Nothing Special   »   [go: up one dir, main page]

KR101475681B1 - Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles - Google Patents

Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles Download PDF

Info

Publication number
KR101475681B1
KR101475681B1 KR1020097015447A KR20097015447A KR101475681B1 KR 101475681 B1 KR101475681 B1 KR 101475681B1 KR 1020097015447 A KR1020097015447 A KR 1020097015447A KR 20097015447 A KR20097015447 A KR 20097015447A KR 101475681 B1 KR101475681 B1 KR 101475681B1
Authority
KR
South Korea
Prior art keywords
catalyst
ammonia
aqueous solution
coating
oxidation
Prior art date
Application number
KR1020097015447A
Other languages
Korean (ko)
Other versions
KR20090092847A (en
Inventor
베네딕트 함머
한스-페터 크림머
베른트 슐츠
에버하르트 야콥
Original Assignee
알즈켐 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알즈켐 아게 filed Critical 알즈켐 아게
Publication of KR20090092847A publication Critical patent/KR20090092847A/en
Application granted granted Critical
Publication of KR101475681B1 publication Critical patent/KR101475681B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/106Peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/25Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ammonia generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to the use of aqueous guanidinium formiate solutions, optionally combined with urea and/or ammonia and/or ammonium salts, for the selective catalytic reduction of nitrogen oxides using ammonia in exhaust gases of vehicles. The inventive guanidinium formiate solutions enable a reduction of the nitrogen oxides by approximately 90%. Furthermore, said guanidinium formiate solutions can enable an increase in the ammonia forming potential from 0.2 kg, corresponding to prior art, up to 0.4 kg ammonia per liter of guanidinium formiate, along with freezing resistance (freezing point below -25° C.). The risk of corrosion of the inventive guanidinium formiate solutions is also significantly reduced compared to that of solutions containing ammonium formiate.

Description

차량의 배기 가스 중의 질소 산화물의 선택적 촉매 환원을 위한 구아니디늄 포르메이트 수용액의 용도{Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles} Use of an aqueous solution of guanidinium formate for the selective catalytic reduction of nitrogen oxides in the exhaust gas of a vehicle.

본 발명은 자동차의 배기 가스 중의 질소 산화물의 선택적 촉매 환원을 위한 구아니디늄 포르메이트 수용액의 용도에 관한 것이고, 여기서 상기 구아니디늄 포르메이트 용액은 증발 및 촉매 분해에 의해 암모니아를 생성하고, 이 암모니아는 질소 산화물의 후속 선택적 촉매 환원을 위한 환원제로서 작용한다.The present invention relates to the use of an aqueous solution of guanidinium formate for the selective catalytic reduction of nitrogen oxides in exhaust gases of automobiles, wherein said guanidinium formate solution produces ammonia by evaporation and catalytic cracking, Acts as a reducing agent for subsequent selective catalytic reduction of nitrogen oxides.

선행기술에 의하면, 암모니아(NH3)는 자동차 배기 가스 중의 질소 산화물의 선택적 촉매 환원(SCR)에서 환원제로서 작용하고, 연소 시스템 및 내연기관의 배기 가스 라인 내로, 특히 자동차의 내연기관의 배기 가스 라인 내로, 특정 SCR 촉매의 상류 또는 병렬적으로 흐를 수 있고 머플러(muffler) 내에 통합될 수 있는 일군의 SCR 촉매 모듈의 상류에 도입되어, SCR 촉매에서 배기가스에 존재하는 질소 산화물의 환원을 일으킨다. SCR은 산소의 존재 하에서 질소 산화물(NOX)의 선택적 촉매 환원을 의미한다. According to the prior art, ammonia (NH 3 ) acts as a reducing agent in the selective catalytic reduction (SCR) of nitrogen oxides in automotive exhaust gases and into exhaust lines of combustion systems and internal combustion engines, Into a group of SCR catalyst modules that can flow upstream or in parallel with a particular SCR catalyst and can be incorporated into a muffler to cause the reduction of nitrogen oxides present in the exhaust gas in the SCR catalyst. SCR means selective catalytic reduction of nitrogen oxides (NO x ) in the presence of oxygen.

암모니아의 생성을 위한, 특히 차량에서, 다양한 액체 및 고체 암모니아 전구체 물질은 오래전부터 알려졌으며, 이하 상세히 기술된다.Various liquid and solid ammonia precursor materials for the production of ammonia, especially in vehicles, have long been known and are described in detail below.

유틸리티 차량에서, 요소 32.5 중량 %의 함량, -11 ℃의 빙점 및 0.2kg/kg의 암모니아-형성 포텐셜을 가진 물 중 요소의 공융 수용액(AdBlueTM)을 암모니아 전구체 물질로서 사용하는 것이 확립되어있다. -30℃ 까지의 온도, 즉, 동질(winter quality)의 디젤 연료의 냉류 플러깅 포인트(cold flow plugging point(CFPP, 더 낮은 운전 온도))까지 온도에서 SCR 시스템의 운전을 위해, 운전 결함을 일으키기 쉬운 탱크, 라인 및 밸브의 비교적 복잡한 추가 가열이 겨울의 추운 기후에서 Adblue 사용 및 Adblue 물류를 위하여 필요하다.In a utility vehicle, it has been established to use the eutectic aqueous solution of urea in water (AdBlue TM ) with an ammonia-forming potential of -11 캜 and a freezing point of -11 캜 with an element content of 32.5% by weight as the ammonia precursor material. For operation of the SCR system at temperatures up to -30 ° C, ie at temperatures up to the cold flow plugging point (CFPP, lower operating temperature) of winter quality diesel fuel, The relatively complicated additional heating of tanks, lines and valves is needed for Adblue use and Adblue logistics in cold winter climates.

NOX의 촉매 환원을 위해 요구되는 암모니아는 요소의 열 분해에서 형성된다. 이 목적을 위해, 하기의 반응은 적절하다: 요소는 가열되면 증발되지 않고 분해되어 주로 화학식 [1]에 따라 이소시안산(isocyanic acid) 및 암모니아(NH3)를 제공한다.Ammonia required for the catalytic reduction of NO x is formed in the thermal decomposition of the urea. For this purpose, the following reaction is appropriate: the element decomposes without being evaporated upon heating, providing mainly isocyanic acid and ammonia (NH 3 ) according to formula [1].

(H2N2)CO → HNCO + NH3 [1](H 2 N 2 ) CO → HNCO + NH 3 [1]

이소시안산은 시아누르산(cyanuric acid)과 같은 비휘발성 물질로 쉽게 중합될 수 있다. 이것은 밸브 상, 인젝션 노즐 상 및 배기 가스 파이프 내에 운전에 파괴적인 부착물을 야기할 수 있다. Isocyanic acid can be easily polymerized with a nonvolatile material such as cyanuric acid. This can result in destructive deposits on the valve, on the injection nozzle, and in operation in the exhaust pipe.

이소시안산(HNCO)은 화학식 [2]에 따라 물의 존재 하에 암모니아(NH3)와 이 산화탄소(CO2)로 가수분해된다. Isocyanic acid (HNCO) is hydrolyzed to ammonia (NH 3 ) and carbon dioxide (CO 2 ) in the presence of water according to the formula [2].

HNCO + H2O → NH2 + CO2 [2]HNCO + H 2 O → NH 2 + CO 2 [2]

반응 [2]는 가스 상에서 매우 천천히 진행된다. 대조적으로, 금속 산화물 및/또는 제올라이트 촉매 상에서는 매우 빨리 진행되고, 바나듐 산화물, 텡스텐 산화물 및 티타늄 산화물의 혼합 산화물에 기초한 SCR 촉매와 같이 그들의 WO3 함량의 결과 강산성인 금속 산화물 촉매에서는 다소 더 천천히 진행된다. Reaction [2] proceeds very slowly in the gas phase. In contrast, the metal oxide and / or zeolite catalyst proceeds very rapidly and progresses somewhat more slowly in the metal oxides catalysts of the WO 3 content of the resultant strong acid, such as SCR catalysts based on mixed oxides of vanadium oxide, tungsten oxide and titanium oxide do.

자동차에 연결된 요소-SCR 촉매 시스템의 공지의 응용분야에서, 엔진 배기 가스는 일반적으로 반응 [1]에 따른 요소의 열분해를 위해 그의 열 함량을 활용하기 위해 일반적으로 이용된다. 원칙적으로, 반응[1]은 SCR 촉매의 상류와 같이 초기에 진행될 수 있으나, 한편 반응 [2]는 촉매적으로 가속화되어야 한다. 원칙적으로 반응 [1] 및 [2]는 SCR 촉매 상에서 또한 진행될 수 있고, SCR 촉매의 활성은 그 결과 감소된다.In the known application of element-SCR catalytic systems connected to automobiles, engine exhaust gases are generally used to utilize their heat content for pyrolysis of the elements according to reaction [1]. In principle, reaction [1] may proceed initially, such as upstream of the SCR catalyst, while reaction [2] must be catalytically accelerated. In principle, reactions [1] and [2] can also proceed on the SCR catalyst, and the activity of the SCR catalyst is consequently reduced.

추운 기후에 있는 국가의 경우, 부동(freezeproof) 암모니아 전구체 물질을 사용할 수 있는 것이 유리하다. 물 중의 요소 용액에 암모니아 포르메이트의 첨가는 빙점을 현저하게 낮춘다. 이것은 추가 가열을 불필요하게 만들어 제조 및 물류 비용(logistics costs)에서 상당한 절감을 달성한다. 물 중 암모니아 포르메이트의 26.2% 및 요소 20.1%의 용액은 -30℃의 빙점을 가지며 상품명 Denoxium 30으로 상업적으로 입수가능하며 추운 계절에 AdBlueTM을 유리하게 대체할 수 있다(SAE technical papers 2005-01-1856).For countries in cold climates, it is advantageous to be able to use freezeproof ammonia precursor materials. The addition of ammonia formate to the urea solution in water significantly lowers the freezing point. This makes additional heating unnecessary and achieves significant savings in manufacturing and logistics costs. Solutions of 26.2% and 20.1% of the ammonia formate in water have a freezing point of -30 ° C and are commercially available under the trade name Denoxium 30 and can be advantageously substituted for AdBlue in the cold season (SAE technical papers 2005-01 -1856).

물 중 요소 용액에 암모늄 포르메이트의 첨가는, 물 중 35%의 암모늄 포르메이트와 30%의 요소의 용액 경우에, 암모니아 형성 포텐셜을 0.2kg/kg에서 0.3kg/kg까지 증가하게 한다. 이것은 암모니아 전구체 물질의 한번의 충전으로 절반만큼이나 차량의 도달거리를 증가시키고 승합차에서 점검 간격 사이의 장기간 충전 가능성을 일반적으로 제공한다. 이 조치의 한가지 불리한 점은 -11 내지 -15℃ 범위로 상기 용액의 빙점이 상승하는 것이다(Denoxium January 2005, www.kemira.com).The addition of ammonium formate to the urea solution in water causes the ammonia formation potential to increase from 0.2 kg / kg to 0.3 kg / kg in the case of 35% ammonium formate and 30% urea solution in water. This increases the reach of the vehicle by half as much as a single charge of the ammonia precursor material and generally provides a long-term possibility of charging between check intervals in the van. One disadvantage of this measure is that the freezing point of the solution rises in the range of -11 to -15 [deg.] C (Denoxium January 2005, www.kemira.com ).

EP 487,886 A1은 160 내지 550℃의 온도 범위에서 물 중 요소의 수용액의 가수분해에 의한 암모니아(NH3) 및 이산화탄소(CO2)로 정량적인 분해를 위한 공정을 제시하며, 이 공정에서 결과는 원하지 않은 이소시안산 및 그의 고체 전환 생성물의 형성의 방지이다. 이 공지의 방법에서, 상기 요소 용액은 먼저 배기 가스의 내부 또는 외부에 존재하는 증발기/촉매 상으로 노즐에 의해 분무된다. 후처리를 위해, 형성된 가스 생성물은 암모니아의 정량적인 형성을 달성하기 위해 가수분해 촉매 위로 통과한다. EP 487,886 A1 proposes a process for the quantitative decomposition of ammonia (NH 3 ) and carbon dioxide (CO 2 ) by hydrolysis of an aqueous solution of urea in water at a temperature range of 160 to 550 ° C, Lt; / RTI > acid and its solid conversion product. In this known method, the urea solution is first sprayed by a nozzle onto an evaporator / catalyst existing inside or outside the exhaust gas. For post-treatment, the formed gaseous product passes over the hydrolysis catalyst to achieve quantitative formation of ammonia.

EP 555,746 Al은 증발기가, 그것의 구조에 기인하여, 요소 용액을 균일하게 분포시켜 이 액적을 분해 촉매의 채널 벽(channel walls)과의 접촉을 보장하는 방법을 개시한다. 균일한 분포는 촉매 상의 부착을 막고 과잉 환원제의 슬립(slippage)을 감소시킨다. 요소 계량은 160℃부터의 배기가스 온도에서만 활성화되어야 하는데, 온도가 더 낮을 때는 원하지 않은 부착물이 형성되기 때문이다. EP 555,746 Al discloses a method in which an evaporator uniformly distributes urea solution due to its structure to ensure contact of the liquid droplets with the channel walls of the decomposition catalyst. A uniform distribution prevents adhesion of the catalyst phase and reduces slippage of the excess reducing agent. Element metering should only be activated at exhaust temperatures from 160 ° C, since undesirable deposits form when temperatures are lower.

암모니아 전구체 물질로서 암모늄 포르메이트의 암모니아로의 전환은 수용액 을 뜨거운 배기가스 중으로 분사함으로써 어떤 특별한 전처리 없이 단순한 승화를 통해 가능하다. 불리한 점은 매우 부식성이 강한 포름산을 동시에 방출하는 것이고 250℃ 미만의 배기가스 온도에서 SCR 촉매의 표면 상에 암모늄 포르메이트가 재형성될 수 있는 것이다. SCR 촉매의 기공 시스템은 열적으로 가역적인 방식으로 막힌다.Conversion of ammonium formate to ammonia as an ammonia precursor material is possible by simple sublimation without any particular pretreatment by spraying the aqueous solution into hot exhaust gas. The disadvantage is the simultaneous release of highly corrosive formic acid and the ammonium formate can be reformed on the surface of the SCR catalyst at an exhaust gas temperature below 250 ° C. The pore system of the SCR catalyst is blocked in a thermally reversible manner.

따라서 본 발명의 하나의 목적은 선행기술에 따른 상기한 단점을 가지지 않지만, SCR 공정에 의한 NOX 수준의 환원을 위해 기술적으로 단순한 암모니아의 제조를 가능하게 하고, 상기 분해에서 어떠한 불필요한 부산물을 형성하지 않는 적합한 암모니아 전구체 물질을 제공하는 것이다.It is therefore an object of the present invention to provide a process for the preparation of NO x Level ammonia that is technically simple for reducing ammonia and does not form any unnecessary byproducts in the decomposition.

이 목적은 본 발명에 따라서 암모니아로 자동차 배기가스 중의 질소 산화물의 선택적 촉매 환원을 위해 구아니디늄 포르메이트 수용액을 사용함으로써 달성된다. 바람직하게는 본 발명에 따르면, 구아니디늄 포르메이트 수용액은 선택적으로 요소 및/또는 암모니아 및/또는 암모니아염과 조합되어 사용된다.This object is achieved by using an aqueous solution of guanidinium formate for selective catalytic reduction of nitrogen oxides in automotive exhaust with ammonia in accordance with the present invention. Preferably, according to the present invention, a guanidinium formate aqueous solution is optionally used in combination with urea and / or ammonia and / or ammonia salts.

이것은, 놀랍게도, 본 발명에 따라 사용된 구아니디늄 포르메이트가 선행기술에 비해 더 높은 암모니아 형성 포텐셜을 가진다는 것이 발견되었기 때문이다. 더욱이, 상응하는 구아니디늄 포르메이트 수용액은 기술적으로 단순한 방법으로 증발될 수 있고 배기가스 시스템에서 가능하게는 외피형성(encrustation) 및 차단(blockage)에 이를 수 있는 고체 분해 생성물이 형성되지 않는다.This is because, surprisingly, it has been found that the guanidinium formate used according to the invention has a higher ammonia-forming potential than the prior art. Moreover, the corresponding aqueous solutions of guanidinium formate can be evaporated in a technically simple manner and no solid decomposition products are formed, possibly in the exhaust gas system, which can lead to encrustation and blockage.

암모니아로 자동차의 산소 함유 또는 무산소 배기가스 중의 질소 산화물의 선택적 촉매 환원을 위해, 본 발명에 따르면, 구아니디늄 포르메이트 수용액이 사용되며, 이는 바람직하게는 고형분(구아니디늄 포르메이트 함량) 5 내지 85 중량 %, 특히 30 내지 80 중량 % 및 바람직하게는 55 내지 60 중량 %를 가지며 선택적으로 요소 및/또는 암모니아 및/또는 암모늄염과 조합된다. 비록 구아니디늄 포르메이트 및 요소의 혼합물이 구아니디늄 포르메이트 함량 5 내지 60 중량 % 및 요소 함량 5 내지 35 중량 %, 특히 10 내지 30 중량 %를 가지는 것이 특히 유리하다는 것이 발견되었지만, 구아니디늄 포르메이트와 요소 및 암모니아 또는 암모늄염의 혼합비는 다양한 범위 내에서 변할 수 있다. 또한, 구아니디늄 포르메이트 5 내지 60 중량 % 및 암모니아 또는 암모늄염 5 내지 40 중량 % 함량을 가진 구아니디늄 포르메이트 및 암모니아 또는 암모늄염의 혼합물이 바람직한 것으로 생각된다.For the selective catalytic reduction of nitrogen oxides in oxygen-containing or anoxic exhaust gases of automobiles with ammonia, according to the invention, an aqueous solution of guanidinium formate is used, which is preferably a solid (guanidinium formate content) 85% by weight, in particular from 30 to 80% by weight and preferably from 55 to 60% by weight and optionally in combination with urea and / or ammonia and / or ammonium salts. Although it has been found that it is particularly advantageous to have a mixture of guanidinium formate and urea having 5 to 60 wt% guanidinium formate content and 5 to 35 wt%, especially 10 to 30 wt% urea content, The mixing ratio of formate to urea and ammonia or ammonium salt may vary within a wide range. It is also believed that a mixture of guanidinium formate and ammonia or ammonium salts having 5 to 60% by weight of guanidinium formate and 5 to 40% by weight of ammonia or ammonium salts is preferred.

본 발명에 따라 사용되는 상기 수용액은 상기 용액의 총중량을 기준으로 특히 물 함량 ≥ 5 중량 %, 바람직하게 ≥10 중량 %을 가진다. 물은 바람직하게는 단독 용매 또는 용액 중의 용매의 총중량을 기준으로, ≥50 중량 %, 바람직하게는 ≥80 중량 %, 더 바람직하게는 90 중량 % 의 비율을 가진 적어도 주용매이다.The aqueous solution used according to the invention has a water content of ≥ 5% by weight, preferably ≥10% by weight, based on the total weight of the solution. The water is preferably at least the main solvent having a ratio of? 50 wt%, preferably? 80 wt%, more preferably 90 wt%, based on the total weight of the solvent in the single solvent or solution.

이러한 맥락에서 유용한 암모늄염은, 구체적으로, 일반식 (Ⅰ)의 화합물인 것이 발견되었다.It has been found that the ammonium salt useful in this context is specifically a compound of the general formula (I).

Figure 112009044712292-pct00001
Figure 112009044712292-pct00001

(I)      (I)

여기서, R = H, NH2 또는 C1-C12 알킬,Wherein R = H, NH 2 or C 1 -C 12 alkyl,

X= 아세테이트, 카르보네이트, 시아네이트, 포르메이트, 히드록사이드, 메톡사이드 또는 옥살레이트.       X = acetate, carbonate, cyanate, formate, hydroxide, methoxide or oxalate.

상기 구아니디늄 포르메이트 수용액 및, 적합하다면, 추가 성분은 150 내지 350℃의 바람직한 온도 범위에서 암모니아로 촉매 분해에 처해지는 것이 본 발명에 본질적인 것으로 생각되며, 형성된 추가 성분은 이산화탄소 및 선택적으로 일산화탄소이다. 구아니디늄 포르메이트의 암모니아로의 분해는 이산화티탄, 산화 알루미늄 및 이산화규소 및 이들의 혼합물의 군로부터 선택된 산화물 또는/및 완전히 또는 부분적으로 금속-교환된 수열 안정성 제올라이트, 특히 ZSM 5 또는 BEA 타입의 철 제올라이트의 촉매 활성이 있고, 산화 비활성 코팅의 존재 하에 수행된다. 유용한 금속은 여기서 특히 전이군 원소이며 바람직하게는 철 또는 구리이다. 상응하는 Fe 제올라이트 물질은 공지 방법에 의해 제조되는 데, 예를 들면, 고상 교환법, 예를 들면 FeCl2 와의 고상 교환법, 그 후 기재(예를 들면 코디어라이트 모노리스)에 슬러리의 형태로 도포하고 건조하거나 또는 고온(대략 500℃)에서 소성한다.It is contemplated that the guanidinium formate aqueous solution and, if appropriate, additional components are subject to catalytic decomposition by ammonia in the preferred temperature range of 150 to 350 DEG C, and the additional components formed are carbon dioxide and optionally carbon monoxide . The decomposition of guanidinium formate into ammonia can be carried out in the presence of an oxide selected from the group of titanium dioxide, aluminum oxide and silicon dioxide and mixtures thereof and / or oxides of completely or partially metal-exchanged hydrothermally stable zeolites, in particular ZSM 5 or BEA type There is a catalytic activity of the iron zeolite and is carried out in the presence of an oxidation-inactive coating. Useful metals here are especially transition elements and are preferably iron or copper. The corresponding Fe zeolite material is prepared by known methods, for example by solid phase exchange, for example by solid phase exchange with FeCl 2 , then in the form of a slurry on a substrate (for example cordierite monolith) Or at high temperature (approximately 500 ° C).

산화 티탄, 산화 알루미늄 및 이산화규소와 같은 금속 산화물은 바람직하게 금속 담체 물질, 예를 들면 열 전도체 합금(특히 크롬-알루미늄 강)에 도포된다. Metal oxides such as titanium oxide, aluminum oxide and silicon dioxide are preferably applied to metal carrier materials, for example thermoelectric alloys (especially chromium-aluminum steels).

구아니디늄 포르메이트 용액 또는 나머지 성분은 또한 다르게는 암모니아 및 이산화탄소로 촉매적으로 분해될 수 있고, 이 경우 이산화티탄, 산화 알루미늄 및 이산화규소 및 이들의 혼합물의 군으로부터 선택된 산화물 또는/및 완전히 또는 부분적으로 금속-교환된 수열 안정성 제올라이트의 촉매 활성 코팅이 사용되고, 상기 코팅은 산화-활성 성분인 금 및/또는 팔라듐으로 함침된 것이다. 활성 성분으로 팔라듐 및/또는 금을 포함하는 상응하는 촉매는 바람직하게 0.001 내지 2 중량 %, 특히 0.01 내지 1 중량%의 귀금속 함량을 가진다. 그런 산화 촉매의 도움으로, 암모니아 생성 과정에서 초기에 구아디닌염의 분해에서 부산물로서 원하지 않은 일산화탄소의 형성을 막는 것이 가능하다.The guanidinium formate solution or the remaining components may also be catalytically decomposed with ammonia and carbon dioxide, in this case oxides selected from the group of titanium dioxide, aluminum oxide and silicon dioxide and mixtures thereof, and / or oxides of totally or partially A catalytically active coating of a metal-exchanged hydrothermally stable zeolite is used, the coating being impregnated with gold and / or palladium which is an oxidation-active component. The corresponding catalyst comprising palladium and / or gold as the active component preferably has a noble metal content of from 0.001 to 2% by weight, in particular from 0.01 to 1% by weight. With the aid of such an oxidation catalyst, it is possible to prevent the formation of undesired carbon monoxide as a by-product in the decomposition of guanidine salt initially during the ammonia production process.

바람직하게, 구아니디늄 포르메이트 및 적절하다면 추가 성분의 촉매 분해를 위해, 활성 성분으로 팔라듐 및/또는 금을 귀금속 함량 0.001 내지 2 중량 %, 특히 0.01 내지 1 중량 %으로 포함하는 촉매 코팅이 사용된다.Preferably, for catalytic cracking of guanidinium formate and, if appropriate, further components, a catalytic coating is used which comprises palladium and / or gold as the active component in a content of noble metal from 0.001 to 2% by weight, in particular from 0.01 to 1% by weight .

두 개의 부분으로 구성된 촉매가 사용되는 것이 본 발명의 맥락에서 가능한데, 제 1 부분은 산화-비활성 코팅을 포함하고 제2 부분은 산화-활성 코팅을 포함한다. 바람직하게는, 이 촉매의 5 내지 90 부피 %는 산화-비활성 코팅 및 산화-활성 코팅 10 내지 95 부피 %로 이루어진다. 다르게는, 상기 촉매 분해는 직렬로 배열된 두 개의 촉매의 존재하에 또한 수행될 수 있고, 이 경우에 제 1 촉매는 산화-비활성 코팅을 포함하고 제 2 촉매는 산화-활성 코팅을 포함한다. It is possible in the context of the present invention that a catalyst consisting of two parts is used, the first part comprising an oxidation-inactive coating and the second part comprising an oxidation-active coating. Preferably, 5 to 90% by volume of the catalyst consists of 10 to 95% by volume of an oxidation-inactive coating and an oxidation-active coating. Alternatively, the catalytic cracking may also be carried out in the presence of two catalysts arranged in series, in which case the first catalyst comprises an oxidation-inactive coating and the second catalyst comprises an oxidation-active coating.

본 발명에 따라 사용된 구아니디늄 포르메이트의 암모니아로의 촉매 분해는, 또는, 본 발명에 따라 사용된 구아니디늄 포르메이트 및 상기 추가 성분의 암모니아로의 촉매 분해는 자동차 배기 가스의 배기가스의 주류(mainstream), 부류(partial stream) 또는 제 2차 흐름(secondary stream) 내의 배기 가스 중에서의 촉매 분해에 의하여, 또는, 배기가스 시스템의 외부에 있는 자동압력식(autobaric)의 그리고 외부로부터(extraneously) 가열되는 배열에서의 촉매 분해에 의하여 바람직하게 수행될 수 있다.The catalytic cracking of the guanidinium formate used according to the invention into ammonia or the catalytic cracking of the guanidinium formate used according to the invention and of the further constituents into ammonia is carried out in the presence of an exhaust gas By catalytic cracking in the exhaust stream in a main stream, a partial stream or a secondary stream, or by autobaric and extraneously from the outside of the exhaust gas system, ) Catalytic cracking in the heated arrangement.

본 발명은 또한 요소 및/또는 암모니아 또는 암모늄염과 선택적으로 조합된 5 내지 85 중량 %, 바람직하게는 30 내지 80 중량 %의 농도를 가진 구아니디늄 포르메이트 및 나머지가 물로 이루어진 수성 조성물을, 암모니아로 자동차 배기 가스 중의 질소 산화물의 선택적인 촉매 환원 수단으로서 제공한다. 구아니디늄 포르메이트 및 요소의 혼합물은 바람직하게는 구아니디늄 포르메이트 함량 5 내지 60 중량 % 및 요소 함량 5 내지 35 중량 %를 가진다. 구아니디늄 포르메이트와 암모니아 또는 암모늄염의 혼합물은 바람직하게는 구아니디늄 포르메이트 5 내지 60 중량 % 및 암모니아 또는 암모늄염 5 내지 40 중량 % 함량을 가진다.The present invention also relates to an aqueous composition comprising guanidinium formate having a concentration of 5 to 85% by weight, preferably 30 to 80% by weight, optionally in combination with urea and / or ammonia or ammonium salts, As a means for selective catalytic reduction of nitrogen oxides in automotive exhaust gases. The mixture of guanidinium formate and urea preferably has a guanidinium formate content of 5 to 60% by weight and an urea content of 5 to 35% by weight. The mixture of guanidinium formate and ammonia or ammonium salt preferably has 5 to 60% by weight of guanidinium formate and 5 to 40% by weight of ammonia or ammonium salt.

본 발명에 따라 제안된 구아니디늄 포르메이트 수용액의 도움으로, 차량의 배기 가스 중의 질소 산화물의 수준을 대략 90% 감소시키는 것을 달성할 수 있다. 게다가, 본 발명에 따라 제안된 구아니디늄 포르메이트 용액으로, 선행 기술에 의한 구아니디늄염의 리터 당 암모니아 0.2kg의 암모니아 생성 포텐셜을 0.4 kg까지 증가하는 것이 겨울 안정성(빙점 -25℃ 미만)을 동시에 가지면서 가능하다. 마지막으로, 본 발명에 따라 사용되는 구아니디늄 포르메이트 용액의 부식의 위험성은 또한 암모늄 포르메이트를 포함하는 용액과 비교하여 현저하게 감소한다.With the aid of the proposed guanidinium formate aqueous solution proposed in accordance with the invention, it is possible to achieve a reduction of the level of nitrogen oxides in the exhaust gas of the vehicle by approximately 90%. In addition, with the guanidinium formate solution proposed in accordance with the present invention, increasing the ammonia-forming potential of 0.2 kg of ammonia per liter of guanidinium salt according to the prior art up to 0.4 kg has the advantage of achieving winter stability (below freezing point -25 캜) It is possible to have at the same time. Finally, the risk of corrosion of the guanidinium formate solution used in accordance with the present invention is also significantly reduced compared to solutions containing ammonium formate.

하기의 실시예들은 본 발명을 상세하게 기술하고자 하는 것이다. The following examples are intended to illustrate the present invention in detail.

도 1은 자동차 배기가스 중의 질소 산화물을 선택적으로 촉매환원시키는 공정의 모식도이다.1 is a schematic view of a process for selectively catalytically reducing nitrogen oxides in automobile exhaust gas.

실시예Example 1 One

도 1의 도시에 따른 자동압력식 암모니아 발생기에서 암모니아 전구체 물질로서 40 중량 % 구아니디늄 포르메이트 수용액 (GF) (m.p.< -20℃)의 사용The use of 40 wt% guanidinium formate aqueous solution (GF) (m.p. -20 < 0 &gt; C) as the ammonia precursor material in the automatic pressure-

자동차 엔진 (1)은 200 m3(STP)/h의 배기 가스 스트림을 생성하고, 이는 중간 파이프 (2)를 통과해 백금 산화 촉매 (3) 및 미립자 필터 (4) 위를 지나 배기 가스 중간 파이프 (6) 중으로 들어간다. 중간 튜브 (6)에서 FTIR 가스 분석기 (5)로 측정한 배기 가스 조성은: 질소 산화물, NO 150ppm; 이산화 질소, N02 150ppm; 이산화탄소, CO2 7%; 수증기 8%, 일산화탄소, CO 10ppm 이다. The automotive engine 1 produces an exhaust gas stream of 200 m 3 (STP) / h which passes over the platinum oxidation catalyst 3 and the particulate filter 4 through the intermediate pipe 2, (6). The exhaust gas composition measured by the FTIR gas analyzer 5 in the intermediate tube 6 was: nitrogen oxide, NO 150 ppm; Nitrogen dioxide, N0 2 150ppm; Carbon dioxide, 7% CO 2 ; 8% of water vapor, 10 ppm of carbon monoxide and CO.

탱크 용기 (7) 내에는, 공급 라인(10)과 노즐 (12)을 통하여 반응기 (11) 중으로 계량 펌프 (9)에 의해 분사되는 GF 용액이 있다. 반응기 (11)는 250℃까지 가열되는 수직 튜브로 구성되어 있고, 이는 내부 직경이 51mm이며, 오스테나이트계 강으로 이루어지며 가열 재킷 (15)를 구비한다. 촉매 (13) 및 (14)는 반응기 (11) 안에 있다. 상기 촉매는 Sudchemie AG, Heufeld, Germany로부터의 이산화티탄으로 코팅된 금속 담체(직경 50mm, 길이 200mm, 금속 담체 제조사:Emitec GmbH, D-53797 Lohmar)이다. 촉매 (13)은 거친-셀(coarse-cell) MX/PE 40 cpsi 담체 타입에 기초하며 길이는 100mm이다. 하류 방향에서, 촉매 (14)는 길이 100mm의 미세-셀(fine-cell) MX/PE 200 cspi 담체 타입으로 구성되며, 길이는 100mm 이다. 거친 셀 촉매 (13)의 말단면(end face)은 노즐 (12)로부터 압력 계량 펌프 (9)에 의해 GF 용액(8)으로 분무된다. 노즐 (12)은 반응기 (11)의 축 방향으로 거친-셀 촉매 (13) 의 상류에 배열되어 있다. GF 용액 (8)의 수분 함량은 촉매 (13) 상에서 증발되고 상기 GF는 촉매 (13) 및 (14) 상에서 열-가수분해적으로 분해되어 요소 및 이소시안산, HNCO 중간생성물의 형성을 방지한다.Inside the tank vessel 7 there is a GF solution which is injected by the metering pump 9 into the reactor 11 through the feed line 10 and the nozzle 12. The reactor 11 is composed of a vertical tube heated to 250 ° C, which has an inner diameter of 51 mm and is made of austenitic steel and has a heating jacket 15. The catalysts (13) and (14) are in the reactor (11). The catalyst is a metal carrier (diameter 50 mm, length 200 mm, metal carrier manufacturer: Emitec GmbH, D-53797 Lohmar) coated with titanium dioxide from Sudchemie AG, Heufeld, Germany. Catalyst 13 is based on a coarse-cell MX / PE 40 cpsi carrier type and is 100 mm long. In the downstream direction, the catalyst 14 is composed of a fine-cell MX / PE 200 cspi carrier type having a length of 100 mm and a length of 100 mm. The end face of the rough cell catalyst 13 is sprayed from the nozzle 12 to the GF solution 8 by the pressure metering pump 9. [ The nozzles 12 are arranged upstream of the coarse-cell catalyst 13 in the axial direction of the reactor 11. The moisture content of the GF solution 8 is evaporated on the catalyst 13 and the GF is thermally-hydrocracked on the catalysts 13 and 14 to prevent the formation of urea and isocyanic acid, HNCO intermediates .

형성된 암모니아, 이산화탄소, 일산화탄소 및 수증기의 혼합물은 공급 파이프 (16)을 통하여 배기 가스 중간 파이프 (6) 내로, 300℃에서 SCR 촉매(18)의 상류의 촉매 (3) 및 필터 (4)로 전처리된 자동차 엔진 (1)의 배기가스(200 m3 (STP)/h) 중으로 도입된다. GF 용액 (8)의 투여는 압력 계량 펌프 (9)으로 조절되어 암모니아 농도 270 ppm가 FTIR 가스 분석기 (17)로 측정될 수 있다. 동시에, GF 용액 (8)의 포르메이트 내용물의 분해의 결과로써 90 내지 100ppm까지의 CO의 농도의 상승이 있다. 예상된 바와 같이, GF 용액 (8)의 증발 및 분해의 결과로써 CO2 함량 및 수증기 함량의 상승은 낮아 거의 측정하기가 불가능하다. 이소시안산, HNCO를 가스 분석기 (17)로 감지할 수 없고 요소의 부착 및 그의 분해 생성물을 감지할 수 없으므로 상기 GF의 촉매적 가수분해는 완료된다.The mixture of ammonia, carbon dioxide, carbon monoxide and water vapor formed is introduced into the exhaust gas intermediate pipe 6 through the feed pipe 16 and is preheated to the catalyst 3 and the filter 4 upstream of the SCR catalyst 18 at 300 占 폚 Is introduced into the exhaust gas (200 m 3 (STP) / h) of the automobile engine 1. The administration of the GF solution (8) is controlled by a pressure metering pump (9) so that an ammonia concentration of 270 ppm can be measured with an FTIR gas analyzer (17). At the same time, there is an increase in the concentration of CO up to 90 to 100 ppm as a result of decomposition of the formate content of the GF solution (8). As expected, the increase in CO 2 content and water vapor content as a result of the evaporation and decomposition of the GF solution 8 is low and almost impossible to measure. The catalytic hydrolysis of the GF is completed because the isocyanate, HNCO, can not be detected by the gas analyzer 17, and the attachment of the urea and its decomposition products can not be detected.

SCR 촉매 (18)의 하류에서, FTIR 가스 분석기 (19)는 NO 및 NO2 농도의 감소를 90% 만큼인 30 ppm까지 측정한다. 동시에, 암모니아, NH3와 NO 및 NO2의 반응이 완료되어 질소, N2를 생성한다. SCR 촉매 (19) 하류에서 암모니아 농도는 < 2 ppm 이다.Downstream of the SCR catalyst 18, the FTIR gas analyzer 19 measures the reduction of the NO and NO 2 concentration by as much as 30% up to 30 ppm. Simultaneously, the reaction of ammonia, NH 3 with NO and NO 2 is completed to produce nitrogen and N 2 . The ammonia concentration at the downstream of the SCR catalyst 19 is < 2 ppm.

FTIR 분석기 (5, 17, 및 19)는 성분 NO, NO2, CO, CO2, H2O, 암모니아, NH3, 및 이소시안산, HNCO 성분의 배기가스 분석을 동시에 가능하게 한다. The FTIR analyzers 5, 17, and 19 enable exhaust gas analysis of the components NO, NO 2 , CO, CO 2 , H 2 O, ammonia, NH 3 , and isocyanic acid, HNCO components simultaneously.

실시예Example 2 2

이산화티탄 촉매 (14)를 산화 팔라듐-이산화티탄 촉매로 대체한 것을 제외하고는 절차는 실시예 1에 유사하며, 상기 이산화티탄은 Pd(NO3)2 수용액으로 함침되어 건조 및 소성(500 ℃에서 5시간) 후 PdO 1 중량 %(= 약 Pd 0.9 중량 %)를 함유하는 촉매를 형성하고, 이는 일산화탄소의 부분적 산화를 야기한다. CO 농도 증가는 FTIR 분석기 (17)로 측정할 수 없었다.The procedure is similar to that of Example 1 except that the titanium dioxide catalyst 14 is replaced by a palladium oxide-titanium dioxide catalyst, which is impregnated with an aqueous Pd (NO 3 ) 2 solution and dried and calcined 5 hours) to form a catalyst containing 1 wt% PdO (= about Pd 0.9 wt%), which causes partial oxidation of carbon monoxide. The CO concentration increase could not be measured by the FTIR analyzer (17).

Claims (17)

암모니아로 자동차 배기가스 중의 질소 산화물을 선택적 촉매 환원하는데 사용하기 위한 수용액으로서, 상기 수용액은 구아니디늄 포르메이트를 포함하거나, 또는, 상기 수용액은 요소, 암모니아 및 암모늄염으로부터 선택되는 추가 성분 및 구아니디늄 포르메이트를 포함하는, 수용액.An aqueous solution for use in selective catalytic reduction of nitrogen oxides in automotive exhaust with ammonia, said aqueous solution comprising guanidinium formate, or said aqueous solution comprising an additional component selected from urea, ammonia and ammonium salts, Formate. &Lt; / RTI &gt; 제 1 항에 있어서, 5 내지 85 중량%의 구아니디늄 포르메이트 함량을 갖는 것을 특징으로 하는 수용액. The aqueous solution according to claim 1, having a guanidinium formate content of 5 to 85% by weight. 제 1 항에 있어서, 구아니디늄 포르메이트 함량이 5 내지 60 중량%이고 요소 함량이 5 내지 35 중량 %인, 구아니디늄 포르메이트와 요소의 혼합물을 포함하는 것을 특징으로 하는 수용액.The aqueous solution according to claim 1, comprising a mixture of guanidinium formate and urea having a guanidinium formate content of 5 to 60 wt% and an urea content of 5 to 35 wt%. 제 1 항에 있어서, 구아니디늄 포르메이트 함량이 5 내지 60 중량%이고 암모니아 또는 암모늄염 함량이 5 내지 40 중량%인, 구아니디늄 포르메이트와 암모니아 또는 암모늄염의 혼합물을 포함하는 것을 특징으로 하는 수용액. The aqueous solution according to claim 1, characterized in that it comprises a mixture of guanidinium formate and ammonia or ammonium salt, wherein the guanidinium formate content is from 5 to 60% by weight and the ammonia or ammonium salt content is from 5 to 40% . 제 1 항에 있어서, 상기 암모늄염이 일반식 (Ⅰ)의 화합물로 이루어진 것을 특징으로 하는 수용액:The aqueous solution according to claim 1, wherein the ammonium salt is a compound represented by the general formula (I)
Figure 112014042979729-pct00002
Figure 112014042979729-pct00002
(I)(I) 여기서,here, R = H, NH2 또는 C1-C12 알킬,R = H, NH 2 or C 1 -C 12 alkyl, X- = 아세테이트, 카르보네이트, 시아네이트, 포르메이트, 히드록사이드, 메 톡사이드 또는 옥살레이트. X - = acetate, carbonate, cyanate, formate, hydroxide, methoxide or oxalate.
제 1 항에 있어서, 상기 구아니디늄 포르메이트가 또는 상기 구아니디늄 포르메이트 및 상기 추가 성분이, 상기 자동차 배기가스의 주류(main stream), 부류(partial stream) 또는 제 2차 흐름(secondary stream) 내의 배기가스 시스템 내에서의 촉매 분해에 의하여, 또는, 상기 배기가스 시스템의 외부에 있는 자동압력식의 그리고 외부로부터 가열되는 배열에서의 촉매 분해에 의하여, 암모니아로 전환되는 것을 특징으로 하는 수용액.The method of claim 1, wherein said guanidinium formate or said guanidinium formate and said additional component are selected from the group consisting of a main stream, a partial stream, or a secondary stream Or by catalytic cracking in an auto-pressurized and externally heated arrangement external to the exhaust gas system. &Lt; RTI ID = 0.0 &gt; [0002] &lt; / RTI &gt; 제 6 항에 있어서, 상기 구아니디늄 포르메이트의, 일산화탄소와 또는 일산화탄소 없이, 암모니아 및 이산화탄소로의 촉매 분해가, 또는, 상기 구아니디늄 포르메이트 및 상기 추가 성분의, 일산화탄소와 또는 일산화탄소 없이, 암모니아 및 이산화탄소로의 촉매 분해가, 촉매-활성 산화-비활성 코팅의 존재 하에 수행되며, 상기 촉매-활성 산화-비활성 코팅은 이산화티탄, 산화알루미늄 및 이산화규소로 이루어진 군으로부터 선택된 적어도 1종의 산화물을 포함하거나, 또는, 상기 촉매-활성 산화-비활성 코팅은 완전히 또는 부분적으로 금속-교환된 적어도 1종의 제올라이트를 포함하거나, 또는, 상기 촉매-활성 산화-비활성 코팅은 이산화티탄, 산화알루미늄 및 이산화규소로 이루어진 군으로부터 선택된 적어도 1종의 산화물과 완전히 또는 부분적으로 금속-교환된 적어도 1종의 제올라이트의 혼합물을 포함하며, 상기 촉매-활성 산화-비활성 코팅은 담체에 지지되어 있는 형태로 존재하는 것을 특징으로 하는 수용액. 7. The process of claim 6, wherein the catalytic cracking of the guanidinium formate with and without carbon monoxide, ammonia and carbon dioxide is carried out in the presence of ammonia and carbon dioxide, either with the carbonyloxide of the guanidinium formate and the further component, And catalytic cracking to carbon dioxide is carried out in the presence of a catalyst-active oxidation-inactive coating, wherein the catalyst-active oxidation-inactive coating comprises at least one oxide selected from the group consisting of titanium dioxide, aluminum oxide and silicon dioxide Or the catalyst-active oxidation-inactive coating comprises at least one zeolite completely or partially metal-exchanged, or wherein the catalyst-active oxidation-inactive coating comprises titanium dioxide, aluminum oxide and silicon dioxide At least one kind of oxide selected from the group consisting of In-comprising a mixture of at least one zeolite exchanged, the catalyst-active oxide-inert coating is an aqueous solution, characterized in that present in the form which is supported on a carrier. 제 6 항에 있어서, 상기 구아니디늄 포르메이트의 또는 상기 추가 성분의 암모니아 및 이산화탄소로의 상기 촉매 분해를 위해, 이산화티탄, 산화알루미늄 및 이산화규소로부터 선택된 산화물, 금속 제올라이트, 또는 이들의 혼합물을 포함하는 촉매-활성 코팅이 사용되며, 상기 촉매-활성 코팅은 산화-활성 성분으로서 금 및 팔라듐 중의 적어도 1종으로 함침되어 있으며, 상기 촉매-활성 코팅은 담체에 지지되어 있는 형태로 존재하는 것을 특징으로 하는 수용액.7. The process of claim 6 comprising, for the catalytic cracking of the guanidinium formate or of the further components with ammonia and carbon dioxide, an oxide selected from titanium dioxide, aluminum oxide and silicon dioxide, a metal zeolite, or mixtures thereof Wherein the catalyst-active coating is impregnated with at least one of gold and palladium as an oxidation-active component, the catalyst-active coating being present in the form of being supported on a carrier Aqueous solution. 제 6 항에 있어서, 활성 성분으로서 팔라듐 및 금 중의 적어도 1종을 0.001 내지 2 중량%의 귀금속 함량으로 갖는 촉매 코팅이 상기 구아니디늄 포르메이트의 촉매 분해, 또는, 상기 구아니디늄 포르메이트 및 상기 추가 성분의 촉매 분해를 위하여 사용되며, 상기 촉매 코팅은 담체에 지지되어 있는 형태로 존재하는 것을 특징으로 하는 수용액.7. The process of claim 6, wherein a catalyst coating having at least one of palladium and gold as the active ingredient at a noble metal content of 0.001 to 2% by weight is obtained by catalytic cracking of the guanidinium formate, Characterized in that it is used for the catalytic cracking of further components, said catalyst coating being in the form of being supported on a carrier. 제 6 항에 있어서, 제1 부분 및 제2 부분으로 이루어진 촉매가 사용되고, 상기 제1 부분은 산화-비활성 코팅을 포함하고 상기 제2 부분은 산화-활성 코팅을 포함하며, 상기 산화-비활성 코팅 및 상기 산화-활성 코팅은 담체에 지지되어 있는 형태로 존재하는 것을 특징으로 하는 수용액.7. The method of claim 6, wherein a catalyst consisting of a first portion and a second portion is used, wherein the first portion comprises an oxidation-inactive coating and the second portion comprises an oxidation-active coating, Wherein the oxidation-active coating is present in the form of being supported on a support. 제 10 항에 있어서, 상기 촉매의 5 내지 90 부피%는 산화-비활성 코팅으로 이루어지고, 상기 촉매의 10 내지 95 부피%는 산화-활성 코팅으로 이루어지는 것을 특징으로 하는 수용액.11. The aqueous solution according to claim 10, wherein 5 to 90% by volume of the catalyst consists of an oxidation-inactive coating, and 10 to 95% by volume of the catalyst comprises an oxidation-active coating. 제 6 항에 있어서, 상기 촉매 분해가 직렬로 배열된 제1 촉매 및 제2 촉매의 존재 하에 수행되고, 상기 제1 촉매는 산화-비활성 코팅으로 이루어지며, 상기 제2 촉매는 산화-활성 코팅으로 이루어지는 것을 특징으로 하는 수용액.7. The method of claim 6, wherein the catalytic cracking is carried out in the presence of a first catalyst and a second catalyst arranged in series, the first catalyst comprising an oxidation-inactive coating, . 제 1 항에 있어서, 상기 수용액의 촉매 분해가 150 내지 350 ℃에서 수행되는 것을 특징으로 하는 수용액.The aqueous solution according to claim 1, wherein the catalytic decomposition of the aqueous solution is carried out at 150 to 350 ° C. 제 2 항에 있어서, 30 내지 80 중량%의 구아니디늄 포르메이트 함량을 갖는 것을 특징으로 하는 수용액.The aqueous solution according to claim 2, having a guanidinium formate content of 30 to 80% by weight. 삭제delete 삭제delete 삭제delete
KR1020097015447A 2006-12-23 2007-12-20 Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles KR101475681B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061377.5 2006-12-23
DE102006061377 2006-12-23

Publications (2)

Publication Number Publication Date
KR20090092847A KR20090092847A (en) 2009-09-01
KR101475681B1 true KR101475681B1 (en) 2014-12-30

Family

ID=39092567

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020097015447A KR101475681B1 (en) 2006-12-23 2007-12-20 Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles
KR1020097015450A KR101558878B1 (en) 2006-12-23 2007-12-20 Method for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020097015450A KR101558878B1 (en) 2006-12-23 2007-12-20 Method for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles

Country Status (13)

Country Link
US (2) US8048390B2 (en)
EP (2) EP2106285B1 (en)
JP (2) JP5618542B2 (en)
KR (2) KR101475681B1 (en)
CN (2) CN101568372B (en)
AT (2) ATE526072T1 (en)
AU (2) AU2007338356B2 (en)
CA (2) CA2672857C (en)
DE (1) DE502007006702D1 (en)
ES (2) ES2370075T3 (en)
MX (2) MX2009006577A (en)
PL (1) PL2111287T3 (en)
WO (2) WO2008077587A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104205A1 (en) 2011-02-04 2012-08-09 Paul Scherrer Institut Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides
CN102278177B (en) * 2011-04-27 2014-05-07 汪家琳 Device and method for efficiently utilizing tail gas of combustion engine
US8940543B2 (en) * 2011-05-11 2015-01-27 Fuel Tech, Inc. Diagnostic tool and process for assessing thermal urea gasification performance
CA2840341C (en) 2011-07-01 2019-07-09 Alzchem Ag Method for generating ammonia from an ammonia precursor substance for reducing nitrogen oxides in exhaust
DE102011106233A1 (en) 2011-07-01 2013-01-03 Alzchem Ag Continuous production of ammonia from a solution of an ammonia precursor substance by an ammonia gas generator comprising a catalyst unit, useful to reduce nitrogen oxides in exhaust gases from e.g. industrial plants and gas engines
DE102011106237A1 (en) 2011-07-01 2013-01-03 Alzchem Ag Ammonia gas generator for exhaust system used in internal combustion engine, has injection device which is provided for introducing the solution of ammonia precursor into mixing chamber
DE102011106243A1 (en) 2011-07-01 2013-01-03 Alzchem Ag Ammonia gas generator useful e.g. for producing ammonia from ammonia precursor solution, and in gas engines, comprises catalyst unit comprising catalyst and mixing chamber, injection device having nozzle, and outlet for formed ammonia gas
CN103874912B (en) * 2011-10-12 2016-09-21 株式会社堀场制作所 Gas analyzing apparatus
DE102012025113A1 (en) 2012-12-21 2014-06-26 Alzchem Ag Ammonia gas generator for producing ammonia from solution of ammonia precursor substance, comprises catalyst unit comprising catalyst and mixing chamber, injection device, inlet for carrier gas, outlet for ammonia gas, and perforated disc
EP2935105B1 (en) 2012-12-21 2017-07-26 AlzChem AG Ammonia gas generator and use of the same for reducing nitrogen oxides in exhaust gases
DE102012025112A1 (en) 2012-12-21 2014-06-26 Alzchem Ag Generator, used to produce ammonia gas from precursor solution, includes catalyst unit for decomposition and/or hydrolysis of precursors, and device that is adapted to inject solution into mixing chamber and has droplet forming nozzle
US8997463B2 (en) * 2013-04-17 2015-04-07 Continental Automotive Systems, Inc. Reductant delivery unit for automotive selective catalytic reduction with reducing agent heating
KR101436936B1 (en) * 2013-06-05 2014-09-03 한국기계연구원 A reactor for solid ammonium salt and control methode thereof and NOx emission purification system which using solid ammonium salt and selective catalytic reduction catalyst
US9689293B2 (en) * 2014-08-19 2017-06-27 Continental Automotive Systems, Inc. Reductant delivery unit for automotive selective catalytic reduction with optimized fluid heating
AT517862A1 (en) * 2015-11-09 2017-05-15 M A L Umwelttechnik - Gmbh Process for the selective reduction of nitrogen oxides in hot gases
JP6705334B2 (en) * 2016-08-10 2020-06-03 いすゞ自動車株式会社 Apparatus and method for removing urea-derived deposits in an internal combustion engine
WO2018041754A1 (en) * 2016-08-30 2018-03-08 Plastic Omnium Advanced Innovation And Research System and method for increasing the urea concentration of an aqueous solution on-board a vehicle
WO2018055174A1 (en) * 2016-09-26 2018-03-29 Plastic Omnium Advanced Innovation And Research Vehicle system and method for generating ammonia in batches
US11339056B2 (en) * 2017-01-05 2022-05-24 Fuel Tech, Inc. Controlled, compact, on-demand ammonia gas generation process and apparatus
CN108468583B (en) * 2018-03-24 2020-03-27 张鑫印 Denitrator for automobile exhaust treatment
US10876454B2 (en) 2018-11-08 2020-12-29 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system with multi-reductant injection and doser controls
US10767529B2 (en) 2018-11-08 2020-09-08 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system having onboard ammonia reactor with heated doser
US10683787B2 (en) 2018-11-08 2020-06-16 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system having onboard ammonia reactor with hybrid heating
US11193413B2 (en) 2019-12-12 2021-12-07 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment system with virtual temperature determination and control
US11319853B2 (en) 2020-03-31 2022-05-03 Faurecia Emissions Control Technologies, Usa, Llc Automotive exhaust aftertreatment system with doser
US11022014B1 (en) 2020-04-28 2021-06-01 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment system with heated flash-boiling doser
US11092054B1 (en) 2020-04-29 2021-08-17 Faurecia Emissions Control Technologies, Usa, Llc Flash-boiling doser with thermal transfer helix
US11511239B2 (en) 2020-04-29 2022-11-29 Faurecia Emissions Control Technologies, Usa, Llc Heated flash-boiling doser with integrated helix
US11384667B2 (en) 2020-05-29 2022-07-12 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment system with heated dosing control
CN113929903B (en) * 2020-06-29 2022-10-28 中国科学技术大学 Method for preparing terminal group high-fidelity polypeptide by NPCA polymerization initiated by protonated amino group
US11225894B1 (en) 2020-06-30 2022-01-18 Faurecia Emissions Control Technologies, Usa, Llc Exhaust aftertreatment system with thermally controlled reagent doser
CN112121812B (en) * 2020-09-16 2022-04-22 万华化学集团股份有限公司 Catalyst for preparing propane diamine, preparation method of catalyst and method for preparing propane diamine
CN112090277A (en) * 2020-09-30 2020-12-18 河南弘康环保科技有限公司 Production process of vehicle urea containing nano-scale catalyst
JP7551448B2 (en) * 2020-10-20 2024-09-17 株式会社三井E&S Apparatus and method for preventing formation of high melting point piping clogging substances
CN114738084A (en) * 2021-01-07 2022-07-12 长城汽车股份有限公司 Automobile aftertreatment system and automobile
FR3123382A1 (en) * 2021-05-31 2022-12-02 Faurecia Systemes D'echappement Device and method for injecting a fluid into an exhaust duct, associated exhaust line and vehicle
CN117599604A (en) * 2023-10-24 2024-02-27 上海全熙环保科技股份有限公司 Special denitration agent composite material for alkali furnace and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221451A1 (en) * 1992-06-30 1994-01-05 Metallgesellschaft Ag Exhaust gas catalytic denitrification for quantitative nitrogen oxide removal - by adding aq. soln. of ammonia, urea, ammonium salt or guanidine cpd., cooling and passing over supported iron, manganese or copper cpd. and/or sulphate, for diesel and lean burn petrol engine
US6266955B1 (en) * 1999-08-20 2001-07-31 Caterpillar Inc. Diagnostic system for an emissions control on an engine
WO2002043837A1 (en) * 2000-12-01 2002-06-06 Fuel Tech, Inc. Selective catalytic reduction of no, enabled by side stream urea decomposition
US20040128982A1 (en) * 2000-10-16 2004-07-08 Engelhard Corporation Control system for mobile NOx SCR applications

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0237568A4 (en) 1985-10-04 1989-01-24 Fuel Tech Inc Reduction of nitrogen- and carbon-based pollutants.
FR2602507B1 (en) * 1986-08-08 1989-06-09 Sanofi Pharma PROCESS FOR THE PREPARATION OF 2,4-DIAMINO-BENZYL-5 PYRIMIDINES
AT390208B (en) 1988-05-09 1990-04-10 Waagner Biro Ag METHOD FOR REMOVING NITROGEN OXIDES
DE3815807A1 (en) 1988-05-09 1989-11-23 Sueddeutsche Kalkstickstoff Process for the selective noncatalytic removal of nitrogen oxides from exhaust gases
US6051040A (en) * 1988-12-28 2000-04-18 Clean Diesel Technologies, Inc. Method for reducing emissions of NOx and particulates from a diesel engine
US4961917A (en) * 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
US5120695A (en) * 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
DE4315278A1 (en) * 1993-05-07 1994-11-10 Siemens Ag Method and device for metering a reducing agent into a nitrogen-containing exhaust gas
EP0708809B1 (en) * 1993-07-12 2000-09-20 Clean Diesel Technologies, Inc. METHOD FOR REDUCING EMISSIONS OF NOx AND PARTICULATES FROM A DIESEL ENGINE
WO1995004211A1 (en) * 1993-07-29 1995-02-09 Platinum Plus, Inc. METHOD FOR REDUCING NOx EMISSIONS FROM DIESEL ENGINES
DE4417238C2 (en) * 1994-05-17 2003-03-27 Siemens Ag Device for reducing the nitrogen oxides in the exhaust gas of an internal combustion engine operated with excess air
JP3604042B2 (en) * 1994-09-22 2004-12-22 株式会社リコー Thermal development type diazo copy material
US5809775A (en) * 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US6399034B1 (en) * 1997-05-14 2002-06-04 Hjs Fahrzeugtechnik Gmbh & Co. Process for reducing nitrogen oxides on SCR catalyst
GB9808876D0 (en) * 1998-04-28 1998-06-24 Johnson Matthey Plc Combatting air pollution
US6606856B1 (en) * 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
DE10103771A1 (en) * 2001-01-27 2002-08-14 Omg Ag & Co Kg Method for restoring the catalytic activity of a catalyst which is arranged in the exhaust tract of a diesel engine and has at least one oxidation function
DE10206028A1 (en) * 2002-02-14 2003-08-28 Man Nutzfahrzeuge Ag Process and apparatus for producing ammonia
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
US7807110B2 (en) * 2004-03-12 2010-10-05 Cormetech Inc. Catalyst systems
CA2565636A1 (en) * 2004-05-05 2005-11-17 Robert K. Graupner Guanidine based composition and system for same
US7481983B2 (en) * 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
DE102004043632A1 (en) * 2004-09-07 2006-03-09 Basf Ag Process for the preparation of heterocyclic quaternary ammonium and / or guanidinium compounds
JP2006110485A (en) * 2004-10-15 2006-04-27 Johnson Matthey Japan Inc Exhaust gas catalyst and exhaust gas trteatment apparatus using the catalyst
JP4599989B2 (en) * 2004-10-28 2010-12-15 日立造船株式会社 Ammonia production method and denitration method
EP2069049A2 (en) * 2006-08-22 2009-06-17 Babcock Power Inc. Thermal decomposition of urea in a side stream of combustion flue gas using a regenerative heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221451A1 (en) * 1992-06-30 1994-01-05 Metallgesellschaft Ag Exhaust gas catalytic denitrification for quantitative nitrogen oxide removal - by adding aq. soln. of ammonia, urea, ammonium salt or guanidine cpd., cooling and passing over supported iron, manganese or copper cpd. and/or sulphate, for diesel and lean burn petrol engine
US6266955B1 (en) * 1999-08-20 2001-07-31 Caterpillar Inc. Diagnostic system for an emissions control on an engine
US20040128982A1 (en) * 2000-10-16 2004-07-08 Engelhard Corporation Control system for mobile NOx SCR applications
WO2002043837A1 (en) * 2000-12-01 2002-06-06 Fuel Tech, Inc. Selective catalytic reduction of no, enabled by side stream urea decomposition

Also Published As

Publication number Publication date
AU2007338356B2 (en) 2011-12-08
CN101568371A (en) 2009-10-28
MX2009006835A (en) 2009-09-16
AU2007338355B2 (en) 2011-03-10
CA2672859C (en) 2015-05-05
US8652426B2 (en) 2014-02-18
KR20090092847A (en) 2009-09-01
KR20090098897A (en) 2009-09-17
WO2008077587A1 (en) 2008-07-03
KR101558878B1 (en) 2015-10-08
ES2370075T3 (en) 2011-12-12
US20100047144A1 (en) 2010-02-25
EP2111287B1 (en) 2011-03-09
ES2361375T3 (en) 2011-06-16
WO2008077588A1 (en) 2008-07-03
EP2111287A1 (en) 2009-10-28
US8048390B2 (en) 2011-11-01
ATE500879T1 (en) 2011-03-15
CA2672857C (en) 2014-10-21
JP5618542B2 (en) 2014-11-05
CA2672859A1 (en) 2008-07-03
EP2106285A1 (en) 2009-10-07
JP2010514545A (en) 2010-05-06
DE502007006702D1 (en) 2011-04-21
MX2009006577A (en) 2009-07-02
AU2007338355A1 (en) 2008-07-03
ATE526072T1 (en) 2011-10-15
CN101568372A (en) 2009-10-28
JP2010514546A (en) 2010-05-06
AU2007338356A1 (en) 2008-07-03
CN101568371B (en) 2012-09-26
PL2111287T3 (en) 2011-08-31
CN101568372B (en) 2012-02-29
CA2672857A1 (en) 2008-07-03
US20110008228A1 (en) 2011-01-13
EP2106285B1 (en) 2011-09-28
JP5618543B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
KR101475681B1 (en) Use of aqueous guanidinium formate solutions for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles
KR101542754B1 (en) Exhaust gas purification system for the treatment of engine exhaust gases by means of a scr catalyst
JP2010514546A5 (en) Selective catalytic reduction of nitrogen oxides in vehicle exhaust.
US8176731B2 (en) Exhaust gas aftertreatment system
JP2010514545A5 (en) Use of aqueous guanidinium formate solution for the selective catalytic reduction of nitrogen oxides in vehicle exhaust.
JP2009035644A (en) Antifreeze urea solution for urea selective catalytic reduction (scr) system and urea scr system
CN103269773A (en) Architectural diesel oxidation catalyst for enhanced no2 generator
JP2016043320A (en) Urea hydrolysis catalyst and selective reduction catalyst using urea hydrolysis material
DE102005059250B4 (en) An ammonia precursor substance and process for the selective catalytic reduction of nitrogen oxides in oxygen-containing vehicle exhaust gases
Braun et al. Potential technical approaches for improving low‐temperature NOx conversion of exhaust aftertreatment systems
US8776499B2 (en) Emission treatment systems and methods using passivated surfaces
Girard et al. The Influence of Ammonia Slip Catalysts on Ammonia, N₂O and NO x Emissions for Diesel Engines
DE102007061441A1 (en) Selective catalytic reduction of nitrogen oxides in automobile exhaust gas, is carried out using ammonia obtained by decomposing guanidine salt solution over non-oxidizing catalytic coating
CN101684742B (en) The reducing agent that metering is added especially for selective catalytic reduction adds equipment to the metering in exhaust gas flow of internal combustion
DE102007061440A1 (en) Use of aqueous guanidinium formate solution, optionally with urea and-or ammonia or ammonium salt, for the selective catalytic reduction of nitrogen oxides with ammonia in motor vehicle exhaust gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171208

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181206

Year of fee payment: 5