Nothing Special   »   [go: up one dir, main page]

KR101494289B1 - Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite - Google Patents

Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite Download PDF

Info

Publication number
KR101494289B1
KR101494289B1 KR20140108421A KR20140108421A KR101494289B1 KR 101494289 B1 KR101494289 B1 KR 101494289B1 KR 20140108421 A KR20140108421 A KR 20140108421A KR 20140108421 A KR20140108421 A KR 20140108421A KR 101494289 B1 KR101494289 B1 KR 101494289B1
Authority
KR
South Korea
Prior art keywords
sulfonated
polymer
membrane
porous support
oxide
Prior art date
Application number
KR20140108421A
Other languages
Korean (ko)
Inventor
정호영
조민선
김민우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR20140108421A priority Critical patent/KR101494289B1/en
Application granted granted Critical
Publication of KR101494289B1 publication Critical patent/KR101494289B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a polymer electrolyte and, more specifically, to a polymer electrolyte porous composite membrane with improved ion transfer and permeability characteristics by including nanoporous inorganic particles, to a method for producing the porous composite membrane, and to an energy storage device including the porous composite membrane. The polymer electrolyte porous composite membrane includes a porous support membrane; an immersion layer formed to cover the porous support membrane; and a coating layer formed on the immersion layer.

Description

고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치{Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite}TECHNICAL FIELD [0001] The present invention relates to a polymer electrolyte composite, a method for producing the porous composite membrane, and an energy storage device including the porous composite membrane.

본 발명은 고분자전해질에 대한 것으로, 보다 구체적으로는 나노포러스 무기입자를 포함하여 이온전달 및 투과도 특성이 향상된 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치에 대한 것이다.
The present invention relates to a polymer electrolyte, and more particularly, to a polymer electrolyte porous composite membrane including nanoporous inorganic particles having enhanced ion transmission and permeability, a method for producing the porous composite membrane, and an energy storage device including the porous composite membrane It is about.

레독스 흐름 전지(Redox Flow Battery, RFB)는 환원(Reduction), 산화(Oxidation), 흐름(Flow)을 합성한 용어로, 가수(假數)가 변하는 금속 이온이 용해된 수용성 전해액을 단위셀에 통과시키면서 충전과 방전을 진행하는 전기화학시스템이다. RFB의 기본 구조는 전해액을 저장하는 탱크와 전해액을 순환시키는 펌프, 양극과 음극 및 두 전극 사이에 위치하는 고분자 전해질막으로 구성된다. Redox Flow Battery (RFB) is a compound of Reduction, Oxidation, and Flow. It is a term used to describe a water-soluble electrolytic solution in which a metal ion with a variable constant is dissolved in a unit cell And the charging and discharging are carried out while passing through the electrochemical system. The basic structure of the RFB consists of a tank for storing the electrolyte solution, a pump for circulating the electrolyte solution, an anode and a cathode, and a polymer electrolyte membrane located between the two electrodes.

이온 교환수지나 이온 교환막으로 사용되는 고분자 전해질 막은 수 십 년 동안 사용되었을 뿐 아니라 꾸준히 연구되고 있는 분야이다. 최근에 다양한 분야에 적용되는 이온을 전달하는 매개체로서 이온 교환막에 대한 수많은 연구가 진행되고 있다.Polymer electrolyte membranes used as ion exchange resins or ion exchange membranes have been used for decades and have been studied steadily. Recently, numerous studies have been conducted on ion exchange membranes as mediators for ion transfer in various fields.

전극 소재는 카본펠트 전극과 비활성 전극으로 구분되고, 활물질은 V, Fe, Cr, Cu, Ti, Mn 및 Sn 등의 전이금속을 강한 산성 수용액에 녹여 사용된다. 이때 사용되는 고분자막은 이온의 선택 투과성이 높은 것을 사용하는 것이 바람직하며, 상용화된 고분자막으로는 미국 듀폰사의 Nafion, 일본 아사이글라스사의 CMV, AMV, DMV 등을 들 수 있다. 이들 중에서 화학적 안정성이 비교적 우수하고, 수소 이온 전도도가 높은 과불화수소계 고분자인 나피온이 성능이 우수하지만, 단가가 높고, 치수 안정성이 떨어지며, 메탄올 투과도가 높다는 단점 때문에 본격적으로 널리 실용화되지 못하고 있다.The electrode material is divided into a carbon felt electrode and an inactive electrode. The active material is used by dissolving a transition metal such as V, Fe, Cr, Cu, Ti, Mn and Sn in a strong acidic aqueous solution. As the polymer membrane used herein, it is preferable to use a polymer having a high ion selectivity. Examples of commercially available polymer membranes include Nafion manufactured by DuPont of America, CMV, AMV and DMV of Asagi Glass, Japan. Among these, Nafion, which is a perfluoropolyether having a relatively high chemical stability and a high hydrogen ion conductivity, has excellent performance, but has not been widely practically used because of its disadvantage of high unit cost, poor dimensional stability, and high methanol permeability.

이러한 기존 상용화 고분자막의 문제점들을 해결하기 위해 상대적으로 투과도가 낮은 새로운 탄화수소계 수소 이온 전도성 물질에 대한 연구가 활발히 진행되고 있으며, 대표적인 예로 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르술폰(polyethersulfone), 폴리벤지이미다졸 (polybenzimidazole) 등이 있다. In order to solve the problems of the conventional commercialized polymer membrane, researches on a new hydrocarbon-based proton conductive material having a relatively low permeability have been actively carried out. Typical examples thereof include polyimide, polyetheretherketone, polyethersulfone, and polybenzimidazole.

하지만 이러한 탄화수소계 고분자 전해질 막 역시 수화시 함수량이 높아 치수 안정성이 떨어질 뿐만 아니라, 내구성이 낮아 RFB의 우수한 성능을 구현하기 어려운 문제점이 있으며, 이를 개선하기 위한 이온 전도도 및 투과도와 내구성이 향상된 고분자 전해질 복합막의 제조방법에 관한 연구 개발이 지속적으로 요구되고 있다.
However, such a hydrocarbon-based polymer electrolyte membrane also has a problem of low dimensional stability due to high moisture content at the time of hydration and low durability, which makes it difficult to realize excellent performance of RFB. To improve this, a polymer electrolyte composite There is a continuing need for research and development of membrane production methods.

본 발명자들은 다수의 연구 결과 나노포러스 무기입자를 포함하는 새로운 조성의 고분자 전해질 복합막을 개발함으로써 본 발명을 완성하였다.The present inventors have completed the present invention by developing a polymer electrolyte composite membrane having a novel composition including nanoporous inorganic particles.

따라서, 본 발명의 목적은 이온 전도도가 높고, 투과도는 낮으며, 막의 화학적 및 물리적 안정성이 우수한 새로운 조성의 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치 또는 수처리장치를 제공하는 것이다. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a polymer electrolyte composite porous membrane having a high ionic conductivity, a low permeability, and excellent chemical and physical stability of a membrane, an energy storage device comprising the porous composite membrane, And a water treatment apparatus.

본 발명의 다른 목적은 기계적 물성 향상으로 장기간 구동하여도 고분자 전해질 복합막의 안정성 저하를 유발하지 않아 셀 성능, 장기성능을 개선할 수 있는 새로운 조성의 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치 또는 수처리장치를 제공하는 것이다. Another object of the present invention is to provide a polymer electrolyte composite porous membrane which can improve cell performance and long-term performance without causing a decrease in the stability of the polymer electrolyte composite membrane even when driven for a long period of time by improvement in mechanical properties, And an energy storage device or a water treatment device including the porous composite membrane.

본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 상세한 설명의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 목적 역시 당연히 포함될 수 있을 것이다.
The object of the present invention is not limited to the above-mentioned objects, and although not explicitly mentioned, the object of the invention which can be recognized by a person skilled in the art from the description of the detailed description of the invention .

상술된 본 발명의 목적을 달성하기 위해, 먼저 본 발명은 다공성지지체 막; 상기 다공성지지체 막을 둘러싸서 형성되는 함침층; 및 상기 함침층 상에 형성되는 코팅층;을 포함하는 고분자전해질 다공성복합막을 제공한다. In order to achieve the above-mentioned object of the present invention, firstly, the present invention provides a porous membrane, An impregnation layer formed by surrounding the porous support membrane; And a coating layer formed on the impregnated layer. The present invention also provides a polymer electrolyte porous composite membrane comprising:

바람직한 실시예에 있어서, 상기 다공성 지지체 막은 폴리테트라플루오로에틸렌(PTFE), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리페닐렌옥사이드(PPO), 폴리벤지미다졸(PBI), 폴리이미드(PI), 폴리비닐리덴플루오라이드(PVdF), 폴리비닐클로라이드(PVC), 또는 이들의 단량체가 중합된 공중합고분자로 구성된 그룹에서 선택되는 하나 이상의 고분자물질을 포함하고 직경이 10 nm 이상인 기공이 형성된 것이다. In a preferred embodiment, the porous support membrane is made of a material selected from the group consisting of polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polyphenylene oxide (PPO), polybenzimidazole (PBI) ), Polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), or copolymerized polymers obtained by polymerizing these monomers, and has pores having a diameter of 10 nm or more.

바람직한 실시예에 있어서, 상기 함침층은 술폰화고분자 및 양친성고분자를 포함하여 구성된다. In a preferred embodiment, the impregnated layer comprises a sulfonated polymer and an amphiphilic polymer.

바람직한 실시예에 있어서, 상기 술폰화고분자는 나피온(Nafion), 플레미온, 아시플렉스, 폴리테트라플루오르에틸렌(PTFE) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 폴리비닐리덴디플루오라이드(PVdF) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 술폰화된 폴리술폰, 술폰화된 폴리아릴렌에테르술폰, 술폰화된 폴리에테르에테르술폰, 술폰화된 폴리에테르술폰, 술폰화된 폴리이미드, 술폰화된 폴리이미다졸, 술폰화된 폴리벤지이미다졸, 술폰화된 폴리에테르벤지이미다졸, 술폰화된 폴리아릴렌에테르케톤, 술폰화된 폴리에테르에테르케톤, 술폰화된 폴리에테르케톤, 술폰화된 폴리에테르케톤케톤, 술폰화된 폴리스타이렌, 술폰화된 폴리페닐렌옥사이드, 술폰화된 폴리다이메틸페닐렌옥사이드, 술폰화된 폴리다이에틸페닐렌옥사이드, 술폰화된 폴리다이페닐페닐렌옥사이드, 브롬화된 폴리페닐렌옥사이드 술폰산, 브롬화 폴리다이메틸페닐렌옥사이드 술폰산, 브롬화 폴리다이에틸페닐렌옥사이드 술폰산, 브롬화 폴리다이페닐페닐렌옥사이드 술폰산으로 구성된 그룹에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the sulfonated polymer is a polymer obtained by grafting polystyrenesulfonic acid (PSSA) to the main chain of Nafion, Flemion, Ashiflex, polytetrafluoroethylene (PTFE), polyvinylidene A polymer obtained by grafting polystyrene sulfonic acid (PSSA) to a fluoride (PVdF) main chain, a sulfonated polysulfone, a sulfonated polyarylene ether sulfone, a sulfonated polyether ether sulfone, a sulfonated polyether sulfone , Sulfonated polyimides, sulfonated polyimidazoles, sulfonated polybenzimidazoles, sulfonated polyether benzimidazoles, sulfonated polyarylene ether ketones, sulfonated polyether ether ketones, sulfonated Polyether ketones, sulfonated polyether ketone ketones, sulfonated polystyrenes, sulfonated polyphenylene oxides, sulfonated polydimethylphenylen oxides, sulfonated poly In this case, it is preferable to use a compound selected from the group consisting of tilphenylene oxide, sulfonated polydiphenylphenylene oxide, brominated polyphenylene oxide sulphonic acid, brominated polydimethylphenylene oxide sulphonic acid, brominated polydiethylphenylene oxide sulphonic acid and brominated polydiphenylphenylene oxide sulphonic acid Selected from the group constituted.

바람직한 실시예에 있어서, 상기 양친성 고분자는 하이드록실 그룹을 갖는 적어도 하나 이상 친수성 세그먼트와 소수성 세그먼트를 동시에 갖는다. In a preferred embodiment, the amphiphilic polymer has at least one hydrophilic segment having a hydroxyl group and a hydrophobic segment at the same time.

바람직한 실시예에 있어서, 상기 술폰화 고분자는 수평균 분자량(Mn)이 1,000 ~ 1,000,000이고, 중량평균 분자량(Mw)은 10,000 ~ 1,000,000이다. In a preferred embodiment, the sulfonated polymer has a number average molecular weight (Mn) of 1,000 to 1,000,000 and a weight average molecular weight (Mw) of 10,000 to 1,000,000.

바람직한 실시예에 있어서, 상기 코팅층은 불소계고분자 및 나노 포러스 무기입자를 포함한다. In a preferred embodiment, the coating layer comprises a fluorinated polymer and nanoporous inorganic particles.

바람직한 실시예에 있어서, 상기 나노 포러스 무기입자는 실리카, 알루미나, 지르코니아, 제올라이트, 티타늄, 그래핀옥사이드로 구성된 그룹에서 선택된 어느 하나 이상의 물질에 기공이 형성된다. In a preferred embodiment, the nanoporous inorganic particles are formed in at least one material selected from the group consisting of silica, alumina, zirconia, zeolite, titanium, and graphen oxide.

바람직한 실시예에 있어서, 상기 나노 포러스 무기입자는 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 것이고, 입자의 기공 지름이 0.1 내지 100 nm이다. In a preferred embodiment, the nanoporous inorganic particle has a -OH group in the functional group of the surface partly substituted with -SO 3 H group, and the pore diameter of the particle is 0.1 to 100 nm.

바람직한 실시예에 있어서, 상기 불소계 고분자는 나피온, 아시플렉스, 플레미온, 폴리비닐리덴플루오라이드, 헥사플루오로프로필렌, 트리플루오로에틸렌, 폴리테트라플루오로에틸렌로 구성된 그룹에서 선택되는 어느 하나 이상이다. In a preferred embodiment, the fluorine-based polymer is at least one selected from the group consisting of Nafion, Asiflex, Flemion, polyvinylidene fluoride, hexafluoropropylene, trifluoroethylene and polytetrafluoroethylene .

바람직한 실시예에 있어서, 무가습 상태에서 상기 고분자전해질 다공성복합막의 두께는 5 ~ 500 ㎛이다. In a preferred embodiment, the thickness of the polymer electrolyte porous composite membrane in the non-humidified state is 5 to 500 mu m.

또한, 본 발명은 다공성지지체 막을 준비하는 단계; 상기 다공성지지체 막에 준비된 함침층용 고분자용액으로 함침층을 형성하는 단계; 및 상기 함침층 상에 준비된 코팅층용 나노입자분산용액으로 코팅층을 형성하는 단계;를 포함하는 고분자전해질 다공성복합막 제조방법을 제공한다. The present invention also provides a method for preparing a porous support membrane, comprising: preparing a porous support membrane; Forming an impregnated layer on the porous support membrane with the polymer solution for impregnation layer prepared; And forming a coating layer using a nanoparticle dispersion solution for a coating layer prepared on the impregnated layer.

바람직한 실시예에 있어서, 상기 다공성지지체 막을 준비하는 단계는 상기 다공성지지체 막을 알코올, 아세톤, 아세트산, 황산, 질산, 염산, 옥살산, 과산화수소수로 구성된 그룹에서 선택되는 하나 이상의 용액으로 세척하는 전처리단계를 포함한다. In a preferred embodiment, the step of preparing the porous support membrane comprises a pre-treatment step of washing the porous support membrane with at least one solution selected from the group consisting of alcohol, acetone, acetic acid, sulfuric acid, nitric acid, hydrochloric acid, oxalic acid, hydrogen peroxide solution do.

바람직한 실시예에 있어서, 상기 함침층용 고분자용액은 용매에 술폰화고분자 및 양친성고분자가 균일하게 분산된 것이다. In a preferred embodiment, the polymer solution for the impregnated layer is obtained by uniformly dispersing a sulfonated polymer and an amphipathic polymer in a solvent.

바람직한 실시예에 있어서, 상기 함침층을 형성하는 단계는 상기 다공성지지체 막을 상기 함침층용 고분자용액에 함침시키는 단계 및 상기 함침된 다공성지지체 막의 양면을 다이캐스팅하는 단계를 포함한다. In a preferred embodiment, the step of forming the impregnated layer includes impregnating the porous support membrane with the polymer solution for the impregnated layer, and diecasting both surfaces of the impregnated porous support membrane.

바람직한 실시예에 있어서, 상기 코팅층용 나노입자분산용액은 불소계고분자용액에 나노 포러스 무기입자가 분산된 것이다. In a preferred embodiment, the nanoparticle dispersion solution for a coating layer is obtained by dispersing nanoporous inorganic particles in a fluorinated polymer solution.

바람직한 실시예에 있어서, 상기 나노 포러스 무기입자는 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 것이고, 입자의 기공 지름이 0.1 내지 100 nm이다. In a preferred embodiment, the nanoporous inorganic particle has a -OH group in the functional group of the surface partly substituted with -SO 3 H group, and the pore diameter of the particle is 0.1 to 100 nm.

또한, 본 발명은 상술된 어느 하나의 고분자전해질 다공성복합막 또는 상술된 어느 하나의 제조방법으로 제조된 고분자전해질 다공성복합막을 포함하는 에너지 저장장치를 제공한다.The present invention also provides an energy storage device comprising any one of the above-described polymer electrolyte porous composite membrane or the polymer electrolyte porous composite membrane produced by any of the above-described manufacturing methods.

바람직한 실시예에 있어서, 상기 에너지 저장장치는 이차전지 또는 연료전지이다.In a preferred embodiment, the energy storage device is a secondary battery or a fuel cell.

또한, 본 발명은 상술된 어느 하나의 고분자전해질 다공성복합막 또는 상술된 어느 하나의 제조방법으로 제조된 고분자전해질 다공성복합막을 포함하는 수처리장치를 제공한다.
The present invention also provides a water treatment apparatus comprising any one of the above-described polymer electrolyte porous composite membrane or a polymer electrolyte porous composite membrane produced by any one of the above-described manufacturing methods.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명에 의하면 이온 전도도가 높고, 투과도는 낮으며, 막의 화학적 및 물리적 안정성이 우수한 새로운 조성의 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치 또는 수처리장치를 제공할 수 있다. First, according to the present invention, there is provided a polymer electrolyte composite porous membrane having a high ion conductivity and low permeability and excellent chemical and physical stability of a membrane, a method for producing the porous composite membrane, an energy storage device comprising the porous composite membrane, Device can be provided.

또한, 본 발명에 의하면 기계적 물성 향상으로 인해 장기간 구동하여도 고분자 전해질 복합막의 안정성 저하를 유발하지 않아 셀 성능, 장기성능을 개선할 수 있는 새로운 조성의 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치 또는 수처리장치를 제공할 수 있다. In addition, according to the present invention, it is possible to improve the cell performance and the long-term performance by preventing the stability of the polymer electrolyte composite membrane from being deteriorated even if the polymer electrolyte membrane is driven for a long time due to the improvement of mechanical properties. And an energy storage device or a water treatment device including the porous composite membrane.

본 발명의 이러한 기술적 효과들은 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.
These technical advantages of the present invention are not limited to the above-mentioned technical scope, and even if not explicitly mentioned, the effect of the invention which can be recognized by a person skilled in the art from the description of the concrete contents for carrying out the invention Of course.

도 1은 본 발명의 실시예에 따른 다공성복합막에 포함된 다공성지지체 막의 단면 사진이다.
도 2는 도 1에 도시된 다공성지지체 막을 포함하는 고분자전해질 다공성복합막의 표면사진이다.
도 3은 도 1에 도시된 다공성지지체 막을 포함하는 고분자전해질 다공성복합막의 단면사진이다.
1 is a cross-sectional photograph of a porous support membrane included in a porous composite membrane according to an embodiment of the present invention.
2 is a photograph of a surface of a polymer electrolyte porous composite membrane including the porous support membrane shown in FIG.
3 is a cross-sectional photograph of a polymer electrolyte porous composite membrane including the porous support membrane shown in FIG.

본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 갖는 통상의 의미와 본 발명의 명세서 전반에 걸쳐 기재된 내용을 토대로 해석되어야 한다.While the present invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Also, in certain cases, there may be a term selected arbitrarily by the applicant, in which case the meaning thereof will be described in detail in the description of the corresponding invention. Accordingly, the terms used in the present invention should not be construed to be mere terms, but should be interpreted based on the ordinary meanings of the terms and contents described throughout the specification of the present invention.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 기술적 특징은 낮은 투과도와 고이온 전도성 및 내구성이 유지되는 고분자 전해질 복합막의 조성 및 구조에 있다. 즉, 다공성지지체막 상에 나노 포러스 무기입자를 불소계 고분자 용액에 분산시켜 형성된 분산액으로 이루어진 코팅층을 형성하게 되면 이온전달 및 투과도 특성을 조절할 수 있기 때문이다. Technical features of the present invention reside in the composition and structure of a polymer electrolyte composite membrane which maintains low permeability, high ion conductivity and durability. That is, when a coating layer composed of a dispersion formed by dispersing nanoporous inorganic particles in a fluorinated polymer solution on a porous support film is formed, ion transmission and permeability characteristics can be controlled.

따라서, 본 발명의 고분자전해질 다공성 복합막은 다공성지지체 막; 상기 다공성지지체 막을 둘러싸서 형성되는 함침층; 및 상기 함침층 상에 형성되는 코팅층;을 포함한다. Therefore, the polymer electrolyte porous composite membrane of the present invention comprises a porous support membrane; An impregnation layer formed by surrounding the porous support membrane; And a coating layer formed on the impregnated layer.

다공성지지체 막은 직경이 10 nm 이상인 기공이 형성된 것이고 고분자전해질의 특성을 갖기만 하면 소재는 제한되지 않으나, 예를 들어 폴리테트라플루오로에틸렌(PTFE), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리페닐렌옥사이드(PPO), 폴리벤지미다졸(PBI), 폴리이미드(PI), 폴리비닐리덴플루오라이드(PVdF), 폴리비닐클로라이드(PVC), 또는 이들의 단량체가 중합된 공중합고분자로 구성된 그룹에서 선택되는 하나 이상의 고분자물질이 포함된 막지지체일 수 있다. The porous support membrane is formed with pores having a diameter of 10 nm or more. The porous support membrane is not limited as long as it has the characteristics of a polymer electrolyte. Examples of the porous support membrane include polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (Polyvinylidene fluoride), polyvinyl chloride (PVC), or copolymerized polymers obtained by polymerizing these monomers, such as polyvinylidene fluoride (PPO), polybenzimidazole (PBI), polyimide Or may be a barrier lid containing one or more polymeric materials selected.

함침층은 다공성지지체 막을 둘러싸서 형성되는데, 술폰화고분자 및 양친성고분자를 포함하여 구성될 수 있다. 일예로, 술폰화고분자 및 양친성고분자를 포함하는 함침층용 고분자용액에 다공성지지체 막을 침지시켜 형성될 수 있을 것이다. The impregnated layer is formed by surrounding the porous support membrane, and may be composed of a sulfonated polymer and an amphiphilic polymer. For example, the porous support membrane may be formed by immersing a porous support membrane in a polymer solution for an impregnated layer containing a sulfonated polymer and an amphiphilic polymer.

본 발명의 함침층에 포함되는 양친성 고분자는 하이드록실 그룹을 갖는 적어도 하나 이상 친수성 세그먼트와 소수성 세그먼트를 동시에 갖는 고분자물질이기만 하면 공지된 모든 물질을 사용할 수 있다. 또한 양친성고분자를 단독으로 사용하는 것은 물론 2종 이상 혼합하여 사용하는 것이 제한되지 않는다. 양친성 고분자로는 예를 들어 Urethane Acrylate Nonionomer (UAN), poly(isobutylene-b-methyl vinyl ether), poly(styrene-b-hydroxyethyl vinyl ether), poly(styrene-b-ionic acetylene), poly(methyl tri(ethylene glycol) vinyl ether-b-isobutyl vinyl ether), poly(a-methylstyrene-b-2-hydroxyethyl vinyl ether), poly(2-(1- pyrrolidonyl) ethyl vinyl ether-b-isobutyl vinyl ether). poly(4-(bis (trimethylsilyl)methyl) styrene-b-HEMA), PS-P2VP-PEO (P2VP = poly(2- vinylpyridine)), PEP-PEO (PEP = poly(ethylenepropylene)), poly(N-vinyl-2- pyrrolidone-co-acrylic acid), Poly(ethylene oxide )-b-Poly(L-lysine ), Poly(ethylene oxide )-b-Poly(aspartate ), Poly(ethylene oxide )-b- Poly(aspartate), Poly(ethylene oxide)-b-Poly(β-benzyl-L-aspartate ), Poly (ethylene oxide)-b-Poly(propylene oxide),Poly(ε-caprolactone), Poly(ethylene oxide )-b-Oligo(methacrylate )등으로 구성된 그룹에서 선택된 1종 이상이 사용될 수 있다.The amphiphilic polymer contained in the impregnated layer of the present invention may be any known material as long as it is a polymer material having at least one hydrophilic segment having a hydroxyl group and a hydrophobic segment at the same time. In addition, the amphiphilic polymer may be used singly or in combination of two or more. Examples of amphiphilic polymers include Urethane Acrylate Nonionomer (UAN), poly (isobutylene-b-methyl vinyl ether), poly (styrene-b-hydroxyethyl vinyl ether) (ethylene glycol) vinyl ether-b-isobutyl vinyl ether), poly (a-methylstyrene-b-2-hydroxyethyl vinyl ether), poly (2- (1-pyrrolidonyl) ethyl vinyl ether-b-isobutyl vinyl ether). PEP-PEO (PEP = poly (ethylenepropylene)), poly (N- (2-vinylpyridine) vinyl-2-pyrrolidone-co-acrylic acid, poly (ethylene oxide) -b-poly (L-lysine) aspartate, poly (ethylene oxide) -b-Poly (ethylene oxide) -b-poly (propylene oxide), poly (ethylene oxide) -Oligo (methacrylate), and the like may be used.

술폰화고분자는 친수성 및 우수한 수소이온 전도성을 갖기만 하면 공지된 어떤 술폰화고분자물질도 사용될 수 있는데, 방향족 화합물 사이에 에테르 결합으로 연결된 방향족 화합물이 사용되는 것이 바람직하다. 또한 이들 방향족 화합물은 적어도 1종 이상의 술폰산 그룹 또는 술폰산염 치환기를 갖는 단위 사슬이 일정간격으로 이격되어 배치된 술폰화된 방향족 공중합체를 포함하는 것이 바람직하며, 수 평균 분자량(Mn)이 1,000 ~ 1,000,000이고 중량 평균 분자량(Mw)이 10,000 ~ 1,000,000의 범위인 것이 바람직하다. As the sulfonated polymer, any known sulfonated polymer material may be used as far as it has hydrophilicity and excellent hydrogen ion conductivity. It is preferable that an aromatic compound linked by an ether bond is used between aromatic compounds. These aromatic compounds preferably contain a sulfonated aromatic copolymer in which at least one sulfonic acid group or sulfonic acid salt substituent group-containing unit chains are spaced apart from each other by a predetermined distance, and the number average molecular weight (Mn) is 1,000 to 1,000,000 And a weight average molecular weight (Mw) of 10,000 to 1,000,000.

이때, 술폰산 그룹 또는 술폰산염 치환기의 반복 단위는 1 내지 70 몰%의 범위로 포함되는 것이 바람직한데, 반복 단위의 몰수가 1 몰% 미만이면 수소이온 전도도가 낮고, 70 몰%를 초과하게 되면 막의 치수 변화가 크게 일어나 안정성을 확보할 수 없기 때문이다. 더욱 바람직하게는 20 내지 60 몰%일 수 있으며, 보다 더 바람직하게는 30 내지 50 몰%일 수 있다. When the number of moles of the repeating unit is less than 1 mol%, the hydrogen ion conductivity is low. When the molar amount of the repeating unit is more than 70 mol%, the number of repeating units of the sulfonic acid group or sulfonic acid salt substituent is preferably in the range of 1 to 70 mol% The dimensional change largely occurs and stability can not be secured. , More preferably 20 to 60 mol%, and still more preferably 30 to 50 mol%.

예를 들어 술폰화 고분자는 수소 이온 전도성을 갖는 고분자 수지를 사용할 수 있고, 구체적으로는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 갖고 있는 고분자 수지는 모두 사용할 수 있다. 더 구체적으로는 술폰화된 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리아미드계 고분자, 폴리페닐렌옥사이드계, 폴리아릴렌에테르계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리포스파젠계 고분자, 폴리스티렌계 고분자, 라디에이션-그라프트된 FEP-g-폴리스티렌(radiation-grafted FEP-g- polystyrene), 라디에이션-그라프트된 PVDF-g-폴리스티렌(radiation-grafted PVDF- g-polystyrene) 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함할수 있고, 보다 더 구체적으로는 술폰화된 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 황화 폴리에테르케톤, 아릴 케톤, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5-bibenz imidazole] 및 폴리(2,5-벤즈이미다졸), 술폰화된 폴리술폰, 술폰화된 폴리에테르술폰, 술폰화된 폴리에테르에테르술폰, 술폰화된 폴리아릴렌에테르술폰, 술폰화된 폴리에테르케톤, 술폰화된 폴리에테르에테르케톤, 술폰화된 폴리이미드, 술폰화된 폴리벤즈이미다졸, 술폰화된 폴리페닐렌옥사이드, 술폰화된 폴리다이메틸페닐렌옥사이드, 술폰화된 폴리다이에틸페닐렌옥사이드, 술폰화된 폴리다이페닐페닐렌옥사이드, 브롬화된 폴리페닐렌옥사이드 술폰산, 브롬화 폴리다이메틸페닐렌옥사이드 술폰산, 브롬화 폴리다이에틸페닐렌옥사이드 술폰산, 브롬화 폴리다이페닐페닐렌옥사이드 술폰산, 술폰화된 폴리페닐렌술파이드, 술폰화된 폴리스티렌, 술폰화된 폴리우레탄, 나피온, 폴리트리풀루오로스티렌 술폰산, 폴리스티렌 술폰산 및 분지형 술폰화 폴리술폰케톤 공중합체로 구성된 그룹 중에서 선택되는 1종 이상의 수소이온 전도성 고분자를 포함하는 것을 사용할 수 있다. 특히, 나피온(Nafion), 플레미온, 아시플렉스, 폴리테트라플루오르에틸렌(PTFE) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 폴리비닐리덴디플루오라이드(PVdF) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 술폰화된 폴리술폰, 술폰화된 폴리아릴렌에테르술폰, 술폰화된 폴리에테르에테르술폰, 술폰화된 폴리에테르술폰, 술폰화된 폴리이미드, 술폰화된 폴리이미다졸, 술폰화된 폴리벤지이미다졸, 술폰화된 폴리에테르벤지이미다졸, 술폰화된 폴리아릴렌에테르케톤, 술폰화된 폴리에테르에테르케톤, 술폰화된 폴리에테르케톤, 술폰화된 폴리에테르케톤케톤, 술폰화된 폴리스타이렌, 술폰화된 폴리페닐렌옥사이드, 술폰화된 폴리다이메틸페닐렌옥사이드, 술폰화된 폴리다이에틸페닐렌옥사이드, 술폰화된 폴리다이페닐페닐렌옥사이드, 브롬화된 폴리페닐렌옥사이드 술폰산, 브롬화 폴리다이메틸페닐렌옥사이드 술폰산, 브롬화 폴리다이에틸페닐렌옥사이드 술폰산, 브롬화 폴리다이페닐페닐렌옥사이드 술폰산로 구성된 그룹에서 선택되는 어느 하나 이상인 것이 바람직할 수 있다. For example, the sulfonated polymer may be a polymer resin having hydrogen ion conductivity. Specifically, the sulfonated polymer may have a cation exchanger selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group and derivatives thereof Any polymer resin may be used. More specifically, there may be mentioned sulfonated fluorinated polymers, benzimidazole polymers, polyimide polymers, polyamide polymers, polyphenylene oxide polymers, polyarylene ether polymers, polyetherimide polymers, polyphenylene sulfide Based polymer, polysulfone polymer, polyether sulfone polymer, polyether ketone polymer, polyether-ether ketone polymer, polyphosphazene polymer, polystyrene polymer, radiation-grafted FEP-g-polystyrene radiation-grafted FEP-g-polystyrene, radiation-grafted PVDF-g-polystyrene, and polyphenylquinoxaline-based polymers. And more specifically sulfonated poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), tetrafluoroethylene containing sulfonic acid groups Poly (2,2'-m-phenylene) -5,5'-bibenzimidazole [poly (2,2'-m) -poly -phenylene) -5,5-bibenzimidazole] and poly (2,5-benzimidazole), sulfonated polysulfone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polyarylene But are not limited to, ether sulfone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyimide, sulfonated polybenzimidazole, sulfonated polyphenylene oxide, sulfonated polydimethylphenylen oxide, Sulfonated polydiphenylphenylene oxide, brominated polyphenylene oxide sulphonic acid, brominated polydimethylphenylen oxide sulphonic acid, brominated polydiethylphenylene oxide sulphonic acid, brominated polydiphenylphenylene Oxidesulfonic acid, sulfonated At least one hydrogen ion selected from the group consisting of polyphenylene sulfide, sulfonated polystyrene, sulfonated polyurethane, naphion, polytrifluorostyrene sulfonic acid, polystyrene sulfonic acid and branched sulfonated polysulfone ketone copolymer Conductive polymer may be used. Particularly, a polymer obtained by grafting polystyrenesulfonic acid (PSSA) to a main chain of Nafion, Flemion, Ashiflex, and polytetrafluoroethylene (PTFE), a polyvinylidene difluoride (PVdF) A polymer obtained by grafting sulfonic acid (PSSA), a sulfonated polysulfone, a sulfonated polyarylene ether sulfone, a sulfonated polyether ether sulfone, a sulfonated polyether sulfone, a sulfonated polyimide, a sulfonated Sulfonated polyether ether ketone, sulfonated polyether ketone, sulfonated polyether ether ketone, sulfonated polyether ether ketone, sulfonated polyether ether ketone, Ether ketone ketones, sulfonated polystyrenes, sulfonated polyphenylene oxides, sulfonated polydimethylphenylen oxides, sulfonated polydiethylphenylene oxides, sulfonated polydiethers, It is preferably at least one selected from the group consisting of phenylphenylene oxide, brominated polyphenylene oxide sulfonic acid, brominated polydimethylphenylene oxide sulfonic acid, brominated polydiethylphenylene oxide sulfonic acid, and brominated polydiphenylphenylene oxide sulfonic acid .

코팅층은 함침층 상에 형성되는데, 불소계고분자 및 나노 포러스 무기입자를 포함하여 이루어진다. 즉, 불소계고분자용액에 나노 포러스 무기입자를 분산시킨 분산액을 함침층상에 코팅하여 형성되기 때문이다.The coating layer is formed on the impregnated layer, and comprises a fluoropolymer and nanoporous inorganic particles. That is, a dispersion liquid in which nano-porous inorganic particles are dispersed in a fluorine-based polymer solution is coated on the impregnated layer.

불소계 고분자는 공지된 불소계 고분자를 모두 사용할 수 있지만, 나피온, 아시플렉스, 플레미온, 폴리비닐리덴플루오라이드, 헥사플루오로프로필렌, 트리플루오로에틸렌, 폴리테트라플루오로에틸렌의 단량체로 이루어진 불소계 고분자를 적어도 1종 이상 포함하여 이루어진 고분자를 사용하는 것이 바람직하며, 수 평균 분자량(Mn)은 1,000 ~ 1,000,000의 범위에서 선택되고, 중량 평균 분자량(Mw)은 10,000 ~ 1,000,000의 범위에서 선택되는 것이 바람직하다. The fluoropolymer may be any of known fluoropolymers, but it is also possible to use a fluoropolymer composed of monomers of Nafion, Asiflex, Flemion, polyvinylidene fluoride, hexafluoropropylene, trifluoroethylene and polytetrafluoroethylene The number average molecular weight (Mn) is selected from the range of 1,000 to 1,000,000, and the weight average molecular weight (Mw) is preferably selected from the range of 10,000 to 1,000,000.

나노 포러스 무기입자는 나노크기의 직경을 갖는 공지된 무기입자일 수 있다. 일예로 실리카, 알루미나, 지르코니아, 제올라이트, 티타늄, 그래핀 옥사이드로 구성된 그룹에서 선택된 어느 하나 이상의 물질에 기공이 형성된 것일 수 있는데, 특히 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 무기입자로서, 기공 지름이 0.1 내지 100 nm의 범위인 것이 사용될 수 있다. 즉, 기공 지름이 100 nm를 초과하는 입자가 사용될 경우, 바나듐 이온이 투과되기 쉬울 뿐만 아니라, 고분자 전해질 막 내에 기포를 발생시켜 막의 안정성, 투과도 및 내구성이 저하될 수 있으며, 지름이 0.1 nm이하의 입자가 사용될 경우에는 입자들 사이의 응집력이 강해지면서 막의 안정성이 저하될 수 있기 때문이다.The nanoporous inorganic particles may be known inorganic particles having a nanoscale diameter. For example, pores may be formed in at least one material selected from the group consisting of silica, alumina, zirconia, zeolite, titanium and graphen oxide. Particularly, the -OH groups of the functional groups on the surface are partially substituted with -SO 3 H groups As the particles, those having a pore diameter in the range of 0.1 to 100 nm can be used. That is, when particles having a pore diameter of more than 100 nm are used, not only vanadium ions are easily permeated but also bubbles are generated in the polymer electrolyte membrane to lower the stability, permeability, and durability of the membrane. When the particles are used, the cohesion between the particles becomes strong and the stability of the film may deteriorate.

본 발명의 고분자전해질 다공성복합막은 무가습 상태에서 두께가 5 ~ 200 ㎛일 수 있는데, 5 ~ 100 ㎛ 두께일 수 있으며, 10 ~ 50 ㎛ 두께를 갖도록 형성될 수도 있다.The polymer electrolyte porous composite membrane of the present invention may have a thickness of 5 to 200 μm in a non-humidified state, and may be formed to have a thickness of 5 to 100 μm and a thickness of 10 to 50 μm.

다음으로, 본 발명의 고분자전해질 다공성복합막 제조방법은 다공성지지체 막을 준비하는 단계; 상기 다공성지지체 막에 준비된 함침층용 고분자용액으로 함침층을 형성하는 단계; 및 상기 함침층 상에 준비된 코팅층용 나노입자분산용액으로 코팅층을 형성하는 단계;를 포함한다. Next, a method for producing a porous polymer composite membrane of the present invention comprises: preparing a porous support membrane; Forming an impregnated layer on the porous support membrane with the polymer solution for impregnation layer prepared; And forming a coating layer on the impregnated layer with a nanoparticle dispersion solution for a coating layer prepared.

다공성지지체 막을 준비하는 단계는 원하는 물질특성을 가진 공지된 다공성지지체 막 제조방법으로 제조하거나 상용의 것을 구매하여 준비한 다음, 준비된 다공성지지체 막을 알코올, 아세톤, 아세트산, 황산, 질산, 염산, 옥살산, 과산화수소수로 구성된 그룹에서 선택되는 하나 이상의 용액으로 세척하는 전처리단계를 수행하는 것을 포함할 수 있다. The preparation of the porous support membrane may be carried out by preparing a known porous support membrane preparation method having a desired substance characteristic or by purchasing a commercial one and preparing the prepared porous support membrane by adding the prepared porous support membrane to an aqueous solution containing a mixture of alcohol, acetone, acetic acid, sulfuric acid, nitric acid, ≪ / RTI > washing with one or more solutions selected from the group consisting of < RTI ID = 0.0 >

함침층을 형성하는 단계에서 사용되는 함침층용 고분자용액은 용매에 술폰화고분자 및 양친성고분자가 균일하게 분산된 용액으로서, 공지된 모든 제법을 이용하여 준비할 수 있다. 예를 들어, 함침층용 고분자용액은 술폰화고분자 및 양친성고분자를 모두 분산시킬 수 있는 용매를 사용하여 한 번에 제조하거나, 술폰화고분자가 분산된 술폰화고분자용액과 양친성고분자가 분산된 양친성고분자용액을 먼저 준비한 후 술폰화고분자용액과 양친성고분자용액을 균일하게 혼합하여 제조할 수도 있을 것이다. 한편, 함침층을 형성하는 단계는 다공성지지체 막을 함침층용 고분자용액에 함침시키는 단계를 포함하는데, 상기 함침된 다공성지지체 막의 양면을 다이캐스팅하는 단계를 더 포함할 수도 있다. The polymer solution for the impregnated layer used in the step of forming the impregnated layer can be prepared by using any well-known production method as a solution in which a sulfonated polymer and an amphiphilic polymer are uniformly dispersed in a solvent. For example, the polymer solution for the impregnated layer may be prepared at one time using a solvent capable of dispersing both the sulfonated polymer and the amphiphilic polymer, or may be prepared by mixing the sulfonated polymer solution in which the sulfonated polymer is dispersed and the parent The polymer solution may be prepared first, and then the sulfonated polymer solution and the amphiphilic polymer solution may be uniformly mixed. On the other hand, the step of forming the impregnated layer may include a step of impregnating the porous support membrane with the impregnated layer polymer solution, and diecasting the both surfaces of the impregnated porous support membrane.

코팅층을 형성하는 단계에서 사용되는 코팅층용 나노입자분산용액은 불소계고분자용액에 나노 포러스 무기입자가 분산된 용액으로서, 공지된 모든 제법을 이용하여 준비할 수 있다. 여기서, 나노 포러스 무기입자는 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 것이고, 입자의 기공 지름이 0.1 내지 100 nm일 수 있을 것이다. 코팅층은 공지된 모든 방법으로 형성될 수 있는데, 예를 들어 코팅층용 나노입자분산용액을 함침층 상에 코팅하여 건조하는 일반적인 방법으로 형성될 수 있다. The nanoparticle dispersion solution for coating layer used in the step of forming the coating layer can be prepared by using any known production method as a solution in which nanoporous inorganic particles are dispersed in a fluorinated polymer solution. Herein, the nanoporous inorganic particles are those in which -OH groups in the surface functional groups are partially replaced with -SO 3 H groups, and the pore diameter of the particles may be 0.1 to 100 nm. The coating layer can be formed by any known method, for example, by coating a dispersion solution of a nano-particle for a coating layer on the impregnated layer and drying the coating layer.

이와 같이 다공성지지체 막에 함침층 및 코팅층이 형성되면 다음과 같은 조건으로 건조될 수 있을 것이다. 1차 건조를 30 내지 60℃의 온도 조건에서 수행한 후, 2차 건조를 50 내지 140 ℃의 범위에서 추가로 수행할 수 있는데, 대기압보다 낮은 압력의 진공조건인 감압조건에서 진행할 수도 있다. 이러한 조건은 함침층 및 코팅층 내에 기포가 발생될 확률을 저하시키기 위함인데, 함침층 및 코팅층에 기포가 발생되면 막의 안정성, 투과도 및 내구성을 저하될 수 있기 때문이다.
When the impregnation layer and the coating layer are formed on the porous support membrane, the membrane can be dried under the following conditions. The primary drying may be carried out at a temperature of 30 to 60 ° C and then the secondary drying may be further carried out at a temperature of 50 to 140 ° C. This condition is to lower the probability of bubbles being generated in the impregnated layer and the coating layer. If bubbles are generated in the impregnated layer and the coating layer, the stability, permeability and durability of the film may be deteriorated.

이와 같은 구성을 갖는 본 발명의 고분자전해질 다공성복합막은 다양한 분야에서 응용될 수 있는데, 레독스흐름전지를 포함하는 이차전지나 연료전지와 같은 에너지저장장치 또는 수처리장치일 수 있을 것이다.
The polymer electrolyte porous composite membrane of the present invention having such a structure may be applied to various fields, and may be an energy storage device such as a secondary battery including a redox flow battery or a fuel cell or a water treatment device.

실시예 1Example 1

1. 다공성지지체 막 준비1. Porous support membrane preparation

기공 크기가 0.01~10 ㎛인 진공 건조된 상용 PTFE 다공성 지지체 고분자를 준비한 후, 다음과 같이 전처리단계를 수행하였다. 준비된 다공성 지지체 막을 알코올과 아세톤의 혼합용액에 넣어 초음파로 세척하고 건조한 다음 묽은 황산 용액에 담근 후, 수세하고 다시 알콜과 아세톤의 혼합용액에 넣어 세척 및 건조하였다. Vacuum dried commercial PTFE porous support polymer having a pore size of 0.01 to 10 탆 was prepared, and then a pretreatment step was performed as follows. The prepared porous support membrane was placed in a mixed solution of alcohol and acetone, washed with ultrasonic waves, dried, immersed in a diluted sulfuric acid solution, washed with water, and then washed and dried in a mixed solution of alcohol and acetone.

2. 함침층 형성2. Impregnation layer formation

(1)함침층용 고분자용액 준비(1) Preparation of polymer solution for impregnation layer

① 양친성고분자인 urethane acrylate nonionomer (UAN) 제조① Manufacture of urethane acrylate nonionomer (UAN), an amphipathic polymer

폴로프로필렌옥사이드 트리올 (PPO triol) 1몰과 톨루엔다이옥사이드 (TDI) 3몰을 4시간 반응시키고, 2-HEMA 를 추가 도입하여 4시간 반응시킨 후, 폴리에틸렌글라이콜 (PEG)를 최종 도입하여 UAN을 합성하였다.1 mol of polypropylene oxide triol and 3 mol of toluene dioxide (TDI) were reacted for 4 hours, and 2-HEMA was further introduced and reacted for 4 hours. Polyethylene glycol (PEG) Were synthesized.

② 술폰화 고분자인 sulfonated polyphenylene oxide 제조 ② Manufacture of sulfonated polyphenylene oxide, a sulfonated polymer

용매인 Chloroform 78cc에 준비된 PPO (polyphenylene oxide) 2.4g를 30분 동안 3구 반응기에서 용해하여 전구체용액을 준비한 후, 준비된 전구체용액이 담겨진 반응기를 천천히 교반하면서 클로로술폰산(Chlorosulfuric acid) 4.5g을 서서히 90분 동안 반응기 내의 전구체용액에 첨가하였다. 전구체용액에 클로로술폰산이 첨가된 반응기를 최대한 빠른 속도로 10시간 동안 교반하였다. 교반이 끝난 후 반응기의 온도를 70℃에서 30분 동안 유지하였다. 그 후 반응기 내의 반응물을 증류수를 이용하여 2회 이상 세척하였다. 세척과정에서 발생된 침전물을 필터로 여과하여 침전물을 분리하였다. 과량의 수산화나트륨 수용액이 있는 비커에 필터로 걸러진 침전물을 투입하고 ice water로 12시간 동안 유지하여 술폰화고분자공중합체1을 합성하였다. 얻어진 술폰화고분자공중합체1을 증류수에 투입하여 30분 동안 세척하였다. 그 후 50℃의 건조 오븐에서 12시간정도 건조 시킨 후, 진공 오븐 70℃에서 12시간 건조시켜 술폰화고분자공중합체1인 술폰화 폴리페닐렌옥사이드를 얻었다. 이 때 술폰화도를 대표하는 IEC (ion exchange capacity)는 1.78이었다. 2.4 g of PPO (polyphenylene oxide) prepared in a chloroform 78cc solvent was dissolved in a three-necked reactor for 30 minutes to prepare a precursor solution. 4.5 g of chlorosulfuric acid was slowly added to the solution while gradually stirring the reactor containing the prepared precursor solution. Min to the precursor solution in the reactor. The reactor in which the chlorosulfonic acid was added to the precursor solution was stirred at the maximum speed for 10 hours. After the stirring, the temperature of the reactor was maintained at 70 DEG C for 30 minutes. The reactants in the reactor were then washed twice more with distilled water. The precipitate generated in the washing process was filtered with a filter to separate the precipitate. The precipitate filtered with an excess of aqueous sodium hydroxide solution was added to the beaker and kept in ice water for 12 hours to synthesize the sulfonated polymer copolymer 1. The resulting sulfonated polymer copolymer 1 was added to distilled water and washed for 30 minutes. Thereafter, it was dried in a drying oven at 50 캜 for about 12 hours, and then dried in a vacuum oven at 70 캜 for 12 hours to obtain a sulfonated polyphenylene oxide having sulfonated polymer copolymer 1. At this time, the ion exchange capacity (IEC) representing the degree of sulfonation was 1.78.

③ 함침층용 고분자용액 제조③ Preparation of polymer solution for impregnation layer

DMSO(Dimethylsulfoxide) 19g에 술폰화 페닐렌옥사이드(sPPO) 1g을 용해시킨다. 준비된 UAN 0.01g을 추가로 용해시켜 함침층용 약 5wt% 고분자용액을 제조하였다. 1 g of sulfonated phenylene oxide (sPPO) is dissolved in 19 g of DMSO (Dimethylsulfoxide). 0.01 g of the prepared UAN was further dissolved to prepare a 5 wt% polymer solution for the impregnated layer.

④ 함침층 형성④ Impregnation layer formation

준비된 함침층용 고분자용액에 다공성 PTFE막을 60분간 함침하고 40도로 유지되는 진공 건조기에서 건조하여 sPPO 용액이 다공성 PTFE막에 치밀하게 함침되어 함침층이 형성되도록 하였다. 상기 과정을 2회 반복하였다.The porous PTFE membrane was impregnated with the prepared impregnated polymer solution for 60 minutes and dried in a vacuum drier maintained at 40 degrees to impregnate the porous PTFE membrane with the sPPO solution to form an impregnated layer. The above procedure was repeated twice.

3. 코팅층 형성3. Coating Layer Formation

① 개질된 나노 포러스 무기입자인 술폰화된 다공성 실리카 입자의 제조① Preparation of sulfonated porous silica particles as modified nanoporous inorganic particles

부피 500 mL 반응기에 P123(EO20PO70EO20; MW = 5800, Aldrich) 4 g을 넣고 반응기에 증류수 30 g과 2 M의 황산 120 g을 넣어 P123이 충분히 분산될 때까지 200 rpm으로 교반시켰다. P123이 수용액에 충분히 분산되지 않으면 본 발명에서 만들고자 하는 실리카가 분균일하게 형성되므로 반드시 완벽한 분산을 유도한다. 4 g of P123 (EO20PO70EO20; MW = 5800, Aldrich) was added to a 500 mL reactor, and 30 g of distilled water and 120 g of 2 M sulfuric acid were added to the reactor and stirred at 200 rpm until P123 was sufficiently dispersed. If P123 is not sufficiently dispersed in the aqueous solution, the silica to be produced in the present invention is uniformly dispersed, and therefore, it necessarily induces complete dispersion.

이후 TEOS(Tetra Ethyl Ortho Silicate, 98% Aldrich) 10 g을 첨가하여 오일베스에서 40 ℃로 가열한 후 온도를 유지하였다. TEOS를 넣고 난 후 TEOS와 P123이 마이셀을 형성할 수 있도록 약 1시간 교반한 후 MPTMS((3-mercaptopropyl) trimethoxysilane, 95% Aldrich)를 넣어준다. 이때 사용되는 MPTMS는 TEOS와의 몰비로 TEOS : MPTMS = 9 : 1의 몰비를 사용하였다. Thereafter, 10 g of TEOS (Tetra Ethyl Ortho Silicate, 98% Aldrich) was added and the temperature was maintained at 40 캜 in an oil bath. After adding TEOS, stir for about 1 hour to allow TEOS and P123 to form micelles, and then add MPTMS (3-mercaptopropyl) trimethoxysilane (95% Aldrich). The molar ratio of TEOS: MPTMS = 9: 1 was used as the molar ratio of MPTMS to TEOS.

모든 반응 물질을 혼합한 후 40 ℃에서 20 시간 동안 기계적 교반과 함께 반응시키고 반응기를 밀폐된 상태에서 100 ℃로 24시간 보관하였다. 반응이 끝나면 고체 생성물이 형성되는데 완성된 고체 생성물을 필터를 통해 거르고 100 ℃에서 24시간 건조시켰다. 건조가 완료되면 제조된 고체 생성물을 에탄올이 들어있는 용기에 넣고 교반기를 사용하여 4 시간 동안 세척하였다. 4 시간 동안 세척 후 충분히 건조시켜 에탄올을 모두 제거하고 500 ℃에서 열처리하여 남아있는 P123을 제거하였다. 건조시키지 않고 승온시키게 되면 고체 생성물이 모두 탄화될 수 있으므로 건조 전 무게와 건조 후 무게를 측정하여 더 이상 무게가 줄어들지 않을 때까지 건조해야하며, P123은 분산제의 역할이 끝났기 때문에 승온을 통하여 제거하였다. All the reactants were mixed and reacted with mechanical stirring at 40 ° C for 20 hours, and the reactor was kept at 100 ° C for 24 hours in a sealed state. Upon completion of the reaction, a solid product was formed. The resulting solid product was filtered through a filter and dried at 100 ° C for 24 hours. When drying was completed, the solid product was placed in a container containing ethanol and washed with a stirrer for 4 hours. After washing for 4 hours, it was sufficiently dried to remove all of the ethanol, and the remaining P123 was removed by heat treatment at 500 ° C. If the temperature is raised without drying, all the solid product may be carbonized. Therefore, the weight before drying and the weight after drying should be dried until the weight is no longer reduced. P123 is removed through heating due to the end of the dispersing agent.

P123까지 제거가 끝난 생성물의 질량을 측정하여 생성물 질량 0.3 g당 10 g의 30 wt% H2O2 수용액으로 실온에서 24 시간 동안 산화시켜서 표면이 설폰화된 실리카를 얻을 수 있었다. 이 물질을 물과 에탄올로 수차례 세척한 후 100 ℃에서 24시간 건조시켜, 술폰화된 다공성 실리카 입자를 얻었다. The weight of the removed product was measured up to P123, and the surface sulfonated silica was obtained by oxidizing it with 10 g of 30 wt% H 2 O 2 aqueous solution per 0.3 g of product mass for 24 hours at room temperature. This material was washed several times with water and ethanol, and then dried at 100 ° C for 24 hours to obtain sulfonated porous silica particles.

② 불소계 고분자인 나피온 용액 제조② Manufacture of Nafion solution, a fluorine-based polymer

불소계 고분자인 상용 나피온 용액을 캐스팅하여 얻은 recast Nafion을 극성 용매에 10wt% 농도로 용해시켜 불소계 고분자 용액을 준비하였다. The fluorochemical polymer solution was prepared by dissolving recast Nafion obtained by casting a commercial Nafion solution, which is a fluoropolymer, into a polar solvent at a concentration of 10 wt%.

③ 코팅용 고분자용액 제조③ Preparation of polymer solution for coating

불소계 고분자 용액 97중량%에 술폰화된 실리카 3중량%를 혼합하여 코팅용 고분자용액을 준비하였다.A polymer solution for coating was prepared by mixing 3 wt% of sulfonated silica with 97 wt% of a fluorinated polymer solution.

④ 코팅층 형성④ Coating Layer Formation

sPPO와 UAN 용액으로 함침된 다공성 함침막에 술폰화된 실리카가 분산된 나피온 용액으로 코팅 및 건조하여 함침층 상에 코팅층을 형성하였다. The porous impregnated membrane impregnated with sPPO and UAN solution was coated with Nafion solution in which sulfonated silica was dispersed and dried to form a coating layer on the impregnated layer.

4. 고분자전해질 다공성복합막 형성4. Polymer Electrolyte Porous Composite Membrane Formation

코팅층이 형성된 후 50 ℃ 오븐에서 24시간 동안 건조한 다음, 증류수에 함침시켜 복합막 전구체를 얻었으며, 이렇게 얻어진 복합막 전구체를 40 ℃에서 10 ℃/hr의 속도로 130 ℃ 까지 승온하면서 진공오븐에서 24시간 동안 건조하여 고분자전해질 다공성복합막1을 얻었다.
After the coating layer was formed, it was dried in an oven at 50 ° C. for 24 hours, and then impregnated with distilled water to obtain a composite membrane precursor. The composite membrane precursor thus obtained was heated at 40 ° C. at a rate of 10 ° C./hr to 130 ° C., And dried to obtain a polymer electrolyte porous composite membrane 1.

실시예 2Example 2

다공성지지체 막으로 하기와 같은 방법으로 제조된 Poly vinylidene difluoride(PVdF)막을 사용한 것을 제외하면 실시예 1과 동일한 방법으로 고분자전해질 다공성복합막2를 얻었다. The polyelectrolyte porous composite membrane 2 was obtained in the same manner as in Example 1, except that a polyvinylidene difluoride (PVdF) membrane prepared by the following method was used as the porous support membrane.

PVdF를 DMF 용매에 15% 농도로 용해하고, 닥터블레이드로 유리판 위에 캐스팅하였다. 90도 오븐에서 1-4분 동안 용매를 일부 제거한 후, 기공생성을 위해 비용제인 DI water 수조에 담궜다. 6 시간 후, PVdF 막을 메탄올 용액으로 세척하고 건조하여 잔존 용매를 제거함으로서 다공성 PVdF 막을 제조하였다.
PVdF was dissolved in a DMF solvent at a concentration of 15% and cast on a glass plate with a doctor blade. After partial removal of the solvent for 1 to 4 minutes in a 90 ° oven, the solution is dipped in a DI water bath for cost-effective production. After 6 hours, the PVdF membrane was washed with a methanol solution and dried to remove the residual solvent, thereby preparing a porous PVdF membrane.

실시예 3Example 3

다공성지지체 막으로 하기와 같은 방법으로 제조된 Poly phenylene oxide (PPO)막을 사용한 것을 제외하면 실시예 1과 동일한 방법으로 고분자전해질 다공성복합막3을 얻었다. A polymer electrolyte porous composite membrane 3 was obtained in the same manner as in Example 1, except that a poly phenylene oxide (PPO) membrane prepared by the following method was used as the porous support membrane.

PPO를 클로로포름 용매에 15% 농도로 용해하고, 닥터블레이드로 유리판 위에 캐스팅하였다. 90도 오븐에서 1-4분 동안 용매를 일부 제거한 후, 기공생성을 위해 비용제인 DI water 수조에 담궜다. 6 시간 후, PPO 막을 메탄올 용액으로 세척하고 건조하여 잔존 용매를 제거함으로서 다공성 PPO 막을 제조하였다.PPO was dissolved in a chloroform solvent at a concentration of 15% and cast on a glass plate with a doctor blade. After partial removal of the solvent for 1 to 4 minutes in a 90 ° oven, the solution is dipped in a DI water bath for cost-effective production. After 6 hours, the PPO membrane was washed with a methanol solution and dried to remove the residual solvent, thereby preparing a porous PPO membrane.

비교예Comparative Example

황산용액, 과산화수소수용액, 증류수에서 전처리한 나피온 막을 비교예 막으로 준비하였다.Sulfuric acid solution, aqueous hydrogen peroxide solution, and distilled water.

실험예 1Experimental Example 1

실시예 1에서 얻어진 다공성 지지체막의 표면 모폴로지 및 고분자전해질 다공성복합막1의 단면 모폴로지를 SEM으로 분석한 결과를 각각 도 1과 도 2 및 도 3에 나타내었다. The results of SEM analysis of the surface morphology of the porous support membrane obtained in Example 1 and the cross-sectional morphology of the polymer electrolyte porous composite membrane 1 are shown in FIGS. 1, 2 and 3, respectively.

도 1로부터 다공성 지지체막인 다공성 테프론 고분자 막의 표면에 형성된 수 ㎛ 크기의 기공을 확인할 수 있었다. 1, pores having a size of several mu m formed on the surface of the porous Teflon polymer membrane as the porous support membrane can be confirmed.

또한, 다공성 테프론 고분자막에 함침층 및 코팅층이 형성된 고분자전해질 다공성복합막1의 표면과 단면을 도 2 및 도 3에서 관찰할 수 있다. 도시된 바와 같이 함침층 및 코팅층에 의해 다공성 지지체 막의 기공 내부까지 완전히 채워진 것을 확인할 수 있다.
2 and 3, the surface and cross section of the polymer electrolyte porous composite membrane 1 having the impregnated layer and the coating layer formed on the porous Teflon polymer membrane can be observed. As shown in the figure, the impregnation layer and the coating layer completely fill the pores of the porous support membrane.

실험예 2Experimental Example 2

실시예 1 내지 3에서 얻어진 고분자전해질 다공성복합막1 내지 3과 비교에에서 얻어진 비교예 막을 대상으로 함수량, 치수변화율, 수소이온 전도도(Proton conductivity), 바나듐 투과도 및 환원율을 측정하였으며, 그 결과를 표 1에 나타내었다. 함수량과 치수변화율은 함습 전후의 중량 및 치수 비율을 기준으로 계산하였다. 상기 수소이온 전도도는 임피던스 스펙트로스코피로 측정하였으며, 임피던스 측정 조건은 주파수를 1 Hz에서 1 MHz까지 범위로 설정하였으며, 인플레인(in-plane) 방식으로 측정하였고, 모든 실험은 시료가 완전히 함습된 상태에서 진행되었다. 내구성 판단을 위한 바나듐 환원율 실험은 40℃의 0.1M V5+, 5M H2SO4용액에 이온교환막을 침지하여 시간별로 용액을 샘플링하여 V5+가 V4+로 환원된 양을 UV-VIS로 측정하여 확인하였다. The water content, the dimensional change, the proton conductivity, the vanadium permeability and the reduction ratio were measured for the polymer electrolyte membrane porous composite membranes 1 to 3 obtained in Examples 1 to 3 and the comparative membrane obtained in Comparative Example. Respectively. Moisture content and dimensional change ratio were calculated based on weight and size ratio before and after humidification. The hydrogen ion conductivity was measured by impedance spectroscopy. Impedance measurement conditions were set in the range of 1 Hz to 1 MHz and were measured in an in-plane manner. All experiments were performed in a state where the sample was completely humidified . The vanadium reduction rate for the durability test was determined by measuring the amount of V5 + reduced to V4 + by UV-VIS by immersing the ion exchange membrane in 0.1M V5 +, 5M H2SO4 solution at 40 ℃ and sampling the solution over time.

구분division 함습량
(% at RT)
Humidity
(% at RT)
치수변화율
(% at RT)
Dimensional change rate
(% at RT)
수소이온 전도도 (S/cm at RT)Hydrogen ion conductivity (S / cm at RT) 바나듐 투과도
(m2/s at RT)
Vanadium permeability
(m 2 / s at RT)
Fenton test 잔량 (1hr)Fenton test remaining (1hr)
다공성
복합막 1
Porous
Composite membrane 1
1313 66 0.0130.013 0.9x10-11 0.9x10 -11 0.00100.0010
다공성
복합막 2
Porous
Composite membrane 2
1414 88 0.0110.011 0.9x10-11 0.9x10 -11 0.00120.0012
다공성
복합막 3
Porous
Composite membrane 3
1616 1111 0.0120.012 1.0x10-11 1.0x10 -11 0.00150.0015
비교예 막Comparative Example Film 2525 1515 0.0710.071 2.5x10-11 2.5x10 -11 0.00150.0015

표 1로부터, 본 발명의 고분자전해질 다공성 복합막이 상용의 나피온막과 비교하여 함수량, 치수변화율, 수소이온 전도도(Proton conductivity), 바나듐 투과도 및 환원율 면에서 적어도 동등하거나 대부분은 현저히 우수한 특성을 갖는 것을 알 수 있다.
It can be seen from Table 1 that the polymer electrolyte porous composite membrane of the present invention has at least the same or substantially superior characteristics in terms of water content, dimensional change rate, proton conductivity, vanadium permeability, and reduction ratio as compared with a commercially available nafion membrane Able to know.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (20)

다공성지지체 막;
상기 다공성지지체 막을 둘러싸서 형성되는 함침층; 및
상기 함침층 상에 형성되는 코팅층;을 포함하는데,
상기 함침층은 술폰화고분자 및 양친성고분자를 포함하여 구성되는 것을 특징으로 하는 고분자전해질 다공성복합막.
A porous support membrane;
An impregnation layer formed by surrounding the porous support membrane; And
And a coating layer formed on the impregnated layer,
Wherein the impregnated layer comprises a sulfonated polymer and an amphiphilic polymer.
제 1 항에 있어서,
상기 다공성 지지체 막은 폴리테트라플루오로에틸렌(PTFE), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리페닐렌옥사이드(PPO), 폴리벤지미다졸(PBI), 폴리이미드(PI), 폴리비닐리덴플루오라이드(PVdF), 폴리비닐클로라이드(PVC), 또는 이들의 단량체가 중합된 공중합고분자로 구성된 그룹에서 선택되는 하나 이상의 고분자물질을 포함하고 직경이 10 nm 이상인 기공이 형성된 것을 특징으로 하는 고분자전해질 다공성복합막.
The method according to claim 1,
The porous support film may be formed of at least one of polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polyphenylene oxide (PPO), polybenzimidazole (PBI), polyimide (PI), polyvinylidene fluoride Wherein the polymer electrolyte comprises at least one polymer material selected from the group consisting of polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), or copolymerized polymers obtained by polymerizing monomers thereof, and has pores having a diameter of 10 nm or more. membrane.
삭제delete 제 1 항에 있어서,
상기 술폰화고분자는 나피온(Nafion), 플레미온, 아시플렉스, 폴리테트라플루오르에틸렌(PTFE) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 폴리비닐리덴디플루오라이드(PVdF) 주쇄에 폴리스타일렌술포닉엑시드(PSSA)를 그라프트 시킨 고분자, 술폰화된 폴리술폰, 술폰화된 폴리아릴렌에테르술폰, 술폰화된 폴리에테르에테르술폰, 술폰화된 폴리에테르술폰, 술폰화된 폴리이미드, 술폰화된 폴리이미다졸, 술폰화된 폴리벤지이미다졸, 술폰화된 폴리에테르벤지이미다졸, 술폰화된 폴리아릴렌에테르케톤, 술폰화된 폴리에테르에테르케톤, 술폰화된 폴리에테르케톤, 술폰화된 폴리에테르케톤케톤, 술폰화된 폴리스타이렌, 술폰화된 폴리페닐렌옥사이드, 술폰화된 폴리다이메틸페닐렌옥사이드, 술폰화된 폴리다이에틸페닐렌옥사이드, 술폰화된 폴리다이페닐페닐렌옥사이드, 브롬화된 폴리페닐렌옥사이드 술폰산, 브롬화 폴리다이메틸페닐렌옥사이드 술폰산, 브롬화 폴리다이에틸페닐렌옥사이드 술폰산, 브롬화 폴리다이페닐페닐렌옥사이드 술폰산로 구성된 그룹에서 선택되는 어느 하나 이상인 것을 특징으로 하는 고분자전해질 다공성복합막.
The method according to claim 1,
The sulfonated polymer may be a polymer obtained by grafting polystyrene sulfonic acid (PSSA) to the main chain of Nafion, Flemion, Asiflex, polytetrafluoroethylene (PTFE), polyvinylidene difluoride (PVdF) A polymer obtained by grafting polystyrenesulfonic acid (PSSA), a sulfonated polysulfone, a sulfonated polyarylene ether sulfone, a sulfonated polyether ether sulfone, a sulfonated polyether sulfone, a sulfonated polyimide , Sulfonated polyimidazoles, sulfonated polybenzimidazoles, sulfonated polyether benzimidazoles, sulfonated polyarylene ether ketones, sulfonated polyether ether ketones, sulfonated polyether ketones, alcohols Sulfonated polyphenylene oxide, sulfonated polyetherketone ketone, sulfonated polystyrene, sulfonated polyphenylene oxide, sulfonated polydimethylphenylen oxide, sulfonated polydiethylphenylene oxide, sulphonated polydimethylphenylene oxide, And at least one member selected from the group consisting of polyphenylene oxide, polyphenylphenylene oxide, polyphenylphenylene oxide, brominated polyphenylene oxide sulfonic acid, brominated polydimethylphenylene oxide sulfonic acid, brominated polydiethylphenylene oxide sulfonic acid and brominated polydiphenylphenylene oxide sulfonic acid Wherein the polymer electrolyte membrane is a porous membrane.
제 1 항에 있어서,
상기 양친성 고분자는 하이드록실 그룹을 갖는 적어도 하나 이상 친수성 세그먼트와 소수성 세그먼트를 동시에 갖는 것을 특징으로 하는 고분자전해질 다공성복합막.
The method according to claim 1,
Wherein the amphiphilic polymer has at least one hydrophilic segment having a hydroxyl group and a hydrophobic segment at the same time.
제 1 항에 있어서,
상기 술폰화 고분자는 수평균 분자량(Mn)이 1,000 ~ 1,000,000이고, 중량평균 분자량(Mw)은 10,000 ~ 1,000,000인 것을 특징으로 하는 고분자전해질 다공성복합막.
The method according to claim 1,
Wherein the sulfonated polymer has a number average molecular weight (Mn) of 1,000 to 1,000,000 and a weight average molecular weight (Mw) of 10,000 to 1,000,000.
다공성지지체 막;
상기 다공성지지체 막을 둘러싸서 형성되는 함침층; 및
상기 함침층 상에 형성되는 코팅층;을 포함하는데,
상기 코팅층은 불소계고분자 및 나노 포러스 무기입자를 포함하는 것을 특징으로 하는 고분자전해질 다공성복합막.
A porous support membrane;
An impregnation layer formed by surrounding the porous support membrane; And
And a coating layer formed on the impregnated layer,
Wherein the coating layer comprises a fluoropolymer and nanoporous inorganic particles.
제 7 항에 있어서,
상기 나노 포러스 무기입자는 실리카, 알루미나, 지르코니아, 제올라이트, 티타늄, 그래핀옥사이드로 구성된 그룹에서 선택된 어느 하나 이상의 물질에 기공이 형성된 것을 특징으로 하는 고분자전해질 다공성복합막.
8. The method of claim 7,
Wherein the nanoporous inorganic particles have pores formed in at least one material selected from the group consisting of silica, alumina, zirconia, zeolite, titanium, and graphen oxide.
제 7 항에 있어서,
상기 나노 포러스 무기입자는 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 것이고, 입자의 기공 지름이 0.1 내지 100 nm인 것을 특징으로 하는 고분자전해질 다공성복합막.
8. The method of claim 7,
Wherein the nanoporous inorganic particles have a -OH group in the functional groups of the surface partly substituted with -SO 3 H groups, and the pore diameter of the particles is 0.1 to 100 nm.
제 7 항에 있어서,
상기 불소계 고분자는 나피온, 아시플렉스, 플레미온, 폴리비닐리덴플루오라이드, 헥사플루오로프로필렌, 트리플루오로에틸렌, 폴리테트라플루오로에틸렌로 구성된 그룹에서 선택되는 어느 하나 이상인 것을 특징으로 하는 고분자전해질 다공성복합막.
8. The method of claim 7,
Wherein the fluorine-based polymer is at least one selected from the group consisting of Nafion, Asiflex, Flemion, polyvinylidene fluoride, hexafluoropropylene, trifluoroethylene and polytetrafluoroethylene. Composite membrane.
제 1 항에 있어서,
무가습 상태에서 상기 고분자전해질 다공성복합막의 두께는 5 ~ 500 ㎛인 것을 특징으로 하는 고분자전해질 다공성복합막.
The method according to claim 1,
Wherein the polymer electrolyte porous composite membrane has a thickness of 5 to 500 mu m in a non-humidified state.
다공성지지체 막을 준비하는 단계;
상기 다공성지지체 막에 준비된 함침층용 고분자용액으로 함침층을 형성하는 단계; 및
상기 함침층 상에 준비된 코팅층용 나노입자분산용액으로 코팅층을 형성하는 단계;를 포함하는 고분자전해질 다공성복합막 제조방법.
Preparing a porous support membrane;
Forming an impregnated layer on the porous support membrane with the polymer solution for impregnation layer prepared; And
And forming a coating layer on the impregnated layer with a nanoparticle dispersion solution for a coating layer prepared on the impregnated layer.
제 12 항에 있어서,
상기 다공성지지체 막을 준비하는 단계는 상기 다공성지지체 막을 알코올, 아세톤, 아세트산, 황산, 질산, 염산, 옥살산, 과산화수소수로 구성된 그룹에서 선택되는 하나 이상의 용액으로 세척하는 전처리단계를 포함하는 것을 특징으로 하는 고분자전해질 다공성복합막 제조방법.
13. The method of claim 12,
Wherein the step of preparing the porous support membrane comprises a pretreatment step of washing the porous support membrane with at least one solution selected from the group consisting of alcohol, acetone, acetic acid, sulfuric acid, nitric acid, hydrochloric acid, oxalic acid, hydrogen peroxide solution (Method for manufacturing electrolyte porous composite membrane).
제 12 항에 있어서,
상기 함침층용 고분자용액은 용매에 술폰화고분자 및 양친성고분자가 균일하게 분산된 것을 특징으로 하는 고분자전해질 다공성복합막 제조방법.
13. The method of claim 12,
Wherein the polymer solution for the impregnated layer is prepared by uniformly dispersing a sulfonated polymer and an amphiphilic polymer in a solvent.
제 12항에 있어서,
상기 함침층을 형성하는 단계는 상기 다공성지지체 막을 상기 함침층용 고분자용액에 함침시키는 단계 및 상기 함침된 다공성지지체 막의 양면을 다이캐스팅하는 단계를 포함하는 것을 특징으로 하는 고분자전해질 다공성복합막 제조방법.
13. The method of claim 12,
Wherein the step of forming the impregnated layer comprises impregnating the porous support membrane with the impregnated layer polymer solution and diecasting the both surfaces of the impregnated porous support membrane.
제 12 항에 있어서,
상기 코팅층용 나노입자분산용액은 불소계고분자용액에 나노 포러스 무기입자가 분산된 것을 특징으로 하는 고분자전해질 다공성복합막 제조방법.
13. The method of claim 12,
Wherein the nanoparticle dispersion solution for a coating layer comprises nanoporous inorganic particles dispersed in a fluorinated polymer solution.
제 16 항에 있어서,
상기 나노 포러스 무기입자는 표면의 관능기 중 -OH기가 부분적으로 -SO3H기로 치환된 것이고, 입자의 기공 지름이 0.1 내지 100 nm인 것을 특징으로 하는 고분자전해질 다공성복합막 제조방법.
17. The method of claim 16,
Wherein the nanoporous inorganic particles have a -OH group in the functional groups of the surface partially substituted with -SO 3 H groups, and the pore diameter of the particles is 0.1 to 100 nm.
제 1 항, 제 2 항, 제 4 항 내지 제 11항 중 어느 한 항의 고분자전해질 다공성복합막 또는 제 12 항 내지 제 17 항 중 어느 한 항의 제조방법으로 제조된 고분자전해질 다공성복합막을 포함하는 에너지 저장장치.
A polymer electrolyte porous composite membrane according to any one of claims 1, 2, 4 to 11 or a polymer electrolyte porous composite membrane prepared by the manufacturing method according to any one of claims 12 to 17, Device.
제 18 항에 있어서,
상기 에너지 저장장치는 이차전지 또는 연료전지인 것을 특징으로 하는 에너지 저장장치.
19. The method of claim 18,
Wherein the energy storage device is a secondary battery or a fuel cell.
제 1 항, 제 2 항, 제 4 항 내지 제 11항 중 어느 한 항의 고분자전해질 다공성복합막 또는 제 12 항 내지 제 17 항 중 어느 한 항의 제조방법으로 제조된 고분자전해질 다공성복합막을 포함하는 수처리장치. A water treatment apparatus comprising a polymer electrolyte porous composite membrane according to any one of claims 1, 2, 4 to 11 or a polymer electrolyte porous composite membrane manufactured by a manufacturing method according to any one of claims 12 to 17 .
KR20140108421A 2014-08-20 2014-08-20 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite KR101494289B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20140108421A KR101494289B1 (en) 2014-08-20 2014-08-20 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20140108421A KR101494289B1 (en) 2014-08-20 2014-08-20 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Publications (1)

Publication Number Publication Date
KR101494289B1 true KR101494289B1 (en) 2015-02-17

Family

ID=52593942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140108421A KR101494289B1 (en) 2014-08-20 2014-08-20 Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite

Country Status (1)

Country Link
KR (1) KR101494289B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105419140A (en) * 2016-01-25 2016-03-23 深圳市摩天氟碳科技有限公司 Building heat preservation material with excellent fireproof performance
WO2017175891A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2017175890A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2017175893A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane having asymmetric density gradient for fuel cell, method for manufacturing same, membrane-electrode assembly comprising composite electrolyte membrane having asymmetric density gradient for fuel cell, and fuel cell comprising same
KR101827897B1 (en) 2017-02-20 2018-02-12 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
KR101851643B1 (en) * 2017-02-20 2018-04-25 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
KR20180052208A (en) * 2016-11-10 2018-05-18 전남대학교산학협력단 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same
KR101914277B1 (en) * 2015-07-31 2018-11-01 폴 코포레이션 Hydrophilizing ptfe membranes
WO2019027069A1 (en) * 2017-08-03 2019-02-07 (주)상아프론테크 Fuel cell electrolyte reinforced membrane and manufacturing method therefor
US10236527B2 (en) 2015-01-13 2019-03-19 Korean Institute Of Science And Technology Porous Nafion membrane and method for preparing the same
KR20190045137A (en) * 2019-04-24 2019-05-02 전남대학교산학협력단 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same
KR20200009924A (en) * 2018-07-20 2020-01-30 한국전자통신연구원 The surface treatment method of separator
KR20200097670A (en) * 2018-04-27 2020-08-19 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell coated with nanohole graphene sheet, and method of manufacturing the same
KR20200139460A (en) * 2019-06-04 2020-12-14 경상대학교산학협력단 Anion-exchange composite membrane, preparation method thereof and fuel cell comprising the same
KR20210002166A (en) * 2019-06-26 2021-01-07 전남대학교산학협력단 The organic-inorganic composite electrolyte membrane, a method for producing the same, and an application product including the membrane
CN112290085A (en) * 2020-10-27 2021-01-29 四川东为氢源科技有限公司 Composite solid electrolyte and preparation method thereof
KR20210028611A (en) * 2019-06-26 2021-03-12 전남대학교산학협력단 The organic-inorganic composite electrolyte membrane and an application product including the membrane
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
KR20230055528A (en) * 2021-10-19 2023-04-26 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same
KR20230065523A (en) 2021-11-05 2023-05-12 한국에너지기술연구원 Composite polymer electrolyte membrane for fuel cell comprising antioxidants and method of preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017750A (en) * 2009-08-14 2011-02-22 한국과학기술원 Method for preparation of proton conducting composite membrane using porous matrix with improved hydrophilicity and the proton conducting composite membrane thereof
KR20120128905A (en) * 2011-05-18 2012-11-28 한국화학연구원 Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
KR101403734B1 (en) 2013-06-03 2014-06-03 한국과학기술원 Method for improving long-term performance of polymer electrolyte membrane fuel cell, porous matrix thereof and proton conducting membrane comprising said porous matrix

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017750A (en) * 2009-08-14 2011-02-22 한국과학기술원 Method for preparation of proton conducting composite membrane using porous matrix with improved hydrophilicity and the proton conducting composite membrane thereof
KR20120128905A (en) * 2011-05-18 2012-11-28 한국화학연구원 Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
KR101403734B1 (en) 2013-06-03 2014-06-03 한국과학기술원 Method for improving long-term performance of polymer electrolyte membrane fuel cell, porous matrix thereof and proton conducting membrane comprising said porous matrix

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236527B2 (en) 2015-01-13 2019-03-19 Korean Institute Of Science And Technology Porous Nafion membrane and method for preparing the same
KR101914277B1 (en) * 2015-07-31 2018-11-01 폴 코포레이션 Hydrophilizing ptfe membranes
CN105419140A (en) * 2016-01-25 2016-03-23 深圳市摩天氟碳科技有限公司 Building heat preservation material with excellent fireproof performance
WO2017175893A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane having asymmetric density gradient for fuel cell, method for manufacturing same, membrane-electrode assembly comprising composite electrolyte membrane having asymmetric density gradient for fuel cell, and fuel cell comprising same
WO2017175890A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
WO2017175891A1 (en) * 2016-04-05 2017-10-12 (주)상아프론테크 Composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for manufacturing composite electrolyte membrane for fuel cell, membrane-electrode assembly comprising same, and fuel cell comprising same
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
KR20180052208A (en) * 2016-11-10 2018-05-18 전남대학교산학협력단 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same
KR101995039B1 (en) * 2016-11-10 2019-07-01 한국전력공사 Brominated polyphenylenesulfide based by polyphenylenesulfide, method for producing the same, brominated and sulfonated polyphenylenesulfide and manufacturing method using the same
KR101827897B1 (en) 2017-02-20 2018-02-12 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
KR101851643B1 (en) * 2017-02-20 2018-04-25 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
US10818950B2 (en) 2017-02-20 2020-10-27 Global Frontier Center For Multiscale Energy Systems Composite polymer electrolyte membrane for fuel cell, and method of manufacturing the same
WO2019027069A1 (en) * 2017-08-03 2019-02-07 (주)상아프론테크 Fuel cell electrolyte reinforced membrane and manufacturing method therefor
KR20200097670A (en) * 2018-04-27 2020-08-19 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell coated with nanohole graphene sheet, and method of manufacturing the same
KR102271430B1 (en) * 2018-04-27 2021-07-01 한국과학기술연구원 Composite polymer electrolyte membrane for fuel cell coated with nanohole graphene sheet, and method of manufacturing the same
KR20200009924A (en) * 2018-07-20 2020-01-30 한국전자통신연구원 The surface treatment method of separator
KR102583829B1 (en) * 2018-07-20 2023-10-05 한국전자통신연구원 The surface treatment method of separator
KR20190045137A (en) * 2019-04-24 2019-05-02 전남대학교산학협력단 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same
KR102089236B1 (en) * 2019-04-24 2020-03-16 한국전력공사 Brominated polyphenylenesulfide based by polyphenylenesulfide and method for producing the same
KR102260082B1 (en) * 2019-06-04 2021-06-03 경상국립대학교산학협력단 Anion-exchange composite membrane, preparation method thereof and fuel cell comprising the same
KR20200139460A (en) * 2019-06-04 2020-12-14 경상대학교산학협력단 Anion-exchange composite membrane, preparation method thereof and fuel cell comprising the same
KR20210028611A (en) * 2019-06-26 2021-03-12 전남대학교산학협력단 The organic-inorganic composite electrolyte membrane and an application product including the membrane
KR102265816B1 (en) * 2019-06-26 2021-06-17 전남대학교산학협력단 A method for producing an organic-inorganic composite electrolyte membrane and an application product including the membrane
KR20210002166A (en) * 2019-06-26 2021-01-07 전남대학교산학협력단 The organic-inorganic composite electrolyte membrane, a method for producing the same, and an application product including the membrane
KR102363625B1 (en) * 2019-06-26 2022-02-15 전남대학교산학협력단 The organic-inorganic composite electrolyte membrane and an application product including the membrane
CN112290085A (en) * 2020-10-27 2021-01-29 四川东为氢源科技有限公司 Composite solid electrolyte and preparation method thereof
KR20230055528A (en) * 2021-10-19 2023-04-26 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same
KR102640709B1 (en) * 2021-10-19 2024-02-27 주식회사 에이런 Manufacturing method of pvdf composite separator membrane and pvdf composite separator membrane manufactured using the same
KR20230065523A (en) 2021-11-05 2023-05-12 한국에너지기술연구원 Composite polymer electrolyte membrane for fuel cell comprising antioxidants and method of preparing the same

Similar Documents

Publication Publication Date Title
KR101494289B1 (en) Polymer electrolyte composite, method for producing the same and energy storage comprising the polymer electrolyte composite
Bose et al. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
JP3992040B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
KR101684036B1 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
CN108779275B (en) Bipolar ionomer membranes
WO2013100087A1 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
US10003096B2 (en) Polymer electrolyte membrane, membrane-electrode assembly comprising the same and fuel cell comprising the same
Yu et al. Bilayer designed hydrocarbon membranes for all-climate vanadium flow batteries to shield catholyte degradation and mitigate electrolyte crossover
US10211474B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
KR101315744B1 (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
Beydaghi et al. Enhancing the performance of poly (phthalazinone ether ketone)-based membranes using a new type of functionalized TiO2 with superior proton conductivity
KR101758237B1 (en) Ion Exchange Membrane and Method for Manufacturing the Same
Eskitoros-Togay et al. Fabrication of PVP/sulfonated PES electrospun membranes decorated by sulfonated halloysite nanotubes via electrospinning method and enhanced performance of proton exchange membrane fuel cells
JP6150616B2 (en) Polymer electrolyte composition and polymer electrolyte membrane
Goo et al. Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization
Barjola et al. Novel SPEEK-ZIF-67 proton exchange nanocomposite membrane for PEMFC application at intermediate temperatures
Asghar et al. A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells
Hu et al. Nanoscale solid superacid-coupled polybenzimidazole membrane with high ion selectivity for flow batteries
JP6502500B2 (en) Porous support excellent in packing characteristics of ion conductor, method for producing the same, and reinforced membrane containing the same
KR20150026088A (en) Polymer electrolyte composite membrane, method for fabricating the smae and energy storage device comprising the same
CN108070097B (en) Block copolymer, ion exchange membrane, and method for producing same
KR20150060394A (en) Polymer electrolyte composite membrane with enhanced ionic conductivity and permeability, method for fabricating the same and redox flow battery comprising the same
Ma The fundamental studies of polybenzimidazole/phosphoric acid polymer electrolyte for fuel cells
JP2019102225A (en) Separating membrane for redox flow battery and redox flow battery
WO2017218781A1 (en) Ion exchange membrane and method of producing same, membrane electrode assembly, and redox flow battery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200121

Year of fee payment: 6