이하로 제어하고, 바람직하게는 1.0% 이하로 제어하며, 보다 바람직하게는 0.8% 이하로 제어한다. 한편, 본 발명에서는 망간 함량의 하한에 대해서는 특별히 한정하지 않으나, 바람직하게는 0.01%일 수 있으며, 보다 바람직하게는 0.1%일 수 있다.
Manganese is a solid solution strengthening element which not only contributes to the improvement of steel strength but also precipitates S in MnS to inhibit plate breakage and high temperature embrittlement by S during hot rolling. However, when the content thereof is excessive, excess Mn is solved to deteriorate drawability. In the present invention, the upper limit of the manganese content is controlled to 1.2% or less, preferably 1.0% or less, and more preferably 0.8% or less. In the present invention, the lower limit of the manganese content is not particularly limited, but may be preferably 0.01%, more preferably 0.1%.
P: 0.005~0.12%P: 0.005 to 0.12%
인은 고용 효과가 매우 우수하고, 드로잉성을 크게 해치지 않으면서 강의 강도를 개선하는데 가장 효과적인 원소이다. 본 발명에서는 인 함량의 하한을 0.005%로 제어하며, 바람직하게는 0.008%로 제어하며, 보다 바람직하게는 0.010%로 제어한다. 다만, 그 함량이 과다할 경우, 과잉의 P가 FeTiP로 석출되어 드로잉성이 열화되는 문제가 있다. 본 발명에서는 인 함량의 상한을 0.12%로 제어하며, 바람직하게는 0.10%로 제어하며, 보다 바람직하게는 0.08%로 제어한다.
Phosphorus is the most effective element to improve the strength of the steel, with a very good employment effect and without significantly deteriorating the drawability. In the present invention, the lower limit of the phosphorus content is controlled to 0.005%, preferably 0.008%, and more preferably 0.010%. However, when the content is excessive, there is a problem that excessive P precipitates in FeTiP and drawability deteriorates. In the present invention, the upper limit of phosphorus content is controlled to 0.12%, preferably to 0.10%, and more preferably to 0.08%.
S: 0.01% 이하, N: 0.01% 이하S: 0.01% or less, N: 0.01% or less
황 및 질소는 강 중 불가피하게 존재하는 불순물로써, 우수한 용접 특성 확보를 위해서는 이들의 함량을 가능한 낮게 제어함이 바람직하다. 본 발명에서는 적절한 용접 특성 확보의 측면에서 황 및 질소의 함량의 상한을 각각 0.01% 이하로 관리한다.
Sulfur and nitrogen are inevitably impurities in the steel. In order to secure excellent welding characteristics, it is desirable to control their contents as low as possible. In the present invention, the upper limit of the content of sulfur and nitrogen is controlled to 0.01% or less, respectively, in terms of ensuring proper welding characteristics.
Sol.Al: 0.1% 이하 (0% 제외)Sol.Al: 0.1% or less (excluding 0%)
산가용 알루미늄은 AlN을 석출시켜 박강판의 드로잉성 및 연성 향상에 기여한다. 다만, 그 함량이 과다할 경우, 제강 조업시 Al계 개재물이 과다하게 형성되어 강판 내부 결함이 발생하는 문제가 있다. 본 발명에서는 산가용 알루미늄 함량의 상한을 0.1%로 제어하고, 바람직하게는 0.08%로 제어하며, 보다 바람직하게는 0.05%로 제어한다. 한편, 본 발명에서는 산가용 알루미늄 함량의 하한에 대해서는 특별히 한정하지 않으나, 바람직하게는 0.01%일 수 있고, 보다 바람직하게는 0.02%일 수 있다.
Acid soluble aluminum precipitates AlN and contributes to improving the drawability and ductility of the thin steel sheet. However, when the content is excessive, Al-based inclusions are excessively formed at the time of steelmaking, thereby causing defects in the steel sheet. In the present invention, the upper limit of the content of acid soluble aluminum is controlled to 0.1%, preferably 0.08%, and more preferably 0.05%. In the present invention, the lower limit of the content of the acid soluble aluminum is not particularly limited, but may be preferably 0.01%, more preferably 0.02%.
Ti: 0.01~0.04%Ti: 0.01 to 0.04%
티타늄은 열연 중 고용 탄소 및 고용 질소와 반응하여 Ti계 탄질화물을 석출시킴으로써 박강판의 드로잉성 개선에 크게 기여하는 원소이다. 본 발명에서는 티타늄 함량의 하한을 0.01% 이상으로 제어하고, 바람직하게는 0.012% 이상으로 제어하며, 보다 바람직하게는 0.015% 이상으로 제어한다. 다만, 그 함량이 과다할 겨웅, 고용 탄소 및 고용 질소와 반응하고 남은 Ti가 P와 결합하여 과다한 FeTiP 석출물을 형성시켜 드로잉성이 열화될 우려가 있으며, TiC 혹은 TiN 석출물이 강 중 다량 분포하여 고용 탄소량이 지나치게 낮아져 박강판의 소부경화성이 열화될 우려가 있다. 본 발명에서는 티타늄 함량의 상한을 0.04%로 제어하고, 바람직하게는 0.03%로 제어한다.
Titanium is an element contributing to improving the drawability of the thin steel sheet by precipitating the Ti-based carbonitrides by reacting with the solid carbon and the solid nitrogen in the hot-rolled steel. In the present invention, the lower limit of the titanium content is controlled to 0.01% or more, preferably 0.012% or more, and more preferably 0.015% or more. However, there is a fear that the TiC or TiN precipitates are distributed in a large amount in the steel due to the excessive amount of the TiC or TiN precipitates. The amount of carbon is excessively low, and there is a fear that the hardening of the bare steel sheet may be deteriorated. In the present invention, the upper limit of the titanium content is controlled to 0.04%, preferably 0.03%.
이외에 잔부 Fe 및 불가피한 불순물을 포함한다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니며, 특히 강판의 기계적 물성을 보다 향상시키기 위하여 아래와 같은 성분을 추가로 포함할 수 있다.
And the balance Fe and inevitable impurities. However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically referred to in this specification, as they are known to one of ordinary skill in the art. In addition, addition of an effective component other than the above-mentioned composition is not excluded, and in particular, the following components may be further included to further improve the mechanical properties of the steel sheet.
Nb: 0.005~0.04%Nb: 0.005 to 0.04%
니오븀은 열간압연 중 고용 탄소를 (Ti,Nb)C 복합 탄화물의 형태로 석출시킴으로써, 소둔 중 집합조직의 형성을 용이하게 하는 역할을 한다. 더욱이, 적정량의 Nb가 첨가될 경우, 방향별 소성이방성(0°, 45°, 90°)이 개선되는 효과가 있어, 90° 방향 대비 0° 및 45° 방향의 소성변형이방성(r-value)가 증가하며, 결과적으로 재료의 평면이방성(Δr, Planar anisotropy)이 영(0) 부근에 도달하며, 판면 상에 r값이 고르게 분포하는 특성을 나타내어 성형시 재료의 귀(earing성) 모양의 성형 결함이 방지되는 장점이 있다. 본 발명에서 이러한 효과를 얻기 위해서는 니오븀 함량의 하한을 0.005% 이상으로 제어함이 바람직하고, 0.008% 이상으로 제어함이 보다 바람직하다. 다만, 그 함량이 지나치게 과다할 경우, 강 중 고용 탄소는 대부분 미세한 NbC로 석출되어 소둔 후에도 고용 탄소가 거의 재용해 되지 못하여 소부경화성이 열화되고, 더욱이, 미세 (Ti,Nb)C 복합 탄화물 석출량이 상대적으로 적어 드로잉성(r-value)이 열화될 뿐만 아니라, 재결정 온도 상승에 의한 재질 열화를 가져오는 문제가 있다. 니오븀 함량의 상한은 0.04%인 것이 바람직하고, 0.03%인 것이 보다 바람직하며, 0.025%인 것이 보다 더 바람직하다.
Niobium functions to facilitate the formation of aggregate structure during annealing by precipitating solid carbon in the form of (Ti, Nb) C complex carbide in hot rolling. Further, when an appropriate amount of Nb is added, plastic deformation anisotropy (0 °, 45 °, 90 °) is improved, and plastic deformation anisotropy (r-value) in the 0 ° and 45 ° directions with respect to the 90 ° direction is improved. As a result, the planar anisotropy of the material reaches approximately zero, and the r value is evenly distributed on the surface of the plate, so that the molding of the ear shape of the material at the time of molding Defects can be prevented. In order to obtain such an effect in the present invention, the lower limit of the niobium content is preferably controlled to 0.005% or more, more preferably 0.008% or more. However, when the content is excessively excessive, most of the solid carbon in the steel is precipitated as fine NbC, so that the solidified carbon is hardly re-dissolved even after the annealing, so that the hardening of the hardening is deteriorated. Further, the precipitation amount of fine (Ti, Nb) There is a problem that not only the drawability (r-value) is deteriorated but also the material deterioration due to the increase in the recrystallization temperature is caused. The upper limit of the niobium content is preferably 0.04%, more preferably 0.03%, even more preferably 0.025%.
B: 0.002% 이하(0% 제외)B: 0.002% or less (excluding 0%)
붕소는 강 중 P에 의한 2차 가공 취성을 억제 한다. 다만, 그 함량이 과다할 경우, 강판의 연성 저하를 수반할 수 있는 바, 본 발명에서는 보론 함량의 상한을 0.002% 이하로 제어하며, 바람직하게는 0.0015% 이하로 제어한다. 한편, 본 발명에서는 보론 함량의 하한에 대해서는 특별히 한정하지 않으나, 바람직하게는 0.0003%일 수 있고, 보다 바람직하게는 0.0005%일 수 있다.
Boron suppresses secondary machining brittleness due to P in the steel. However, if the content is excessive, the ductility of the steel sheet may be lowered. In the present invention, the upper limit of the boron content is controlled to 0.002% or less, preferably 0.0015% or less. In the present invention, the lower limit of the boron content is not particularly limited, but may be 0.0003%, and more preferably 0.0005%.
한편, 상기와 같은 성분 범위를 갖는 박강판의 합금 설계시, 상기 Ti, N 및 S의 함량은 하기 관계식 1을 만족하도록 하는 것이 바람직하다. 만약, [Ti]-(24/7)[N]-(3/2)[S] 값이 -0.02 미만일 경우 강중 C를 TiC로 석출시키기 위한 Ti 함량이 절대적으로 부족하여 가공성 평가 지수인 r값이 현저히 낮아지게 되고, 반면, 그 값이 0.025를 초과할 경우 가공성에 유리한 TiC 석출물 외에 FeTiP 석출물이 형성되어 소둔시 {111} 방위의 발달을 현저히 저해한다. 보다 바람직하게는 그 값을 -0.01 내지 0.01로 제어한다.On the other hand, at the time of designing the alloy of the thin steel sheet having the above-mentioned composition range, it is preferable that the contents of Ti, N and S satisfy the following relational expression (1). If the value of [Ti] - (24/7) [N] - (3/2) [S] is less than -0.02, the Ti content for precipitation of steel C to TiC is absolutely insufficient, On the other hand, when the value exceeds 0.025, FeTiP precipitates are formed in addition to the TiC precipitates favorable in workability, and the development of the {111} orientation is significantly inhibited during annealing. More preferably, the value is controlled to be -0.01 to 0.01.
[관계식 1] -0.02≤[Ti]-(24/7)[N]-(3/2)[S]≤0.025[Relation 1] -0.02? [Ti] - (24/7) [N] - (3/2) [S]? 0.025
(여기서, [Ti], [N] 및 [S] 각각은 해당 원소의 함량(중량%)을 의미함)
(Where each of [Ti], [N] and [S] means the content (weight%) of the corresponding element)
이하, 고강도 박강판의 조직 및 석출물 등에 대하여 상세히 설명한다.
Hereinafter, the structure and the precipitate of the high-strength steel sheet will be described in detail.
결정 내부에 생성된 일정한 면과 방위를 가지는 배열을 집합조직(texture)이라고 하며, 이들 집합조직이 일정한 방향으로 대상(band)으로 발달한 양상을 파이버(Fiber) 집합조직이라고 한다. 집합조직은 드로잉성과 밀접한 관계를 가지고 있으며, 이들 집합조직 중 {111}면이 압연면에 수직으로 형성되는 감마(γ)-파이버 집합조직의 면강도 값이 높을수록 드로잉 가공성이 개선되는 것으로 알려져 있다. 통상 알파(α)-파이버 집합조직은 RD//<110> 로 정의되며 감마(γ)-파이버 집합조직은 ND//<111> 로 정의된다.
An array having a certain plane and orientation generated inside a crystal is called a texture, and a pattern in which these aggregate structures develop into a band in a certain direction is called a fiber aggregate structure. The texture of the texture is closely related to the drawability and it is known that the higher the surface strength value of the gamma (γ) -fiber aggregate structure in which {111} faces are formed perpendicular to the rolling face, the better the drawing processability is . The alpha (alpha) -fiber assembly texture is usually defined as RD // <110> and the gamma (γ) -fiber assembly texture is defined as ND // <111>.
한편, 본 발명자들은 상기와 같은 감마(γ)-파이버 집합조직을 형성시키기 위해서는 강판 표면으로부터 판두께 방향으로 t/4(t: 강판의 두께) 위치에서 알파(α)-파이버 집합조직((001)[1-10]~(110)[1-10] 방위군)의 평균 랜덤 강도비(a) 와 감마(γ)-파이버 집합조직((111)[1-10]~(111)[-1-12] 방위군)의 평균 랜덤 강도비(b)의 비율이 매우 중요함을 알아냈다. 보다 구체적으로는, 강판 표면으로부터 판두께 방향으로 t/4(t: 박강판의 두께) 지점에서 (001)[1-10]~(110)[1-10] 방위군의 평균 랜덤 강도비(a)에 대한 (111)[1-10]~(111)[-1-12] 방위군의 평균 랜덤 강도비(b)의 비(b/a)가 2.3이상 확보될 경우 평균 소성이방성 계수(Lankford value, r값)이 1.9 이상 확보 가능하여 우수한 드로잉성을 확보할 수 있음을 확인하였다. 한편, 감마(γ)-파이버 집합조직((111)[1-10]~(111)[-1-12] 방위군)의 평균 랜덤 강도비가 상대적으로 높을수록 드로잉성에 유리하므로 본 발명에서는 그 상한을 특별히 한정하지 않는다.
On the other hand, in order to form gamma-fiber aggregate structure as described above, the present inventors have found that alpha (alpha) -fibrous texture ((001 (Γ) -fiber aggregate structure ((111) [1-10] to (111) [- 1] of the average random intensity ratio (a) -12] defense group) is very important. More specifically, the average random intensity ratio (a) of the (001) [1-10] to (110) [1-10] bearing group at a point of t / 4 (B / a) of the average random intensity ratio (b / a) of the (111) [1-10] to (111) [- 1-12] bearing group to the average random anisotropy coefficient , r value) of 1.9 or more can be ensured and it is confirmed that excellent drawability can be secured. On the other hand, the higher the average random intensity ratio of gamma-fiber aggregate ((111) [1-10] to (111) [1-12] bearing group) And is not particularly limited.
특히 본 발명에서는 자동차 부품 성형시 특정 방향이 아닌 여러 방향별로 우수한 드로잉성을 확보해야만 크랙없이 완전한 부품 성형이 가능함을 확인하고 감마(γ)-파이버 집합조직의 발달정도를 0~90° 전부 분석하여 그 값을 표시할 경우 완전한 성형성을 표현할 수 있음을 알았다. 즉 감마(γ)-파이버 집합조직의 0°((111)[1-10]), 30°((111)[1-21]), 60°((111)[0-11]), 90°((111)[-1-12])의 모든 방향에 대하여 평균 랜덤 강도비의 발달이 전반적으로 높을수록 유리하다. Particularly, in the present invention, it is confirmed that, when molding an automobile part, it is necessary to ensure excellent drawability in various directions, not in a specific direction, it is possible to form a complete part without cracking, and the development degree of gamma- It was found that the complete moldability can be expressed by displaying the value. (111) [1-10], 30 ((111) [1-21]), 60 ((111) [0-11]), 90 ((111) [- 1-12]), the more the development of the average random intensity ratio is generally higher.
한편, 압연 방향에 대하여 방향별로 측정한 소성 이방성 계수으로부터 얻어지는 평균 소성이방성 계수(Lankford value, r값)는 드로잉성을 나타내는 대표적인 재질 특성 값으로, 그 값은 아래 식 1로부터 계산한다.On the other hand, the average plastic anisotropy coefficient (Lankford value, r value) obtained from the plastic anisotropy coefficient measured for each direction with respect to the rolling direction is a representative material characteristic value indicating drawability.
r값 = (r0+r90+2r45)/4 (식 1)r value = (r0 + r90 + 2r45) / 4 (1)
(단, ri는 압연 방향으로부터 i° 방향에서 채취한 시편에서 측정한 소성 이방성 계수를 나타낸다.)(Where ri represents the plastic anisotropy coefficient measured in the specimen taken in the direction of i from the rolling direction).
상기 식에서 r값이 클수록 드로잉 가공시 성형 컵의 깊이를 증가시킬 수 있어 드로잉성이 좋은 것으로 판단할 수 있다. 본 발명의 일 구현예에 따른 박강판은 1.9 이상의 r값을 가져 우수한 드로잉성을 나타낸다.
The larger the value of r in the above equation, the greater the depth of the molding cup in the drawing process, and the better the drawability can be judged. The thin steel sheet according to one embodiment of the present invention has an r value of 1.9 or more and exhibits excellent drawability.
일 예에 따르면, 고강도 박강판의 평균 결정립 크기는 5μm 이상일 수 있고, 바람직하게는, 7μm 이상일 수 있다. 여기서, 평균 결정립 크기란 결정립의 평균 원상당 직경(equivalent circular diameter)를 의미한다. 본 발명에서는 결정립 크기가 조대화될수록 성형성 측면에서 유리하기 때문에 가능한 한 조대한 결정립을 확보하는 것이 유리하다. 이를 위해, 성분 제어를 통해 C 함량을 40ppm 이하의 극저탄소강 수준으로 낮추고 탄화물 석출을 최대한 효과적으로 제어하여 소둔시 결정립 성장을 도모한다. 결정립 크기가 조대할수록 결정립계 대비 결정립내 탄화물 석출이 용이하여 가공시 크랙 발생 가능성을 현저히 낮출 수 있기 때문이다. 한편, 평균 결정립 크기가 클수록 성형성 측면에서 유리한 바, 본 발명에서는 평균 결정립 크기의 상한에 대해서는 특별히 한정하지 않으나, 결정립 성장을 위한 860℃이상의 고온 소둔으로 인한 소둔로 내 내화벽돌 손상의 우려가 있다는 측면을 고려할 때 그 상한을 20μm로 한정할 수는 있다.
According to one example, the average grain size of the high-strength thin steel sheet may be 5 탆 or more, and preferably 7 탆 or more. Here, the average grain size means an equivalent circular diameter of the crystal grains. In the present invention, it is advantageous to ensure coarser crystal grains as much as possible as the grain size becomes coarser in terms of moldability. For this purpose, the C content is reduced to an extremely low carbon steel level of 40 ppm or less through component control, and the carbide precipitation is controlled as effectively as possible to achieve crystal growth during annealing. This is because the larger the grain size is, the easier the precipitation of carbide in the crystal grain than the grain boundary system, and the possibility of cracking during processing can be remarkably lowered. On the other hand, the larger the average crystal grain size is, the more advantageous from the moldability standpoint. In the present invention, the upper limit of the average crystal grain size is not particularly limited, but there is a fear of damage to the refractory bricks in the annealing furnace due to high- Considering the side, the upper limit can be limited to 20 탆.
일 예에 따르면, 본 발명의 고강도 박강판은 하기 수학식 1로 정의되는 P가 80% 이상일 수 있으며, 바람직하게는 82% 이상일 수 있다. 상기 비율(P)이 80% 미만일 경우, 즉 결정립계에 다량의 탄화물이 석출될 경우, 가공시 크랙 발생 가능성이 현저히 높아지며, 이로 인해 연성 및 드로잉성이 열화될 우려가 있다. 상기 비율(P)이 높을수록 연성 및 드로잉성 향상에 유리하므로, 본 발명에서는 상기 비율(P)의 상한에 대해서는 특별히 한정하지 않는다. 한편, 여기서 탄화물이란 TiC 단독 탄화물, NbC 단독 탄화물 또는 (Ti,Nb)C 복합 탄화물을 의미한다. According to one example, the high strength steel sheet of the present invention may have a P value of 80% or more, preferably 82% or more, defined by the following formula (1). When the ratio (P) is less than 80%, that is, when a large amount of carbides are precipitated in the grain boundaries, the possibility of occurrence of cracks during machining becomes considerably high, which may deteriorate ductility and drawability. The higher the ratio P is, the better the ductility and the drawability are improved. Therefore, in the present invention, the upper limit of the ratio (P) is not particularly limited. On the other hand, the term "carbide" as used herein means TiC single carbide, NbC single carbide or (Ti, Nb) C complex carbide .
[수학식 1][Equation 1]
Pin(%)={Nin/(Nin+Ngb)} ×100P in (%) = {N in / (N in + N gb )} x 100
(단, Nin는 결정립내에 존재하는 20nm 이하의 원상당 직경을 갖는 탄화물의 개수이며, Ngb는 결정립계에 존재하는 20nm 이하의 원상당 직경을 갖는 탄화물의 개수임)
(Where N in is the number of carbides having a circle equivalent diameter of 20 nm or less and N gb is the number of carbides having a circle equivalent diameter of 20 nm or less present in grain boundaries)
일 예에 따르면, 본 발명 고강도 박강판은 FeTiP 석출물을 단위면적(㎛2) 당 0.2개 이하로 포함할 수 있으며, 바람직하게는 0.1개 이하로 포함할 수 있다. 상기 FeTiP 석출물은 주로 침상으로 석출되어 소둔시 {111} 방위의 발달을 저하시킨다. 상기 FeTiP 석출물이 0.2개/㎛2를 초과하여 형성될 경우, 드로잉성이 열화될 우려가 있다. 한편, 단위면적당 FeTiP 석출물의 개수가 적을수록 드로잉성 향상에 유리하므로, 본 발명에서는 상기 FeTiP 석출물 개수의 하한에 대해서는 특별히 한정하지 않는다.
According to one example, the high strength steel sheet of the present invention may contain 0.2 or less FeTiP precipitates per unit area (탆 2 ), preferably 0.1 Or less. The FeTiP precipitates mainly precipitate in the form of needle, which deteriorates the development of {111} orientation during annealing. If the formation beyond this the precipitate
일 예에 따르면, 본 발명 고강도 박강판은 4MPa 이상, 보다 바람직하게는 10MPa 이상, 보다 더 바람직하게는 15MPa 이상의 소부경화량(BH)을 가져, 우수한 소부경화성을 나타낸다.
According to one example, the high-strength thin steel sheet of the present invention has a strength of 4 MPa or higher, (BH) of 10 MPa or more, and more preferably 15 MPa or more, and exhibits excellent bake hardenability.
일 예에 따르면, 본 발명 고강도 박강판은 0.8mm 이하의 두께를 가지며, 항복강도(YS, MPa) 및 평균 소성이방성 계수(Lankford value, r-value)의 곱이 290MPa 이상의 값을 가져, 외부 물리적인 힘에 대한 저항성을 의미하는 내덴트(dent)성 및 성형성이 매우 우수하여, 자동차 외판용 소재로 바람직하게 적용될 수 있다.
According to one example, the high strength steel sheet of the present invention has a thickness of 0.8 mm or less and has a product of a yield strength (YS, MPa) and an average plastic anisotropy coefficient (Lankford value, r-value) of 290 MPa or more, Dent property and moldability, which means resistance to force, are very excellent and can be preferably applied to a material for an automobile shell plating.
이상에서 설명한 본 발명의 고강도 박강판은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 바람직한 일 예로써, 다음과 같은 방법에 의해 제조될 수 있다.
The high strength steel sheet of the present invention described above can be manufactured by various methods, and the manufacturing method thereof is not particularly limited. However, as a preferable example, it can be produced by the following method.
이하, 본 발명의 다른 일 측면인 성형성이 우수한 고강도 박강판의 제조방법 에 대하여 상세히 설명한다.
Hereinafter, a method of manufacturing a high strength steel sheet excellent in formability, which is another aspect of the present invention, will be described in detail.
먼저, 전술한 성분계를 갖는 강 슬라브를 열간 압연하여 열연강판을 얻는다.First, a hot-rolled steel sheet is obtained by hot-rolling a steel slab having the above-mentioned component system.
일 예에 따르면, 열간압연시 마무리 압연은 오스테나이트 단상역 온도(Ar3 이상의 온도)에서 실시할 수 있다. 만약, 열간 마무리 압연온도가 Ar3 미만일 경우 2상역 압연 가능성이 높아 재질 불균일성이 야기될 우려가 있다. 참고로, Ar3는 아래 식 2로부터 계산할 수 있다.According to one example, the finish rolling during hot rolling can be carried out at austenite single phase reverse temperature (Ar3 or higher temperature). If the hot finish rolling temperature is less than
[식 2][Formula 2]
Ar3(℃) = 910 - 310[C] - 80[Mn] - 20[Cu] - 15[Cr] - 55[Ni] - 80[Mo]15 [Cr] - 55 [Ni] - 80 [Mo] - 20 [Cu] - 15 [
(여기서, [C], [Mn], [Cu], [Cr]. [No]. [Mo] 각각은 해당 원소의 중량%를 의미함)
(Where each of [C], [Mn], [Cu], [Cr]. [No]
다음으로, 열연강판을 권취한다. Next, the hot-rolled steel sheet is wound.
이때, 권취 온도는 450~750℃인 것이 바람직하며, 500~700℃인 것이 보다 바람직하다. 만약, 권취온도가 450℃ 미만일 경우 FeTiP 석출물이 다량 석출되어 드로잉성이 저하되고, 판 형상 뒤틀림이 발생할 우려가 있으며, 반면, 750℃를 초과할 경우, 석출물 조대화와 더불어 소둔 중 고용 탄소의 재용해가 어려워 소부경화량(BH)이 열화될 우려가 있다.
At this time, the coiling temperature is preferably 450 to 750 占 폚, more preferably 500 to 700 占 폚. If the coiling temperature is less than 450 ° C, a large amount of FeTiP precipitates may be precipitated to lower the drawability and the plate warping may occur. On the other hand, when the coiling temperature exceeds 750 ° C, There is a possibility that the hardening amount BH of the hardening is deteriorated.
일 예에 따르면, 열간 마무리 압연온도로부터 권취온도까지의 평균 냉각속도는 10~200℃/sec일 수 있다. 만약, 평균 냉각속도가 10℃/sec 미만일 경우, 페라이트 결정립이 불균일하게 성장하고, FeTiP 석출물이 형성되어 본 발명에서 목적하는 성형성 확보가 어려우며, 반면, 200℃/sec를 초과할 경우, 과도한 냉각으로 인해 열연강판의 온도가 불균일해져 열연강판의 형상이 불량해질 수 있다.
According to one example, the average cooling rate from the hot finish rolling temperature to the coiling temperature may be 10-200 占 폚 / sec. If the average cooling rate is less than 10 ° C / sec, the ferrite grains grow unevenly and FeTiP precipitates are formed, which makes it difficult to secure the desired formability of the present invention. On the other hand, when the cooling rate exceeds 200 ° C / The temperature of the hot-rolled steel sheet may become uneven and the shape of the hot-rolled steel sheet may become poor.
다음으로, 권취된 열연강판을 냉간 압연하여 냉연강판을 얻는다. Next, the rolled hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet.
이때, 냉간 압하율은 75% 이상인 것이 바람직하다. 만약, 냉간 압하율이 75% 미만인 경우 감마(γ)-파이버 집합조직이 충분히 성장하지 않아 드로잉성이 열위해지는 문제가 있다. 한편, 냉간 압하율이 높을수록 감마(γ)-파이버 집합조직 성장에 유리하므로 본 발명에서는 냉간 압하율의 상한에 대해서는 특별히 한정하지 않으나, 냉간 압하율이 지나치게 높을 경우 압연시 롤 부하가 심해져 강판의 형상이 불량해질 수 있는 바, 이를 고려할 때 그 상한을 85%로 한정할 수는 있다.
At this time, the cold rolling reduction rate is preferably 75% or more. If the cold rolling reduction is less than 75%, there is a problem that the gamma (γ) -fiber aggregate structure does not sufficiently grow and the drawability becomes poor. On the other hand, the upper limit of the cold rolling reduction rate is not particularly limited in the present invention because the higher the cold rolling reduction rate is, the more favorable the gamma (?) - fiber aggregate texture growth. However, if the cold rolling reduction rate is too high, The shape may become poor, and when this is considered, the upper limit may be limited to 85%.
다음으로, 냉연강판을 연속 소둔한다. Next, the cold-rolled steel sheet is continuously annealed.
이때, 소둔 온도(T)는 830~880℃인 것이 바람직하고, 840~870℃인 것이 보다 바람직하다. 만약, 소둔 온도(T)가 830℃ 미만인 경우 가공성에 유리한 감마(γ)-파이버 집합조직이 충분히 성장하지 못해 드로잉성이 열위해질 우려가 있고, 소둔 중 석출물이 재용해되지 않아 소부경화량(BH)이 열화될 우려가 있다. 반면, 소둔 온도(T)가 880℃를 초과하는 경우 가공성에는 유리할 수 있으나, 결정립 크기 편차로 인해 강판 형상이 불량해지고, 소둔 가열로 설비에 문제가 발생할 우려가 있다.
At this time, the annealing temperature (T) is preferably 830 to 880 ° C, and more preferably 840 to 870 ° C. If the annealing temperature (T) is less than 830 占 폚, the gamma (?) - fiber aggregate structure which is advantageous for workability may not grow sufficiently and the drawability may be weakened. The precipitate during annealing may not be redissolved, ) May be deteriorated. On the other hand, if the annealing temperature (T) exceeds 880 DEG C, it may be advantageous in workability, but the shape of the steel sheet becomes poor due to grain size deviation, and there is a possibility of causing a problem in the annealing heating furnace.
한편, 소둔 시간(t), 즉 소둔 온도에서의 유지 시간은 30~80sec인 것이 바람직하고, 40~70sec인 것이 보다 바람직하다. 감마(γ)-파이버 집합조직을 충분히 발달시킨 후, 소둔 시간을 충분히 확보할 경우, 일부 탄화물이 고용 탄소로 재용해되는데, 이러한 고용 탄소가 존재하는 상태에서 냉각을 하게 되면, 박강판에 고용 탄소가 적정 수준으로 잔존하여 우수한 소부경화량(BH)을 나타내게 된다. 만약, 소둔 시간(t)이 30sec 미만일 경우 재용해 시간의 부족으로 박강판 내 고용 탄소가 잔존하지 않거나 충분치 않아 소부경화량(BH)이 열위하게 나타나며, 반면, 80sec를 초과할 경우 과잉의 유지 시간으로 인해 결정립이 조대화되고, 결정립 크기 편차 발생으로 강판 형상이 불량해지며, 경제성 측면에서도 불리하다.
On the other hand, the annealing time (t), that is, the holding time at the annealing temperature is preferably 30 to 80 sec, more preferably 40 to 70 sec. When the annealing time is sufficiently secured after sufficiently developing the gamma (?) - fiber aggregate structure, some carbides are reused as the solid carbon. When cooling is performed in the state where such solid carbon exists, (BH) of the cured product. If the annealing time t is less than 30 sec, the amount of the cured carbon in the thin steel sheet does not remain or is insufficient due to the shortage of the redissolving time. On the other hand, if the annealing time t exceeds 80 sec, The crystal grains are coarsened and the crystal grain size deviation causes the steel sheet to be inferior in shape, which is disadvantageous in terms of economy.
일 예에 따르면, 연속 소둔시, 소둔 온도(T,℃) 및 소둔 시간(t,sec)은 하기 관계식 2를 만족할 수 있다. 만약, 0.001*T*t 값이 30 미만일 경우 드로잉성 및 소부경화성이 열화될 수 있으며, 반면, 0.001*T*t 값이 70을 초과할 경우 결정립 조대화 및 결정립 크기 편차 발생으로 강판 형상이 불량해질 수 있다.According to one example, at the time of continuous annealing, the annealing temperature (T, 占 폚) and the annealing time (t, sec) can satisfy the following relational expression (2). If the value of 0.001 * T * t is less than 30, drawability and sintering hardenability may deteriorate. On the other hand, when the value of 0.001 * T * t exceeds 70, crystal grain coarsening and grain size deviation occur, .
[관계식 2] 30≤0.001*T*t≤70
[Relation 2] 30? 0.001 * T * t? 70
한편, 연속 소둔시, 재결정 개시 온도+20℃로부터 소둔 온도까지의 평균 승온 속도는 5℃/sec 이하인 것이 바람직하고, 4.5℃/sec 이하인 것이 보다 바람직하며, 3.8℃/sec 이하인 것이 보다 바람직하다. 여기서, 재결정 개시 온도는 냉간압연에 의해 길게 연신된 압연 조직이 소둔하는 과정에서 새로운 재결정립이 형성되기 시작하는 온도로 정의하며, 보다 구체적으로는 전체 결정립 중 새로운 재결정립의 면적분율이 50%를 차지하는 시점의 온도로 정의한다. 재결정이 시작되는 초기 단계에서는 새로운 결정립의 핵생성 및 성장이 동반되게 되는데, 이 단계에서의 승온 속도가 낮을수록 가공성에 유리한 {111} 집합조직의 핵생성이 증가하게 되며, 결과적으로 높은 r값을 확보할 수 있게 된다. 만약, 상기 온도 범위에서의 승온 속도가 5℃/sec를 초과하게 되면 재결정시 {111} 집합조직의 핵생성도 충분치 않고, 결정립도 미세화되어 본 발명에서 요구하는 본 발명에서 요구하는 가공성이 충분히 확보되지 못할 우려가 있다. 한편, 상기 온도 범위에서의 승온 속도가 느릴수록 가공성에 유리한 {111} 집합 조직의 핵생성 및 핵성장이 유리하므로 본 발명에서는 그 하한값에 대해서는 특별히 한정하지 않는다.
On the other hand, at the time of continuous annealing, the average heating rate from the recrystallization starting temperature + 20 占 폚 to the annealing temperature is preferably 5 占 폚 / sec or less, more preferably 4.5 占 폚 / sec or less and still more preferably 3.8 占 폚 / sec or less. Here, the recrystallization starting temperature is defined as a temperature at which a new recrystallized grain begins to be formed in the process of annealing a rolled structure elongated by cold rolling. More specifically, the area fraction of new recrystallized grains in the entire grain is 50% Is defined as the temperature at the point of occupancy. In the initial stage of recrystallization, nucleation and growth of new crystal grains are accompanied. The lower the rate of temperature rise at this stage, the more nucleation of {111} . If the rate of temperature rise in the above-mentioned temperature range exceeds 5 DEG C / sec, nucleation of the {111} texture is not sufficient at the time of recrystallization, and the crystal grains are refined to sufficiently secure the workability required in the present invention There is a fear of not being able to do. On the other hand, the slower the rate of temperature rise in the above-mentioned temperature range, the more advantageous nucleation and nucleation of the {111} texture that is advantageous to the workability is not particularly limited in the present invention.
다음으로, 연속 소둔된 냉연강판을 650℃ 이하의 온도까지 냉각한다.Next, the cold-rolled steel sheet subjected to the continuous annealing is cooled to a temperature of 650 DEG C or lower.
이때, 평균 냉각 속도는 2~10℃/sec인 것이 바람직하고, 3~8℃/sec인 것이 보다 바람직하다. 만약, 평균 냉각 속도가 2℃/sec 미만인 경우에는 소둔 중 재용해된 고용 탄소가 탄화물로 재석출되어 소부경화성이 열화될 우려가 있으며, 반면, 10℃/sec를 초과할 경우 판형상의 뒤틀림이 발생할 우려가 있다. 한편, 650℃는 탄화물의 석출 및 확산이 대부분 완료되는 온도로써, 그 이후의 냉각 조건에 대해서는 특별히 한정하지 않는다.
At this time, the average cooling rate is preferably 2 to 10 ° C / sec, more preferably 3 to 8 ° C / sec. If the average cooling rate is less than 2 캜 / sec, there is a fear that the dissolved carbon that is redissolved during the annealing will be re-precipitated as carbide and the hardening property of the hardening may be deteriorated. On the other hand, There is a concern. On the other hand, 650 ° C is the temperature at which most of the carbide precipitation and diffusion is completed, and the cooling conditions thereafter are not particularly limited.
다음으로, 냉각된 냉연강판을 조질압연하여 고강도 박강판을 얻는다.Next, the cooled cold-rolled steel sheet is temper rolled to obtain a high-strength thin-rolled steel sheet.
이때, 조질 압하율은 0.3~1.6%인 것이 바람직하다. 조질압연은 강의 항복강도를 증가시키고, 압연 중 도입된 다량의 가동 전위에 의해 내시효성을 증가시키며, 고용 탄소와 전위와의 상호작용에 의해 소부경화성을 증가시킨다. 만약, 조질 압하율이 0.3% 미만인 경우에는 판 형상제어에 불리할 뿐 아니라, 가동 전위가 충분히 확보되지 못해 스트레치 스트레인 결함이 발생할 가능성이 높으며, 반면, 1.6%를 초과하는 경우 고객사 부품 성형시 크랙 발생 가능성이 높아질 뿐 아니라, 성형성 지수인 r값으로 감소하는 경향이 나타나게 된다.
At this time, the rough reduction ratio is preferably 0.3 to 1.6%. The temper rolling increases the yield strength of the steel, increases the endurance by a large amount of the mobilized potential introduced during rolling, and increases the hardening of the sinter by the interaction of the solid carbon with the dislocations. If the rough reduction ratio is less than 0.3%, it is not only disadvantageous to the plate shape control but also a possibility that a stretch strain defect is likely to occur because the movable potential is not secured sufficiently. On the other hand, when the reduction ratio is more than 1.6% Not only the possibility increases but also the tendency to decrease to the r-value which is the formability index.
다음으로, 필요에 따라, 고강도 박강판의 표면에 용융 아연 도금을 실시하여 용융 아연 도금강판을 얻거나, 용융 아연 도금 실시 후 합금화 열처리하여 합금화 용융 아연 도금강판을 얻을 수 있다. 이때, 합금화 열처리 온도는 450~600℃인 것이 바람직하다. 만약, 합금화 열처리 온도가 450℃ 미만인 경우에는 합금화가 충분치 않으며, 희생 방식 작용의 저하나 도금 밀착성 저하를 유발할 수 있으며, 반면, 600℃를 초과하는 경우에는 합금화가 과도하게 진행되어 파우더링성의 저하를 유발할 수 있다. 한편, 합금화 열처리 후 도금층 중 Fe 농도는 8~12중량%인 것이 바람직하다.
Next, a hot-dip galvanized steel sheet may be obtained by performing hot-dip galvanizing on the surface of the high-strength steel sheet, if necessary, or subjected to alloying heat treatment after hot-dip galvanizing, to obtain an alloyed hot-dip galvanized steel sheet. At this time, the alloying heat treatment temperature is preferably 450 to 600 ° C. If the alloying heat treatment temperature is less than 450 ° C, alloying is not sufficient, which may result in a sacrificial action or deterioration of the plating adhesion. On the other hand, when the temperature exceeds 600 ° C, alloying becomes excessive and degradation of powdering property . On the other hand, the Fe concentration in the plating layer after the alloying heat treatment is preferably 8 to 12 wt%.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only illustrative of the present invention in more detail and do not limit the scope of the present invention.
(( 실시예Example ))
하기 표 1의 합금조성을 갖는 강 슬라브(두께 220mm)를 1200℃로 가열하고, 열간압연하여 열연강판(두께 3.2mm)을 제조하였다. 이때, 마무리 압연온도는 Ar3 직상인 약 930℃로 동일하게 하였다. 이후, 하기 표 2의 조건으로 열연강판을 권취, 냉간압연, 연속 소둔, 냉각 및 조질압연하여 박강판을 제조하였다.
A steel slab (220 mm in thickness) having the alloy composition shown in the following Table 1 was heated to 1200 캜 and hot-rolled to produce a hot-rolled steel sheet (thickness 3.2 mm). At this time, the finish rolling temperature was set at about 930 DEG C, which is a straight line of Ar3. Thereafter, hot rolled steel sheets were rolled, cold rolled, continuous annealed, cooled and temper rolled under the conditions shown in Table 2 below to produce thin steel sheets.
이후, 제조된 각각의 박강판에 대하여 석출물 개수 및 분포, 집합조직 등을 관찰 및 측정하였으며, 그 결과를 하기 표 3에 나타내었다. 보다 구체적으로, 탄화물의 개수비 및 FeTiP 석출물 개수는 TEM을 이용하여 replica 로 석출물을 관찰한 후, 단위 길이(μm) 당 석출물 개수를 5군데 세어 그 평균값으로 계산하였으며, 집합조직은 강판의 1/4t 지점에서의 R(Rolling), T(Transverse), N(Vertical)의 조건에서 ND 방향 결정방위도를 기준으로 EBSD를 이용하여 각 방위별 강도비(ODF 이용)를 계산 및 분석하였다. 한편, 도 1은 발명예 1의 집합조직의 발달 정도를 분석한 그래프이며, 모든 발명예들은 모두 발명예 1과 유사한 경향을 보였다.
Then, the number and distribution of precipitates and the texture of aggregates were observed and measured for each of the manufactured steel sheets, and the results are shown in Table 3 below. More specifically, the ratio of the number of carbides and the number of FeTiP precipitates were determined by counting the number of precipitates per unit length (μm) after observing the precipitates in the replica using a TEM, and calculating the average value of the number of precipitates per unit length (μm) The intensity ratio (ODF utilization) of each bearing was calculated and analyzed using EBSD based on ND direction decision bearing under the conditions of R (Rolling), T (Transverse) and N (Vertical) at 4t point. Meanwhile, FIG. 1 is a graph analyzing the degree of development of the collective organization of Inventive Example 1, and all of the inventive inventions have a tendency similar to Inventive Example 1.
이후, 제조된 각각의 박강판에 대하여 r값 및 소부경화량(BH)을 측정하였다. JIS 5호 규격에 의거하여 시험편을 채취하였으며, r값은 ASTM STD 시편을 이용하여 측정하였고, 소부경화량은 2% pre-strain 한 후 항복강도 값과 이 시편을 다시 170℃에서 20분 동안 유지한 후의 항복강도 값의 차이로 평가하였다.
Then, the r value and the bake hardening amount (BH) were measured for each of the manufactured steel sheets. The r value was measured using ASTM STD specimen, and the hardening amount was 2% pre-strain and then the yield strength value and the specimen were held again at 170 ° C. for 20 minutes The difference in yield strength values was evaluated by the difference.
(℃/s)Average cooling rate
(° C / s)
(℃/sec)Heating rate
(° C / sec)
(℃)Temperature
(° C)
(s)time
(s)
(℃/sec)Cooling rate
(° C / sec)
(%)Reduction rate
(%)
(개/μm2)Number of FeTiP precipitates
(Pieces / μm 2 )
강도비
(b/a)* random
Intensity ratio
(b / a) *
표 3을 참조할 때, 본 발명에 제안하는 합금조성과 제조조건을 만족하는 발명예 1 내지 7의 경우 단위 면적 당 FeTiP 석출물 개수, 페라이트 결정립 내 존재하는 20nm 이하의 크기를 갖는 탄화물의 비율 및 평균 랜덤 강도비(b/a) 모두 본 발명이 제어하는 범위를 만족하며, 기본적으로 r-value는 1.9 이상 확보가능하며 (항복강도*r값)의 값도 290MPa 이상 확보가능할 뿐만 아니라 BH성도 4 MPa 이상 확보하고 있음을 알 수 있다.
When referring to Table 3, the ratio and the average of the alloy composition and the carbides having a size of less than 20nm for the case of Examples 1 to 7 satisfying the production conditions units FeTiP precipitate the number per unit area, present in the ferrite grain, offering to the invention The r-value can be secured to 1.9 or more (the yield strength * r value) can be secured not less than 290 MPa, and the BH hardness can be secured to 4 MPa Or more.
그러나, 비교예 1 내지 7의 경우에는 합금조성은 본 발명에서 제안하는 범위를 만족하나, 제조조건 중 어느 하나 이상이 본 발명에서 제안하는 범위를 만족하지 않아, 드로잉성 및 소부경화성이 열위하게 나타났다. 또한, 비교예 8 내지 11의 경우 합금조성이 본 발명에서 제안하는 범위를 만족하지 않아 드로잉성 및 소부경화성이 열위하게 나타났다.However, in the case of Comparative Examples 1 to 7, the alloy composition satisfies the range suggested in the present invention, but at least one of the manufacturing conditions does not satisfy the range suggested by the present invention, and the drawability and the hardening of the hardening are poor . In addition, in the case of Comparative Examples 8 to 11, the alloy composition did not satisfy the range suggested by the present invention, so that the drawability and the hardenability of the hardening were poor.
Claims (12)
상기 Ti, N 및 S의 함량은 하기 관계식 1을 만족하며,
판두께 방향으로 t/4(t: 박강판의 두께) 지점에서 (001)[1-10]~(110)[1-10] 방위군의 평균 랜덤 강도비(a)에 대한 (111)[1-10]~(111)[-1-12] 방위군의 평균 랜덤 강도비(b)의 비(b/a)가 2.3 이상이고, 소부경화량(BH)이 4MPa 이상이며,
0.2개/μm2 이하의 FeTiP 석출물을 포함하는 고강도 박강판.
[관계식 1] -0.02≤[Ti]-(24/7)[N]-(3/2)[S]≤0.025
(여기서, [Ti], [N] 및 [S] 각각은 해당 원소의 함량(중량%)을 의미함)
0.001 to 0.004% of C, 0.5% or less of Si (excluding 0%), 1.2% or less of Mn (excluding 0%), P of 0.005 to 0.12% , 0.1% or less (excluding 0%) of Al-soluble Al, 0.01-0.04% of Ti, the balance Fe and unavoidable impurities,
The content of Ti, N and S satisfies the following relational expression 1,
(111) [1] to the average random intensity ratio (a) of the (001) 1-10 1-10 (1-10) bearing group at the point of t / 4 (B / a) of the average random intensity ratio (b / a) of the curable resin (C) -10 to the (111)
A high strength thin steel sheet containing FeTiP precipitates of 0.2 / μm 2 or less.
[Relation 1] -0.02? [Ti] - (24/7) [N] - (3/2) [S]? 0.025
(Where each of [Ti], [N] and [S] means the content (weight%) of the corresponding element)
중량%로, Nb: 0.005~0.04% 및 B: 0.002% 이하(0% 제외)로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 박강판.
The method according to claim 1,
0.005 to 0.04% of Nb, and 0.002% or less of B (exclusive of 0%) in terms of% by weight.
하기 수학식 1로 정의되는 P가 80% 이상인 고강도 박강판.
[수학식 1] Pin(%)={Nin/(Nin+Ngb)} ×100
(단, Nin는 결정립내에 존재하는 20nm 이하의 원상당 직경을 갖는 탄화물의 개수이며, Ngb는 결정립계에 존재하는 20nm 이하의 원상당 직경을 갖는 탄화물의 개수임)
The method according to claim 1,
A high strength thin steel sheet having P of 80% or more as defined by the following formula (1).
P in (%) = {N in / (N in + N gb )} x 100
(Where N in is the number of carbides having a circle equivalent diameter of 20 nm or less and N gb is the number of carbides having a circle equivalent diameter of 20 nm or less present in grain boundaries)
항복강도(Yield Strength, YS) 및 평균 소성이방성 계수(Lankford value, r-value)의 곱이 290MPa 이상인 고강도 박강판.
The method according to claim 1,
A high-strength thin steel plate having a Yield Strength (YS) and an Average Plastic Anisotropy Coefficient (Lankford value, r-value) of 290 MPa or more.
상기 열연강판을 450~750℃의 온도에서 권취하는 단계;
상기 권취된 열연강판을 75% 이상의 압하율로 냉간압연하여 냉연강판을 얻는 단계;
상기 냉연강판을 830~880℃의 소둔 온도까지 승온한 후, 상기 소둔 온도에서 30~80sec의 소둔 시간 동안 유지하여 연속 소둔하는 단계;
상기 연속 소둔된 냉연강판을 650℃ 이하의 온도까지 2~10℃/sec의 속도로 냉각하는 단계;
상기 냉각된 냉연강판을 도금하지 않은 상태에서 0.3~1.6%의 압하율로 조질압연하는 단계;를 포함하고,
상기 냉연강판의 승온시, (재결정 개시 온도+20)℃부터 소둔 온도까지의 평균 승온 속도가 5℃/sec 이하인 것을 특징으로 하는 고강도 박강판의 제조방법.
0.001 to 0.004% of C, 0.5% or less of Si (excluding 0%), 1.2% or less of Mn (excluding 0%), P of 0.005 to 0.12% Hot-rolling a steel slab containing 0.1% or less of an acid soluble Al (exclusive of 0%), 0.01-0.04% of Ti, the balance Fe and unavoidable impurities to obtain a hot-rolled steel sheet;
Winding the hot-rolled steel sheet at a temperature of 450 to 750 ° C;
Cold rolling the rolled hot-rolled steel sheet at a reduction ratio of 75% or more to obtain a cold-rolled steel sheet;
Heating the cold-rolled steel sheet to an annealing temperature of 830 to 880 캜, and continuing annealing at the annealing temperature for an annealing time of 30 to 80 seconds;
Cooling the continuously annealed cold rolled steel sheet to a temperature of 650 ° C or lower at a rate of 2 to 10 ° C / sec;
And subjecting the cooled cold-rolled steel sheet to rough rolling at a reduction ratio of 0.3 to 1.6% without plating,
Wherein the average heating rate from the (recrystallization starting temperature + 20) ° C to the annealing temperature is 5 ° C / sec or less at the time of increasing the temperature of the cold-rolled steel sheet.
중량%로, Nb: 0.005~0.04% 및 B: 0.002% 이하(0% 제외)로 이루어진 군으로부터 선택된 1종 이상을 더 포함하는 고강도 박강판의 제조방법.
The method according to claim 6,
By weight, at least one selected from the group consisting of Nb: 0.005 to 0.04% and B: 0.002% or less (excluding 0%).
상기 열간압연시, 마무리 압연온도는 Ar3℃ 이상인 고강도 박강판의 제조방법.
The method according to claim 6,
Wherein the finish rolling temperature during the hot rolling is Ar 3 ° C or higher.
상기 마무리 압연온도로부터 상기 권취온도까지의 평균 냉각속도는 10~200℃/sec인 것을 특징으로 하는 고강도 박강판의 제조방법.
9. The method of claim 8,
And the average cooling rate from the finish rolling temperature to the coiling temperature is 10-200 占 폚 / sec.
상기 연속 소둔시, 소둔 온도(T,℃) 및 소둔 시간(t,sec)은 하기 관계식 2를 만족하는 것을 특징으로 하는 고강도 박강판의 제조방법.
[관계식 2] 30≤0.001*T*t≤60
The method according to claim 6,
Wherein the annealing temperature (T, 占 폚) and the annealing time (t, sec) at the time of the continuous annealing satisfy the following relational expression (2).
[Relation 2] 30? 0.001 * T * t? 60
상기 조질압연된 냉연강판의 표면에 용융 아연 도금하는 단계를 더 포함하는 고강도 박강판의 제조방법.
The method according to claim 6,
Further comprising a step of hot-dip galvanizing the surface of the rough-rolled cold-rolled steel sheet.
상기 용융 아연 도금 후, 450~600℃에서 합금화 열처리 하는 단계를 더 포함하는 고강도 박강판의 제조방법.12. The method of claim 11,
Further comprising the step of performing an alloying heat treatment at 450 to 600 占 폚 after the hot dip galvanizing.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160102946A KR101819358B1 (en) | 2016-08-12 | 2016-08-12 | High-strength thin steel sheet having excellent formability and method for manufacturing the same |
PCT/KR2017/008435 WO2018030715A1 (en) | 2016-08-12 | 2017-08-04 | High strength steel sheet having excellent formability and manufacturing method thereof |
JP2019506715A JP6893973B2 (en) | 2016-08-12 | 2017-08-04 | High-strength thin steel sheet with excellent formability and its manufacturing method |
EP17839733.7A EP3498877B1 (en) | 2016-08-12 | 2017-08-04 | High strength steel sheet having excellent formability and manufacturing method thereof |
US16/324,290 US11421294B2 (en) | 2016-08-12 | 2017-08-04 | High strength steel sheet having excellent formability and manufacturing method thereof |
CN201780046048.8A CN109477183A (en) | 2016-08-12 | 2017-08-04 | The excellent high-strength steel sheet of mouldability and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160102946A KR101819358B1 (en) | 2016-08-12 | 2016-08-12 | High-strength thin steel sheet having excellent formability and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101819358B1 true KR101819358B1 (en) | 2018-01-17 |
Family
ID=61026174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160102946A KR101819358B1 (en) | 2016-08-12 | 2016-08-12 | High-strength thin steel sheet having excellent formability and method for manufacturing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US11421294B2 (en) |
EP (1) | EP3498877B1 (en) |
JP (1) | JP6893973B2 (en) |
KR (1) | KR101819358B1 (en) |
CN (1) | CN109477183A (en) |
WO (1) | WO2018030715A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210078912A (en) * | 2019-12-19 | 2021-06-29 | 주식회사 포스코 | Steel sheet having excellent surface properties for panel of vehicle and method manufacturing the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102276818B1 (en) * | 2018-04-02 | 2021-07-15 | 닛폰세이테츠 가부시키가이샤 | A metal plate, a manufacturing method of a metal plate, a manufacturing method of a molded article of a metal plate, and a molded article of a metal plate |
TWI751002B (en) * | 2021-01-20 | 2021-12-21 | 中國鋼鐵股份有限公司 | Hot dip galvanized steel material with high formability and method of manufacturing the same |
CN113817962A (en) * | 2021-08-26 | 2021-12-21 | 包头钢铁(集团)有限责任公司 | Galvanized high-strength IF steel strip for connecting plate of edge beam of automobile wheel cover and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611695B1 (en) | 2013-12-20 | 2016-04-14 | 주식회사 포스코 | High-strength thin steel sheet having excellent drawability and method for manufacturing the same |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61276931A (en) * | 1985-05-31 | 1986-12-06 | Kawasaki Steel Corp | Production of cold rolled steel sheet having extra-deep drawing having baking hardenability |
JPH0734923B2 (en) * | 1985-05-31 | 1995-04-19 | 川崎製鉄株式会社 | Method for manufacturing cold-rolled steel sheet having uniform BH property in the width direction |
ES2114932T3 (en) * | 1991-02-20 | 1998-06-16 | Nippon Steel Corp | COLD ROLLED STEEL PLATE AND GALVANIZED COLD ROLLED STEEL PLATE THAT ARE EXCELLENT TO BE MOLDED AND TO BE HARDENED BY COOKING, AND THEIR PRODUCTION. |
JP2828793B2 (en) | 1991-03-08 | 1998-11-25 | 川崎製鉄株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability, chemical conversion property, secondary work brittleness resistance and spot weldability, and method for producing the same |
JPH0570836A (en) | 1991-09-17 | 1993-03-23 | Sumitomo Metal Ind Ltd | Manufacture of high strength cold rolled steel sheet for deep drawing |
JP2503338B2 (en) | 1991-12-24 | 1996-06-05 | 新日本製鐵株式会社 | Good workability and high strength cold rolled steel sheet with excellent fatigue strength of spot welds |
JPH05239554A (en) * | 1992-02-28 | 1993-09-17 | Kobe Steel Ltd | Production of cold rolled steel sheet for extra deep drawing having baking hardenability |
JPH06116651A (en) | 1992-10-02 | 1994-04-26 | Nippon Steel Corp | Production of cold rolled steel sheet or hot dip galvanized cold rolled steel sheet excellent in formability and baking hardenability |
JP3002379B2 (en) * | 1994-04-08 | 2000-01-24 | 新日本製鐵株式会社 | Manufacturing method of high-strength cold-rolled galvannealed steel sheets for automobiles with excellent formability, paint bake hardenability and little change in paint bake hardenability |
JP3773604B2 (en) | 1996-09-20 | 2006-05-10 | 日新製鋼株式会社 | High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same |
JP3674502B2 (en) * | 2000-11-30 | 2005-07-20 | Jfeスチール株式会社 | Bake-hardening cold-rolled steel sheet and method for producing the same |
JP4126694B2 (en) * | 2002-09-06 | 2008-07-30 | 日新製鋼株式会社 | Steel plate and fuel-welded steel pipe for fuel supply pipes with excellent corrosion resistance |
JP4189194B2 (en) | 2002-10-08 | 2008-12-03 | 新日本製鐵株式会社 | Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof |
KR101129944B1 (en) | 2009-02-25 | 2012-03-23 | 현대제철 주식회사 | Bake-Hardenable Steel Sheet and Method for Manufacturing the Same |
JP5477198B2 (en) | 2010-06-29 | 2014-04-23 | 新日鐵住金株式会社 | Cold rolled steel sheet and method for producing the same |
JP2013064169A (en) | 2011-09-15 | 2013-04-11 | Jfe Steel Corp | High-strength steel sheet and plated steel sheet excellent in bake-hardenability and formability, and method for production thereof |
KR101424863B1 (en) | 2012-03-29 | 2014-08-01 | 현대제철 주식회사 | Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet |
JP5978838B2 (en) | 2012-07-31 | 2016-08-24 | 新日鐵住金株式会社 | Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof |
US20150252456A1 (en) * | 2012-10-11 | 2015-09-10 | Jfe Steel Corporation | Cold-rolled steel sheet with excellent shape fixability and method of manufacturing the same |
JP6225604B2 (en) * | 2013-09-25 | 2017-11-08 | 新日鐵住金株式会社 | 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same |
KR101657793B1 (en) | 2014-12-11 | 2016-09-20 | 주식회사 포스코 | Bake hardening steel sheet having excellent drawability and method for manufacturing thereof |
-
2016
- 2016-08-12 KR KR1020160102946A patent/KR101819358B1/en active IP Right Grant
-
2017
- 2017-08-04 JP JP2019506715A patent/JP6893973B2/en active Active
- 2017-08-04 EP EP17839733.7A patent/EP3498877B1/en active Active
- 2017-08-04 US US16/324,290 patent/US11421294B2/en active Active
- 2017-08-04 CN CN201780046048.8A patent/CN109477183A/en active Pending
- 2017-08-04 WO PCT/KR2017/008435 patent/WO2018030715A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101611695B1 (en) | 2013-12-20 | 2016-04-14 | 주식회사 포스코 | High-strength thin steel sheet having excellent drawability and method for manufacturing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210078912A (en) * | 2019-12-19 | 2021-06-29 | 주식회사 포스코 | Steel sheet having excellent surface properties for panel of vehicle and method manufacturing the same |
KR102312512B1 (en) * | 2019-12-19 | 2021-10-14 | 주식회사 포스코 | Steel sheet having excellent surface properties for panel of vehicle and method manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP3498877B1 (en) | 2024-06-19 |
US20200399729A1 (en) | 2020-12-24 |
US11421294B2 (en) | 2022-08-23 |
EP3498877A4 (en) | 2019-06-19 |
EP3498877C0 (en) | 2024-06-19 |
JP2019527775A (en) | 2019-10-03 |
WO2018030715A1 (en) | 2018-02-15 |
EP3498877A1 (en) | 2019-06-19 |
JP6893973B2 (en) | 2021-06-23 |
CN109477183A (en) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100742953B1 (en) | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same | |
KR101819358B1 (en) | High-strength thin steel sheet having excellent formability and method for manufacturing the same | |
KR101220619B1 (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet and method for manufacturing thereof | |
KR20210080158A (en) | Steel material for hot press forming, hot pressed member and manufacturing method theerof | |
KR101153485B1 (en) | High-strength colled rolled steel sheet having excellent deep-drawability and yield ratio, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof | |
KR102178728B1 (en) | Steel sheet having excellent strength and ductility, and method for manufacturing the same | |
KR101758557B1 (en) | High-strength thin steel sheet having excellent drawability and bake hardenability and method for manufacturing the same | |
KR101228753B1 (en) | Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same | |
KR101726139B1 (en) | Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same | |
KR102485003B1 (en) | High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same | |
KR102164088B1 (en) | High strength cold rolled steel sheet having excellent burring property and manufacturing method for the same | |
KR102276740B1 (en) | High strength steel sheet having excellent ductility and workability, and method for manufacturing the same | |
KR101428375B1 (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof | |
KR101143139B1 (en) | Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets | |
KR102556444B1 (en) | Cold rolled steel sheet having excellent dent resistance property, galvanized steel sheet, and method of manufacturing the same | |
KR102468036B1 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same | |
KR20120063196A (en) | Ultra high strength cold rolled steel sheet, galvanized steel sheet having excellent surface property and method for manufacturing thereof | |
KR102209569B1 (en) | High strength and ductility steel sheet, and method for manufacturing the same | |
KR102020406B1 (en) | High-strength steel sheet having excellent yield strength and formability, and method for manufacturing thereof | |
KR20240106710A (en) | High Strength cold rolled steel sheet having excellent dent resistance property and method of manufacturing the same | |
KR20240057522A (en) | Steel sheet having excellent bendability and manufacturing method thereof | |
KR20090061143A (en) | Hot-dip galvanized steel plate with excellent burring workability and manufacturing method thereof | |
KR20160078807A (en) | Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |