Nothing Special   »   [go: up one dir, main page]

KR101294270B1 - Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof - Google Patents

Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof Download PDF

Info

Publication number
KR101294270B1
KR101294270B1 KR1020110008814A KR20110008814A KR101294270B1 KR 101294270 B1 KR101294270 B1 KR 101294270B1 KR 1020110008814 A KR1020110008814 A KR 1020110008814A KR 20110008814 A KR20110008814 A KR 20110008814A KR 101294270 B1 KR101294270 B1 KR 101294270B1
Authority
KR
South Korea
Prior art keywords
dendritic polymer
membrane
ion adsorption
adsorption membrane
polymer
Prior art date
Application number
KR1020110008814A
Other languages
Korean (ko)
Other versions
KR20110095140A (en
Inventor
곽승엽
유병용
한국남
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20110095140A publication Critical patent/KR20110095140A/en
Application granted granted Critical
Publication of KR101294270B1 publication Critical patent/KR101294270B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/147Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/39Amphiphilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립(self-assembly)된 금속성 이온 흡착막, 소수성 사슬을 가지는 양친성 덴드리틱 고분자 및 막 형성용 고분자를 포함하는 금속성 이온 흡착막 도포용 조성물, 지지체 위에 금속성 이온 흡착막 도포용 조성물을 도포하고, 친수성 응고액 내에 투입하여, 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 금속성 이온 흡착막을 제조하는 방법 및 상기 금속성 이온 흡착막을 이용하여 용액 내 중금속 이온을 제거하는 방법에 관한 것이다. 본 발명에 따르면, 저비용으로 단시간 내에 금속성 이온 흡착막을 제조할 수 있으며, 고효율로 금속성 이온의 흡착이 가능하고, 산·염기 조절만으로 흡착된 금속성 이온을 제거하고 금속성 이온 흡착막을 재사용할 수 있으므로 경제적이다. The present invention is a metallic ion adsorption membrane comprising a metal ion adsorption membrane self-assembly hydrophobic chain of amphiphilic dendritic polymer, an amphiphilic dendritic polymer having a hydrophobic chain and a polymer for forming a membrane A method of preparing a metallic ion adsorption membrane in which a composition for coating and a metallic ion adsorption membrane coating composition is applied onto a support and poured into a hydrophilic coagulation liquid to self-assemble a hydrophobic chain of an amphiphilic dendritic polymer on the surface thereof and the metallic ion The present invention relates to a method for removing heavy metal ions in a solution using an adsorption membrane. According to the present invention, the metal ion adsorption membrane can be manufactured in a short time at low cost, the metal ion can be adsorbed with high efficiency, and it is economical because the metal ion adsorbed membrane can be removed and the metal ion adsorption membrane can be reused only by acid / base control. .

Description

양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 금속성 이온 흡착막 및 이의 제조방법 {Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof}Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation of the amphiphilic chain of amphiphilic polymer

본 발명은 금속성 이온 흡착을 위한 막, 이의 제조 방법 및 이를 이용한 수중 금속성 이온 제거방법에 관한 것이다.The present invention relates to a membrane for adsorption of metallic ions, a method for preparing the same, and a method for removing metallic ions in water using the same.

공업 폐수, 농업 활동, 산업 용수 등에서 배출된 중금속 이온은 다양한 경로를 통하여 인류와 생태계와 치명적인 위험으로 작용하고 있다. 중금속 이온은 체내에 존재하는 세포나 생체물질(biomolecule) 의 필수적인 화학 작용을 저해하거나 방해하며, 체내의 생체막(biomembrane) 의 성질을 파괴하는 작용을 통하여 생물학적 종의 생화학적 기능에 있어서 치명적인 위험을 가져다주는 것으로 밝혀졌다(Bayramoglu G, Arica MY, Bektas S. J. Appl . Polym . Sci . 2007, 106, 169). 이러한 중금속의 위험성은 카드뮴중독에 의한 이타이이타이병과 수은 중독에 의한 미나마타병의 경우를 통해서 확인할 수 있다. Heavy metal ions emitted from industrial wastewater, agricultural activities, and industrial waters pose a deadly danger to humans and ecosystems through various routes. Heavy metal ions inhibit or interfere with the essential chemical action of cells or biomolecules in the body, and pose a lethal danger to the biochemical function of biological species through the action of destroying the properties of the biomembrane in the body. It was found to give (Bayramoglu G, Arica MY, Bektas S. J. Appl . Polym . Sci . 2007 , 106 , 169). The risk of such heavy metals can be confirmed through the case of itai-itai disease caused by cadmium poisoning and Minamata disease caused by mercury poisoning.

이에, 환경친화적인 방식(LOHAS, Lifestyles of Health and Sustainability)과 환경오염 방지기술이 주목받고 있으며, 중금속 이온을 포함한 다양한 환경오염 유발물질을 흡착하거나 탐지하는 기술이 활발히 연구되고 있다. 그 일례로, 흡착제(adsorbent)를 이용한 중금속 이온의 흡착(adsorption)은 공정상의 편의성, 경제성, 낮은 농도의 중금속에서도 높은 제거 효율을 보이는 장점이 있어, 다양한 물질의 흡착제로서의 성능이 연구되고 있다. 특별히 열에 대한 안정성이 뛰어나며, 산과 염기에 대해서도 높은 화학적 안정성을 보이는 활성탄(activated carbon), 탄소 나노튜브(carbon nanotube) 등의 탄소 재료가 중금속 제거를 위한 흡착제 사용될 수 있음이 보고된 바 있다(Xiao B, Thomas KM. Langmuir 2005, 21, 3892, Wang H, Zhou A, Peng F, Yu H, Yang J. J. Colloid . Interface . Sci . 2007, 316, 277). Accordingly, the environmentally friendly method (LOHAS) and environmental pollution prevention technologies are attracting attention, and technologies for adsorbing or detecting various environmental pollution-causing substances including heavy metal ions have been actively studied. For example, the adsorption of heavy metal ions using an adsorbent has advantages in process convenience, economical efficiency, and high removal efficiency even at low concentrations of heavy metals, and performance of various materials as an adsorbent has been studied. In particular, it has been reported that carbon materials such as activated carbon and carbon nanotubes, which have excellent thermal stability and high chemical stability against acids and bases, may be used as adsorbents for heavy metal removal (Xiao B , Thomas KM. Langmuir 2005, 21 , 3892, Wang H, Zhou A, Peng F, Yu H, Yang J. J. Colloid . Interface . Sci . 2007, 316 , 277).

아울러, 이의 일환으로 덴드리틱 고분자(dendritic polymer)를 이용하여 중금속들 제거하는 방법이 사용된 바 있으나, 이를 위해서는 덴드리머의 세대수를 증가시키는 반복적인 단계반응이 필요하므로 이를 제조하기 위해서 많은 시간과 비용이 소요되며 덴드리머 단독으로 사용할 경우 수중유해물질의 포집 제거율은 높일 수 있으나 이를 분리해 내는 과정의 비효율성 및 덴드리머의 손실이 발생하게 되므로 기존 수중유해물질 제거공정(화학 침전법, 증발법, 액막법, 산화/환원법, 이온교환법, 역삼투막법, 전기분해법)과 비교하여 경제적으로 큰 장점을 기대하기 어렵다.In addition, as a part of this, a method of removing heavy metals using a dendritic polymer has been used, but this requires a repeated step reaction to increase the number of generations of dendrimers. If the dendrimer alone is used, the removal and removal rate of harmful substances in the water can be increased, but the inefficiency of separating them and the loss of dendrimers occur, thus removing the existing hazardous substances in water (chemical precipitation method, evaporation method, liquid film method). , It is difficult to expect economic advantages compared to oxidation / reduction method, ion exchange method, reverse osmosis membrane method and electrolysis method.

이에, 본 발명자들이 해결하고자 하는 과제는 덴드리머와 유사한 물성과 기능성을 나타내는 덴드리틱 고분자를 복잡하고 반복적인 단계반응이 아닌 일용기(one-pot) 반응으로 제조하여 이를 막에 융합시켜, 저비용, 고효율로 유해물질의제거가 가능한 금속성 이온 흡착막을 제공하는 것이다.Accordingly, the problem to be solved by the present inventors is to prepare a dendritic polymer that exhibits properties and functionality similar to dendrimers in a one-pot reaction rather than a complex and repetitive step reaction, and to fuse it to the membrane, low cost, It is to provide a metal ion adsorption membrane which can remove harmful substances with high efficiency.

상기 과제를 해결하기 위하여, 일 양태로 본 발명은 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립(self-assembly)된 금속성 이온 흡착막을 제공한다.In order to solve the above problems, in one aspect the present invention provides a metallic ion adsorption membrane is self-assembly (self-assembly) on the surface of the hydrophobic chain of the amphiphilic dendritic polymer.

상기 금속성 이온 흡착막은 덴드리틱 고분자가 융합되어 있으므로, 덴드리틱 고분자가 발휘하는 특징, 특히 고밀도 가지구조에 의한 사슬 엉킴 방지, 우수한 분자 운동성, 중금속 등과 같은 수중 유해물질의 내부포집이 가능한 공동(cavity) 포함, 내부 및 말단에 여러 가지 다수의 고밀도 작용기 포함, 분자량과 구조 예측 및 이의 조절 가능성을 가진다. Since the dendritic polymer is fused to the metallic ion adsorption membrane, the characteristic exhibited by the dendritic polymer, in particular, prevents chain entanglement due to a high density branch structure, excellent molecular mobility, and enables internal capture of harmful substances in water such as heavy metals ( cavity), including a number of high-density functional groups at the inside and the end, molecular weight and structure prediction, and its controllability.

상기 덴드리틱 고분자는 양친성으로 친수성과 소수성 부분을 모두 가진다. The dendritic polymer has both hydrophilic and hydrophobic moieties.

덴드리틱 고분자의 친수성 부분은 금속성 이온을 공액시킬 수 있는 다방향의 결합자리 및 다수의 작용기를 갖는 고차가지구조인 것이 바람직하다. 상기 작용기는 예를 들어, -CH2-, -CONH-, 및 -NH2-으로 이루어진 군에서 선택된 1이상의 작용기일 수 있으나, 이에 제한되지 않는다. 상기 작용기는 금속성 이온과 비공유 전자쌍을 이룸으로써, 용액 내 금속성 이온을 효율적으로 공액시킬 수 있다. 상기 작용기는 고차가지구조의 덴드리틱 고분자의 말단 및 내부에 존재한다. It is preferable that the hydrophilic portion of the dendritic polymer has a higher branched structure having a multi-functional bonding site and a plurality of functional groups capable of conjugating metallic ions. The functional group may be, for example, one or more functional groups selected from the group consisting of -CH 2- , -CONH-, and -NH 2- , but is not limited thereto. The functional group forms a non-covalent electron pair with the metal ion, thereby efficiently conjugating the metal ion in the solution. The functional group is a terminal of the dendritic polymer of higher order structure And inside.

덴드리틱 고분자의 소수성 부분은 소수성 사슬로 이루어지며, 상기 소수성 사슬은 이에 제한되지 않지만, 탄소수 5 내지 18의 치환 또는 비치환 알킬사슬인 것이 바람직하다. 상기 소수성 사슬은 덴드리틱 고분자 1개당 3 내지 12개 정도 포함할 수 있으나, 이에 제한되지 않는다. 덴드리틱 고분자의 소수성 사슬이 막 표면에서 자기조립(self-assembly)됨으로써 덴드리틱 고분자가 막에 융합되는바, 상기 자기조립이란 고분자가 적당한 환경조건에서 그 자신이 집합하여 생리적으로 의미가 있는 고차 구조를 형성하는 현상을 말한다. The hydrophobic portion of the dendritic polymer consists of a hydrophobic chain, and the hydrophobic chain is not limited thereto, but preferably a substituted or unsubstituted alkyl chain having 5 to 18 carbon atoms. The hydrophobic chain may include about 3 to about 12 per dendritic polymer, but is not limited thereto. The hydrophobic chain of the dendritic polymer is self-assembly at the membrane surface, and the dendritic polymer is fused to the membrane. The phenomenon of forming a higher order structure.

상기 덴드리틱 고분자의 단량체는 예를 들어, -CO-, -COO-, -CONH-, 및 -NH2-으로 이루어진 군에서 선택된 1이상의 작용기를 포함하는 유기 분자체일 수 있으나, 이에 제한되지 않는다. The monomer of the dendritic polymer may be, for example, an organic molecular sieve including at least one functional group selected from the group consisting of -CO-, -COO-, -CONH-, and -NH 2- , but is not limited thereto. Do not.

또한, 덴드리틱 고분자의 분자량은 3000 내지 15000 gmol-1을 가질 수 있으나, 이에 제한되지 않는다.In addition, the molecular weight of the dendritic polymer may have a 3000 to 15000 gmol -1 , but is not limited thereto.

다른 양태로, 본 발명은 소수성 사슬을 가지는 양친성 덴드리틱 고분자 및 막 형성용 고분자를 포함하는 금속성 이온 흡착막 도포용 조성물을 제공한다. In another aspect, the present invention provides a metal ion adsorption membrane coating composition comprising an amphiphilic dendritic polymer having a hydrophobic chain and a polymer for forming a membrane.

상기 막 형성용 고분자는 폴리술폰, 폴리이미드, 폴리아마이드이미드, 폴리아마이드,폴리아크릴로니트릴 및 폴리비닐리덴플로라이드로 이루어진 군에서 선택된 1이상일 수 있으나, 이에 제한되지 않는다. The film forming polymer may be at least one selected from the group consisting of polysulfone, polyimide, polyamideimide, polyamide, polyacrylonitrile, and polyvinylidene fluoride, but is not limited thereto.

상기 금속성 이온 흡착막 도포용 조성물에는 양친성 덴드리틱 고분자 및 막 형성용 고분자 외에 유기용매 또는 첨가제를 추가로 포함할 수 있다. 상기 유기용매에는 이에 제한되지 않지만 예를 들어, 디메틸설폭사이드, N-메틸-2-피롤리돈, N,N-디메틸포름아마이드, N,N-디메틸아세트아마이드, γ-부티로락톤, 사이클로헥사논, 3-헥사논, 3-헵타논, 3-옥타논 및 이들의 혼합물 등이 있고, 상기 첨가제에는 이에 제한되지 않지만, 물; 메탄올, 에탄올, 2-메틸-1-부탄올, 2-메틸-2-부탄올, 글리세롤, 에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 1종의 알코올; 아세톤 및 메틸 에틸 케톤으로 이루어진 군에서 선택된 1종의 케톤; 폴리비닐알콜, 폴리아크릴산, 폴리아크릴아마이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 키토산, 키틴, 덱스트란 및 폴리비닐피롤리돈으로 이루어진 군에서 선택된 1종의 고분자 화합물; 염화리튬, 염화나트륨, 염화칼슘, 리튬아세테이트, 황산나트륨 및 수산화나트륨으로 이루어진 군에서 선택된 1종의 염; 테트라하이드로퓨란; 트리클로로에탄; 및 이들의 혼합물로 이루어진 군에서 선택된 1종일 수 있다. The metal ion adsorption membrane coating composition may further include an organic solvent or an additive in addition to the amphiphilic dendritic polymer and the membrane-forming polymer. Examples of the organic solvent include, but are not limited to, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, and cyclohexa Paddy rice, 3-hexanone, 3-heptanone, 3-octanone, and mixtures thereof, and the like, including but not limited to water; One alcohol selected from the group consisting of methanol, ethanol, 2-methyl-1-butanol, 2-methyl-2-butanol, glycerol, ethylene glycol, diethylene glycol and propylene glycol; One ketone selected from the group consisting of acetone and methyl ethyl ketone; One polymer compound selected from the group consisting of polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyethylene glycol, polypropylene glycol, chitosan, chitin, dextran and polyvinylpyrrolidone; One salt selected from the group consisting of lithium chloride, sodium chloride, calcium chloride, lithium acetate, sodium sulfate and sodium hydroxide; Tetrahydrofuran; Trichloroethane; And it may be one selected from the group consisting of a mixture thereof.

상기 금속성 이온 흡착막 도포용 조성물은 막 형성용 고분자 10 내지 20 중량%, 덴드리틱 고분자 1 내지 10 중량%, 유기용매 60 내지 85 중량% 및 첨가제 2 내지 20 중량%를 포함하는 것이 바람직하나, 이에 제한되지 않는다. The metal ion adsorption membrane coating composition preferably comprises 10 to 20% by weight of the membrane-forming polymer, 1 to 10% by weight of the dendritic polymer, 60 to 85% by weight of the organic solvent and 2 to 20% by weight of the additive, This is not restrictive.

본 발명에 따른 금속성 이온 흡착막의 형태는, 금속성 이온 흡착을 제한하지 않는다면 모두 가능하고 이에 제한되지 않지만, 예를 들어 평막 또는 중공사막 형태일 수 있다.The shape of the metallic ion adsorption membrane according to the present invention may be any type of metal oxide adsorption, but is not limited thereto, but may be, for example, in the form of a flat membrane or a hollow fiber membrane.

또 다른 양태로, 본 발명은 지지체 위에 상기 본 발명에 따른 금속성 이온 흡착막 도포용 조성물을 도포하고, 친수성 응고액 내에 투입하여, 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 금속성 이온 흡착막을 제조하는 방법을 제공한다. In another aspect, the present invention is applied to the composition for coating the metal ion adsorption membrane according to the present invention on a support, and put into a hydrophilic coagulating liquid, the metal ion in which the hydrophobic chain of the amphiphilic dendritic polymer self-assembled on the surface It provides a method for producing an adsorption membrane.

종래 덴드리틱 고분자를 제조하기 위한 방법으로 예를 들어, divergent 합성법과 convergent 합성법이 있으며, Divergent 합성법은 한 개의 중심 분자로부터 단계적으로 활성화와 성장을 반복하여 외곽 구조를 키워나가는 합성 방법이며 convergent 합성법은 덴드리머의 최외곽의 말단기로부터 중심 방향으로 활성화와 성장을 반복하여 합성해 나가는 방법이다(P. Hodgem, Nature, 362, 18 (1993), C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 112, 7638 (1990).). 예를 들어, 폴리아미도아민(poly(amido amine)(PAMAM)) 덴드리머는 중심분자로 암모니아, 에틸렌다이아민 (EDA), 프로필다이아민과 같은 분자를 사용하였고 이를 메틸아크릴레이트와 Michael 부가반응시킨 후, EDA과의 amidation과 Michael 부가반응을 반복함으로써 합성되었다(D. A. Tomalia, A. M. Naylor, and W. A. Goddard III, Angew. Chem. Int. Ed. Engl., 29, 138 (1990)).Conventional dendritic polymer production methods include, for example, divergent synthesis and convergent synthesis. Divergent synthesis is a synthetic method that grows the outer structure by activating and growing step by step from one central molecule. It is a method of synthesizing repeatedly by activation and growth from the outermost terminal group of the dendrimer to the center direction (P. Hodgem, Nature, 362, 18 (1993), CJ Hawker and JMJ Frechet, J. Am. Chem. Soc. , 112, 7638 (1990).). For example, poly (amido amine (PAMAM)) dendrimers used molecules such as ammonia, ethylenediamine (EDA), and propyldiamine as their central molecules, and then reacted with methyl acrylate and Michael , Michael was synthesized by repeating amidation with EDA and Michael addition reaction (DA Tomalia, AM Naylor, and WA Goddard III, Angew. Chem. Int. Ed. Engl., 29, 138 (1990)).

이러한 방법은 많은 시간과 비용이 소요되는바, 본 발명자들은 하기와 같은 방법으로 양친성 덴드리틱 고분자를 제조하는 방법을 개발하였다. 구체적으로, 양친성 덴드리틱 고분자는 에스테르 화합물을 용매에 넣고 용해하는 단계; 아민류 화합물을 반응시키는 단계; 및 상기 반응물을 용해한 후 소수성 화합물과 반응시키는 단계를 포함하여 제조될 수 있다. 보다 구체적으로, 에스테르와 아민류의 혼합물을 목표하는 분자량에 따라 그 비율을 1:4~10(에스테르:아민류)으로 조절하여 50~140 °C에서 12~48시간 동안 아르곤 환경 조건 하에서 반응을 실시하고 이때, 에스테르 화합물에 아민류 화합물을 첨가하면서 반응을 실시하여 덴드리틱 고분자의 친수성 부분을 수득하고 이를 소수성 화합물과 반응시켜 양친성 덴드리틱 고분자를 수득할 수 있다. 본 발명의 구체적인 실시예에 따르면, 에스테르 화합물인 메틸아크릴레이트(methyl acrylate)를 메탄올에 넣고 0~5 °C를 유지하면서 30분간 용해한 후, 아민류 화합물인 에틸렌디아민(ethylenediamine)을 넣고 2시간 동안 합성반응을 실시하고 23 °C로 승온 후 24시간 더 반응시킨 후; 에틸렌디아민을 추가 첨가하여 24시간 동안 50 °C의 온도로 아르곤 환경 하에서 합성반응을 실시하였다. 그 다음, 소수성 사슬을 가지도록 제조하기 위하여, 앞서 수득한 제조물을 클로로폼에 용해한 후 트리에틸아민(triethylamine)을 첨가하여 함께 용해하고 클로로폼에 용해시킨 팔미톨클로라이드(palmitoyl chloride) 용액을 용기 안에 천천히 떨어뜨려 24시간 동안 개질반응을 실시하며 메탄올에 침전하여 여과를 통하여 최종 생성물을 수득하였다(실시예 1). 이러한 방법에 따르면, 용이하게 단시간 내에 효율적으로 일용기 반응(one-pot)으로 양친성 덴드리틱 고분자를 제조할 수 있다.This method takes a lot of time and money, the present inventors have developed a method for producing an amphiphilic dendritic polymer in the following manner. Specifically, the amphiphilic dendritic polymer is prepared by dissolving an ester compound in a solvent; Reacting amine compounds; And reacting with a hydrophobic compound after dissolving the reactant. More specifically, according to the target molecular weight of the mixture of esters and amines, the ratio is adjusted to 1: 4 to 10 (esters: amines) to perform the reaction under argon environmental conditions at 50 to 140 ° C for 12 to 48 hours. At this time, the reaction may be carried out while adding an amine compound to the ester compound to obtain a hydrophilic portion of the dendritic polymer and react with the hydrophobic compound to obtain an amphiphilic dendritic polymer. According to a specific embodiment of the present invention, methyl acrylate (methyl acrylate) ester compound in methanol and dissolved for 30 minutes while maintaining 0 ~ 5 ° C, amine compound ethylenediamine (ethylenediamine) was added for 2 hours After carrying out the reaction and raising the temperature to 23 ° C. and further reacted for 24 hours; Additional ethylenediamine was added to carry out the synthesis under argon at a temperature of 50 ° C. for 24 hours. Then, in order to prepare to have a hydrophobic chain, the previously obtained preparation was dissolved in chloroform, triethylamine was added together to dissolve together, and a palmitoyl chloride solution dissolved in chloroform was added to the container. After dropping slowly, the reforming reaction was carried out for 24 hours, and precipitated in methanol to obtain a final product through filtration (Example 1). According to this method, an amphiphilic dendritic polymer can be easily produced in a one-pot reaction easily and within a short time.

금속성 이온 흡착막을 제조하기 위하여, 상기와 같은 방법으로 제조된 양친성 덴드리틱 고분자를 포함하는 본 발명에 따른 금속성 이온 흡착막 도포용 조성물을 지지체 위에 도포하는바, 상기 지지체는 이에 제한되지 않지만, 예를 들어 유리판, 폴리에스테르 필름, 부직포-폴리술폰 다공성 지지체 또는 부직포-폴리비닐리덴플루오라이드 다공성 지지체 등일 수 있다. In order to manufacture a metallic ion adsorption membrane, the composition for applying a metallic ion adsorption membrane according to the present invention comprising an amphiphilic dendritic polymer prepared by the above method is applied on a support, but the support is not limited thereto. For example, it may be a glass plate, a polyester film, a nonwoven-polysulfone porous support or a nonwoven-polyvinylidene fluoride porous support.

금속성 이온 흡착막 도포용 조성물을 지지체 위에 도포하는 방법은 당업계에 공지된 방법에 따르며, 예를 들어 방사 또는 캐스팅에 의할 수 있으며, 본 발명의 구체적인 실시예에 따르면 필름 도포기(film applicator)를 이용하여 도포하였다.The method of applying the composition for applying the metallic ion adsorption membrane on the support is in accordance with methods known in the art, for example, by spinning or casting, according to a specific embodiment of the present invention a film applicator It was applied using.

그 다음 단계로 상기 금속성 이온 흡착막 도포용 조성물이 도포된 지지체를 친수성 응고액 내에 투입한다. 상기 투입에 의해 금속성 이온 흡착막 도포용 조성물 내 양친성 덴드리틱 고분자의 친수성 부분이 친수성 응고액 부분을 향해 정렬되고 소수성 사슬이 막 표면 위에서 자기조립(self-assembly)에 의해 정렬되면서, 응고된다. 친수성 응고액으로 본 발명의 구체적인 실시예에서는 물과 NMP를 95:5로 혼합한 혼합액을 사용하였으나, 이에 제한되지 않는다.In the next step, the support on which the composition for coating the metal ion adsorption membrane is applied is introduced into a hydrophilic coagulation liquid. By the addition, the hydrophilic portion of the amphiphilic dendritic polymer in the composition for applying the metallic ion adsorption membrane is aligned toward the hydrophilic coagulating liquid portion and the hydrophobic chain is solidified by self-assembly on the membrane surface. . In a specific embodiment of the present invention as a hydrophilic coagulant, a mixture of water and NMP mixed at 95: 5 was used, but is not limited thereto.

추가적으로, 친수성 응고액 내에 투입하는 단계 다음에 응고된 금속성 이온 흡착막을 세척액으로 세척한 후 건조하는 단계를 추가로 포함할 수 있다.Additionally, the method may further include washing the solidified metallic ion adsorption membrane with a washing solution and then drying the hydrophilic coagulating solution.

본 발명에 따른 금속성 이온 흡착막은 고효율로 금속성 이온의 흡착이 가능하고, 산염기 조절만으로 흡착된 금속성 이온을 제거하고 금속성 이온 흡착막을 재사용할 수 있으므로 경제적이다.The metal ion adsorption membrane according to the present invention is economical because it is possible to adsorb the metal ions with high efficiency, remove the adsorbed metal ions only by controlling the acid group and reuse the metal ion adsorption membrane.

따라서 다른 양태로, 본 발명은 중금속 이온이 포함된 용액 내 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 금속성 이온 흡착막을 투입하여 용액 내의 중금속 이온을 흡착시키는 단계, 및 상기 흡착된 중금속 이온을 산염기 조절을 통해 세척하는 단계를 포함하는, 용액 내 중금속 이온 제거방법을 제공한다. Therefore, in another aspect, the present invention is a step of adsorbing a metal ion adsorption membrane self-assembled hydrophobic chain of amphiphilic dendritic polymer in a solution containing heavy metal ions on the surface to adsorb heavy metal ions in the solution, and the adsorbed heavy metal It provides a method for removing heavy metal ions in a solution, comprising the step of washing ions through acid group control.

상기 중금속 이온은 이에 제한되지 않지만, 구리(Cu(II)), 니켈(Ni(II)), 아연(Zn(II), 납(Pb(II), 카드뮴(Cd(II)), 및 수은(Hg(II))으로 이루어진 군에서 선택된 1이상의 중금속 이온일 수 있다. The heavy metal ions include, but are not limited to, copper (Cu (II)), nickel (Ni (II)), zinc (Zn (II), lead (Pb (II), cadmium (Cd (II)), and mercury ( Hg (II)) may be one or more heavy metal ions selected from the group consisting of.

또한, 상기 용액 내의 중금속 이온의 농도가 1~1000 ppm 일때 가장 본 발명에 따른 방법이 효과적으로 적용될 수 있으나, 이에 제한되지 않으며 중금속 이온 외의 다른 유해물질 제거시에도 활용할 수 있다. In addition, when the concentration of the heavy metal ions in the solution is 1 ~ 1000 ppm the method according to the present invention can be applied effectively, but is not limited to this can also be used to remove other harmful substances other than heavy metal ions.

또한, 산 염기의 조절만으로 흡착된 중금속 이온을 용이하게 분리제거할 수 있으므로 지속적으로 활용할 수 있는바, 상기 세척액은 이에 제한되지 않지만, 예를 들어 염산, 질산, 및 황산 용액 등과 같은 pH 6 이하의 산용액을 사용할 수 있다.In addition, since the heavy metal ions adsorbed can be easily separated and removed only by adjusting the acid base, the washing solution can be continuously used, but the washing solution is not limited thereto. For example, pH 6 or less, such as hydrochloric acid, nitric acid, and sulfuric acid solutions Acid solutions can be used.

또한, 본 발명에 따른 금속성 이온 흡착막의 용도로써 용액 내 중금속 이온 제거방법을 들었으나 이 예시적인 용도에 한정됨이 없이 추후 예상되는 다양한 용도에 응용, 적용될 수 있으며, 이들의 용도가 본 발명의 범주를 벗어나는 것은 아니다.In addition, the use of the metal ion adsorption membrane according to the present invention has been described a method for removing heavy metal ions in solution, but is not limited to this exemplary use can be applied and applied to a variety of future applications, these uses of the scope of the present invention It doesn't go away.

본 발명에 따른 금속성 이온 흡착막을 이용하면, 수중에 존재하는 중금속 이온 등과 같은 유해물질을 효과적으로 제거할 수 있으며 덴드리틱 고분자의 친수성부분으로 인해 막 파울링(fouling)을 저감할 수 있을 뿐만 아니라 산ㆍ염기 조건 조절을 통하여 포집된 유해물질을 용이하게 분리ㆍ제거할 수 있으므로 막의 재사용이 가능하다.By using the metal ion adsorption membrane according to the present invention, it is possible to effectively remove harmful substances such as heavy metal ions in the water and to reduce membrane fouling due to the hydrophilic portion of the dendritic polymer as well as acid ㆍ It is possible to reuse the membrane because it can easily separate and remove the harmful substances collected by controlling base condition.

도 1은 양친성 덴드리틱 고분자를 나타낸 모식도이다.
도 2는 본 발명에 따른 막 구조를 보여주는 모식도이다.
도 3은 본 발명에 따른 막이 중금속과 같은 수중유해물질을 제거하는 메커니즘 모식도이다.
도 4는 본 발명에 따른 막 제조방법을 보여주는 모식도이다.
도 5는 실시예 1(a)에 따라 생성된 친수성 덴드리틱 고분자(HYPAM)와 실시예 1(b)에 따라 생성된 양친성 덴드리틱 고분자(a-HYPAM)의 적외선분광분석(FT-IR) 스펙트럼을 나타낸 것이다.
도 6은 실시예 1(a)에 따라 생성된 친수성 덴드리틱 고분자의 핵자기공명분광분석(Quantitative 13C NMR) 스펙트럼을 나타낸 것이다.
도 7은 실시예 1(a)에 따라 생성된 친수성 덴드리틱 고분자와 실시예 1(b)에 따라 생성된 양친성 덴드리틱 고분자의 핵자기공명분광분석(1H NMR) 스펙트럼을 나타낸 것이다.
도 8은 실시예 3(a)에 따라 제조된 막(a)와 실시예 3(b)에 따라 제조된 막(b)에 대한 감쇠전반사 적외선분광분석(ATR-FTIR) 스펙트럼을 나타낸 것이다.
도 9는 폴리술폰 막(막(a)), 양친성 덴드리틱 고분자가 부착된 폴리술폰 막(막(b))에 대한 X선 광전자분광분석(XPS) 스펙트럼을 나타낸 것이다.
도 10은 막(a)와 막(b)에 대한 열중량분석을 실시한 결과를 나타낸 것이다.
도 11은 실시예 5에 따라 실시된 카드뮴 포집실험에서 막(a)와 막(b)의 카드뮴에 대한 포집량을 그래프로 나타낸 것이다.
1 is a schematic diagram showing an amphiphilic dendritic polymer.
2 is a schematic diagram showing a membrane structure according to the present invention.
3 is a schematic diagram of a mechanism for removing harmful substances in water such as heavy metals according to the present invention.
4 is a schematic view showing a film production method according to the present invention.
5 is an infrared spectroscopic analysis (FT-) of a hydrophilic dendritic polymer (HYPAM) produced according to Example 1 (a) and an amphiphilic dendritic polymer (a-HYPAM) produced according to Example 1 (b). IR) spectrum is shown.
Figure 6 shows the nuclear magnetic resonance spectroscopy (Quantitative 13 C NMR) spectrum of the hydrophilic dendritic polymer produced according to Example 1 (a).
7 shows nuclear magnetic resonance spectroscopy ( 1 H NMR) spectra of a hydrophilic dendritic polymer produced according to Example 1 (a) and an amphiphilic dendritic polymer produced according to Example 1 (b). .
FIG. 8 shows attenuated total reflection infrared spectroscopy (ATR-FTIR) spectra for the film (a) prepared according to Example 3 (a) and the film (b) prepared according to Example 3 (b).
FIG. 9 shows X-ray photoelectron spectroscopy (XPS) spectra of a polysulfone film (film (a)) and a polysulfone film (film (b)) having an amphiphilic dendritic polymer attached thereto.
10 shows the results of thermogravimetric analysis of the membranes (a) and (b).
FIG. 11 is a graph showing the amount of cadmium trapped in the cadmium trapping test performed in Example 5 with respect to the cadmium.

이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
Hereinafter, embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the embodiments according to the present invention may be modified in various other forms, and the scope of the present invention should not be construed as being limited to the following embodiments. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.

<< 실시예Example 1> 소수성  1> hydrophobic 알킬Alkyl 사슬 및 친수성 고분자 사슬을 포함한  Chains and hydrophilic polymer chains 덴드리틱Dendritic 고분자의 합성 Synthesis of polymer

<< 실시예Example 1(a)> 친수성 고분자 사슬을 포함한  1 (a)> containing hydrophilic polymer chains 덴드리틱Dendritic 고분자의 합성 Synthesis of polymer

250 mL의 삼구 플라스크에 30 mL의 메탄올을 넣고 탄소-탄소 이중결합을 가진 에스테르 물질인 메틸아크릴레이트(methyl acrylate) 8.61 g (100 mmol)을 첨가한다. 용기를 얼음 수조에 넣어 0~5 °C를 유지하면서 30분간 교반하여 잘 용해한다. 아민류 물질인 에틸렌디아민(ethylenediamine) 1.50 g (25 mmol)을 용기 안에 천천히 떨어트려 2시간 동안 합성반응을 실시하며 23 °C로 승온 후 24시간 더 반응을 진행한다. 용매와 미반응물을 회전농축방치(rotary evaporator)를 통하여 제거한 후 에틸렌디아민 10.52 g (175 mmol)을 첨가하여 24시간 동안 50 °C의 온도로 아르곤 환경 하에서 합성반응을 실시한다. 회전농축장치를 이용하여 각각 60 °C에서 1시간, 100 °C에서 2시간, 120 °C에서 2시간, 140 °C에서 2시간 동안 추가 반응을 실시함으로써 생성물을 수득하였다.
30 mL of methanol is added to a 250 mL three-necked flask, and 8.61 g (100 mmol) of methyl acrylate, an ester substance having a carbon-carbon double bond, is added. Place the container in an ice bath and stir for 30 minutes while maintaining 0-5 ° C to dissolve well. 1.50 g (25 mmol) of amine-based ethylenediamine is slowly dropped into the vessel, followed by a 2 hour synthetic reaction, followed by further reaction for 24 hours. After removal of the solvent and the unreacted substance through a rotary evaporator, 10.52 g (175 mmol) of ethylenediamine is added to carry out the synthesis reaction under an argon environment at a temperature of 50 ° C for 24 hours. The product was obtained by performing a further reaction for 1 hour at 60 ° C, 2 hours at 100 ° C, 2 hours at 120 ° C, 2 hours at 140 ° C using a rotary concentrator, respectively.

<< 실시예Example 1(b)> 소수성  1 (b)> hydrophobic 알킬Alkyl 사슬을 포함한  Chain 양친성Amphibian 덴드리틱Dendritic 고분자의 합성  Synthesis of polymer

양친성 덴드리틱 고분자를 얻기 위하여 앞서 수득한 생성물을 클로로폼에 용해한 후 트리에틸아민(triethylamine) 4.25 g을 첨가하여 함께 용해한다. 클로로폼에 5.77 g의 팔미톨클로라이드(palmitoyl chloride)를 미리 녹인 용액을 용기 안에 천천히 떨어뜨려 24시간 동안 개질반응을 실시하며 메탄올에 침전하여 여과를 통하여 최종 생성물을 수득하였다.
In order to obtain an amphiphilic dendritic polymer, the product obtained above is dissolved in chloroform and 4.25 g of triethylamine is added to dissolve together. A solution of 5.77 g of palmitoyl chloride, previously dissolved in chloroform, was slowly dropped into the vessel, reformed for 24 hours, and precipitated in methanol to obtain a final product through filtration.

<< 실시예Example 2> 제조된  2> manufactured 덴드리틱Dendritic 고분자의 구조분석 Structural Analysis of Polymers

실시예 1에 따라 제조된 덴드리틱 고분자 합성 여부의 정성적 평가는 적외선분광분석(FT-IR)을 이용하여 분석하였다. 또한, 핵자기공명분광분석(13C NMR, 1H NMR)을 이용하여 정량적 구조분석과 말단 아미노기의 치환도를 평가하였다.Qualitative evaluation of the synthesis of dendritic polymer prepared according to Example 1 was analyzed using infrared spectroscopy (FT-IR). In addition, quantitative structural analysis and degree of substitution of terminal amino groups were evaluated using nuclear magnetic resonance spectroscopy ( 13 C NMR, 1 H NMR).

이러한 결과들로부터 상기 제조 방법에 따라 얻어진 덴드리틱 고분자가 알킬사슬로 이루어진 소수성기와 수중유해물질을 포집할 수 있는 다수의 작용기와 공동을 가진 친수성기로 이루어져 있음을 알 수 있었다.
From these results, it can be seen that the dendritic polymer obtained according to the preparation method is composed of a hydrophobic group composed of an alkyl chain and a hydrophilic group having a plurality of functional groups and cavities capable of trapping harmful substances in water.

(1) 적외선분광분석((1) infrared spectroscopy FTFT -- IRIR ))

도 5는 적외선분광분석을 이용하여 실시예 1(a)에서 합성한 친수성 덴드리틱 고분자(HYPAM)와 실시예 1(b)에서 제조한 양친성 덴드리틱 고분자(a-HYPAM)의 정성분석 결과이다. 친수성 덴드리틱 고분자는 특징적인 피크(peak)가 약 3600~3200 cm-1과 1555 cm-1에서 각각 말단 아미노기(N-H)의 스트레치(stretch)와 벤드(bend)가 나타나고 3100~2900 cm-1에서는 C-H 스트레치가 나타나며 1640 cm- 1 에서는 아마이드기(C=O)의 스트레치가 나타남으로써 잘 합성되었음을 확인하였다. 말단 아미노기를 긴 지방족 사슬을 가진 팔미톨클로라이드로 개질한 결과, 3300 cm-1에서 N-H 스트레치의 강한 흡수피크가 나타나고 3100~2900 cm-1에서 긴 지방족 사슬로 인한 C-H 스트레치의 강한 흡수피크가 나타남으로써 양친성의 덴드리틱 고분자로 개질되었음을 확인하였다.5 is a qualitative analysis of the hydrophilic dendritic polymer (HYPAM) synthesized in Example 1 (a) and the amphiphilic dendritic polymer (a-HYPAM) prepared in Example 1 (b) using infrared spectroscopy. The result is. Hydrophilic dendritic polymer has characteristic peaks (peak) is the stretch (stretch) and the bend (bend) of each terminal amino group (NH) in about 3600 ~ 3200 cm -1 and 1555 cm -1 appears, 3100 ~ 2900 cm -1 in the CH stretch appears and 1640 cm - 1, it was confirmed that the fine composite appears as a stretching of the amide group (C = O). Modification of the terminal amino group to palmitol chloride with a long aliphatic chain results in a strong absorption peak of NH stretch at 3300 cm −1 and a strong absorption peak of CH stretch due to long aliphatic chain at 3100-2900 cm −1 . It was confirmed that the modified amphiphilic polymer.

(2) 핵자기공명분광분석((2) nuclear magnetic resonance spectroscopy ( 1313 C C NMRNMR , , 1One H H NMRNMR ))

도 6은 Quantitative 13C NMR을 이용하여 실시예 1(a)에서 합성된 친수성 덴드리틱 고분자의 정량적 구조분석(HYPAM)을 실시한 결과이다. 먼저, 테트라메틸암모늄하이드록시드((CH3)4NOH) 0.058 g (0.64 mmol)를 기준물질로 하여 덴드리틱 고분자 0.14 g과 함께 중수소로 치환된 D2O에 넣어 용해한 후 분석을 실시하였다. 각 탄소의 특성피크는 a부터 i까지 나타나고 기준물질과의 적분비를 통하여 각 탄소의 존재비와 작용기의 양을 구하였다. 덴드리틱 고분자 내 1차 아민은 5.03 mmolg-1, 3차 아민은 3.43 mmolg-1, 아마이드는 6.22 mmolg-1, 에스테르는 1.19 mmolg-1 만큼 존재함을 확인하였다. 이것을 다각도 광산란(MALS)분석법을 통하여 결정된 덴드리틱 고분자의 중량평균분자량(3600 gmol-1)과의 계산을 통하여 분자당 작용기수를 구하였다. 그 결과 1차 아민은 18.1개, 3차 아민은 12.4개, 아마이드는 22.4개, 에스테르는 4.28개가 존재함을 확인하였다. FIG. 6 shows the results of quantitative structural analysis (HYPAM) of the hydrophilic dendritic polymer synthesized in Example 1 (a) using Quantitative 13 C NMR. First, 0.058 g (0.64 mmol) of tetramethylammonium hydroxide ((CH 3 ) 4 NOH) was used as a reference material, and 0.14 g of dendritic polymer was dissolved in D 2 O substituted with deuterium, followed by analysis. . The characteristic peaks of each carbon are shown from a to i, and the abundance ratio of each carbon and the amount of functional groups were obtained from the integral ratio with the reference material. The primary amine in the dendritic polymer was 5.03 mmolg -1 , the third amine was 3.43 mmolg -1 , the amide was 6.22 mmolg -1 , and the ester was 1.19 mmolg -1 . The number of functional groups per molecule was determined by calculating the weight average molecular weight (3600 gmol -1 ) of the dendritic polymer determined by the multi-angle light scattering (MALS) analysis. As a result, 18.1 primary amines, 12.4 tertiary amines, 22.4 amides, and 4.28 esters were found.

도 7은 1H NMR을 이용하여 실시예 1(b)에서 제조된 양친성 덴드리틱 고분자(a-HYPAM)의 치환도를 확인한 결과이다. 각 물질은 중수소로 치환된 클로로폼(CDCl3-d)에 용해하여 분석하였다. 각 물질의 특성피크는 1부터 12까지 나타나는 것을 확인하였으며 양친성 덴드리틱 고분자의 스펙트럼에서 팔미톨클로라이드의 특성피크인 9~12번 피크가 나타나는 것을 확인함으로써 성공적으로 개질되었음을 확인하였다. 1차 아민에 해당하는 1번 피크와 11번 피크의 적분비를 구함으로써 8.67개의 1차 아민기가 소수성기로 치환되었음을 확인하였다.
7 is a result of confirming the degree of substitution of the amphiphilic dendritic polymer (a-HYPAM) prepared in Example 1 (b) using 1 H NMR. Each material was analyzed by dissolving in chloroform (CDCl 3 - d ) substituted with deuterium. It was confirmed that the characteristic peak of each material appeared from 1 to 12, and that the modified peak was confirmed by confirming that the peaks of 9 to 12, which are characteristic peaks of palmitole chloride, appeared in the spectrum of amphiphilic dendritic polymer. It was confirmed that 8.67 primary amine groups were substituted with hydrophobic groups by determining the integral ratio between peaks 1 and 11 corresponding to the primary amine.

<< 실시예Example 3>  3> 덴드리틱Dendritic 고분자 Polymer end 부착된 수처리 막 제조 Attached Water Treatment Membrane Manufacturing

막 형성용 고분자인 폴리술폰, 용매인 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone, NMP), 수중유해물질을 포집하기 위해 상기 실시예 1에서 제조된 양친성 덴드리틱 고분자를 첨가제로 하여 막을 제조하였다. 하기 표 1에 기재된 조성에 따라, 각 성분을 혼합하여 균일한 도프 용액을 제조하였다.Amphiphilic dendritic prepared in Example 1 to capture polysulfone as a polymer for film formation, N-methyl-2-pyrrolidone (NMP) as a solvent, and harmful substances in water The membrane was prepared using the polymer as an additive. According to the composition shown in Table 1 below, each component was mixed to prepare a uniform dope solution.

구분division 샘플명Sample name 폴리술폰 Polysulfone NMPNMP 양친성 덴드리틱 고분자Amphiphilic dendritic polymer 비고Remarks 실시예 3(a)Example 3 (a) 막(a)Membrane (a) 0.750.75 4.254.25 대조군Control group 실시예 3(b)Example 3 (b) 막(b)Membrane (b) 0.260.26

(단위: g)  (Unit: g)

제조된 도프 용액을 유리판(glass) 위에 필름 도포기(film applicator)를 이용하여 도포한 뒤, 친수성 응고액(물:NMP=95:5 (w/w))이 담긴 응고조에 투입하여 24시간 동안 유지한다. 제조된 막을 증류수로 상온에서 24시간 동안 세척 후 대류식 오븐(convection oven)내, 50 ℃에서 24시간 동안 건조하였다.
The prepared dope solution was applied to a glass plate using a film applicator, and then put into a coagulation bath containing a hydrophilic coagulant (water: NMP = 95: 5 (w / w)) for 24 hours. Keep it. The prepared membrane was washed with distilled water at room temperature for 24 hours and then dried in a convection oven at 50 ° C. for 24 hours.

<< 실시예Example 4>  4> 덴드리틱Dendritic 고분자 Polymer end 부착된 막의 구조분석 Structural Analysis of Attached Membranes

실시예 3에서 제조한 막의 표면분석을 위해서 감쇠전반사 적외선분광분석(ATR-FTIR)과 X선 광전자분광분석(XPS)을 이용하였다. 또한 열중량분석(TGA)를 통하여 부착량을 측정하였다.
Attenuated total reflection infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis of the film prepared in Example 3. In addition, the amount of adhesion was measured through thermogravimetric analysis (TGA).

(1) (One) 감쇠전반사Total attenuation 적외선분광분석( Infrared spectroscopy ATRATR -- FTIRFTIR ))

실시예 3에서 제조된 막 표면의 특징적인 작용기를 확인함으로써 화학구조를 분석하고 덴드리틱 고분자의 부착유무를 확인하였다. 도 8은 감쇠전반사 적외선분광분석을 이용하여 실시예 3에서 제조한 두 막의 정성분석 결과이다. 실시예 3(a)에서 제조된 막의 특징적인 피크를 살펴보면 약 3100~2800 cm-1에서 C-H 스트레치가 나타나고 1585 cm- 1와 1488 cm-1에서 방향족 C=C 스트레치의 강한 흡수피크가 나타나는 것을 확인할 수 있었으며 1150 cm-1에서는 S=O 스트레치의 강한 흡수피크를 관찰할 수 있었다. 이는 모두 폴리술폰의 화학구조에서 기인한 것으로 확인하였다. 실시예 3(b)의 막 또한 같은 파수(wavenumber)에서 동일한 흡수피크를 확인하였으며 추가적으로 3299 cm-1에서 N-H 스트레치의 흡수피크와 1640 cm-1에서 아마이드 C=O 스트레치에 해당하는 강한 흡수피크를 확인하였다. 이는 막에 부착된 덴드리틱 고분자의 화학구조에서 발견되는 피크와 동일하므로 성공적으로 부착되었음을 확인하였다.The chemical structure was analyzed by confirming the characteristic functional groups on the membrane surface prepared in Example 3, and the presence or absence of adhesion of the dendritic polymer was confirmed. 8 is a qualitative analysis result of two films prepared in Example 3 using attenuated total reflection infrared spectroscopy. Example 3 (a) Referring to the film characteristic peak appears and manufactured by the CH stretch at approximately 3100 ~ 2800 cm -1 1585 cm - confirmed to appear a strong absorption peak of the aromatic C = C stretch at 1 and 1488 cm -1 At 1150 cm -1 , strong absorption peaks of S = O stretch were observed. This was all confirmed to be due to the chemical structure of the polysulfone. The membrane of Example 3 (b) also confirmed the same absorption peak at the same wavenumber, and additionally a strong absorption peak corresponding to an NH stretch at 3299 cm −1 and an amide C═O stretch at 1640 cm −1 . Confirmed. This is the same peak found in the chemical structure of the dendritic polymer attached to the membrane confirmed that it was successfully attached.

(2) X선 광전자분광분석((2) X-ray photoelectron spectroscopy ( XPSXPS ))

실시예 3에서 제조된 두 막의 표면원소분석을 통하여 화학구조를 분석하고 덴드리틱 고분자의 부착유무를 확인하였다. 도 9는 X선 광전자분광분석을 이용하여 실시예 3에서 제조한 두 막의 원소분석 결과이다. 실시예 3(a)에서 제조된 막은 N1s에서 특징적인 피크가 나타나지 않았으며 O1s에서는 결합에너지(binding energy)가 533 eV에서 O=S=O로부터 기인한 특징적인 피크가 나타남을 확인하였다. 반면에 실시예 3(b)에서 제조된 막의 경우, N1s에서 399 eV에서 아미노(-NH-)와 아마이드(-NHCO-)로부터 기인한 강한 피크가 나타남을 확인할 수 있었으며 O1s에서는 O=S=O의 피크뿐만 아니라 532 eV에서 아마이드의 C=O으로부터 기인한 피크가 나타남을 확인할 수 있었다. 이들 특징적인 피크로부터 덴드리틱 고분자가 잘 부착되었음을 확인하였다.The chemical structure was analyzed by surface element analysis of the two membranes prepared in Example 3, and the presence or absence of adhesion of the dendritic polymer was confirmed. 9 shows elemental analysis results of two films prepared in Example 3 using X-ray photoelectron spectroscopy. The film prepared in Example 3 (a) did not show a characteristic peak at N 1s and the binding energy (binding energy) at O 1s was confirmed to appear a characteristic peak due to O = S = O at 533 eV. On the other hand, in the case of the membrane prepared in Example 3 (b), it was confirmed that a strong peak due to amino (-NH-) and amide (-NHCO-) at 399 eV at N 1s and O = S at O 1s Not only the peak of = O but also the peak attributable to C = O of the amide at 532 eV appeared. From these characteristic peaks, it was confirmed that the dendritic polymer was well attached.

(3) 열중량분석((3) thermogravimetric analysis TGATGA ))

도 10는 열중량분석을 이용하여 실시예 3에서 제조한 막의 온도에 따른 중량감소 추이를 나타낸 결과이다. 실시예 3(a)에서 제조된 막의 중량감소를 살펴보면 약 480 °C에서 조금씩 감소하기 시작하여 500~550 °C에서 급격히 감소하는 것을 살펴볼 수 있었다. 이는 지지체인 폴리술폰이 전이가 일어나는 것이며 그 전이개시온도(onset temperature)는 500 °C이다. 실시예 3(b)에서 제조된 막은 약 250 °C에서 중량이 조금씩 감소하기 시작하여 280~350 °C에서 급격히 감소하였다가 다시 500~550 °C구간에서 급격히 감소하는 추이를 보였다. 이를 통하여 덴드리틱 고분자의 전이개시온도는 280 °C임을 확인하였고 500 °C이전까지의 감소폭을 확인함으로써 막 전체 중량 대비 25.02wt%의 중량만큼 막에 부착되었음을 확인하였다.
10 is a graph showing the weight loss according to the temperature of the membrane prepared in Example 3 using thermogravimetric analysis. Looking at the weight loss of the membrane prepared in Example 3 (a) it can be seen that the decrease began at a slight decrease at about 480 ° C and rapidly decreases at 500 ~ 550 ° C. This is because polysulfone, which is a support, causes a transition, and its onset temperature is 500 ° C. The film prepared in Example 3 (b) began to gradually decrease in weight at about 250 ° C., and then rapidly decreased at 280 ~ 350 ° C. and then rapidly decreased in the 500 ~ 550 ° C section. Through this, it was confirmed that the transition start temperature of the dendritic polymer was 280 ° C, and the decrease in width up to 500 ° C was confirmed to be attached to the membrane by 25.02wt% of the total weight of the membrane.

<< 실시예Example 5>  5> 덴드리틱Dendritic 고분자 Polymer end 부착된 막의 중금속  Heavy metals on attached membrane 포집Capture 및 회수를 통한 막  And membranes through recovery 회복율Recovery rate 평가 evaluation

실시예 3에서 제조한 막의 중금속 포집 및 회수를 통한 회복율을 평가하기 위하여 하기 표 2에 기재된 조건하에서 실험을 실시하였다. 여과장치(stirred cell)를 이용하여 제조된 막을 부착함으로써 평가를 실시하였으며 사용된 막의 유효면적은 13.4 cm2 이다.In order to evaluate the recovery rate through the heavy metal collection and recovery of the membrane prepared in Example 3, the experiment was performed under the conditions described in Table 2. Evaluation was carried out by attaching membranes prepared using a stirred cell, and the effective area of the membranes used was 13.4 cm 2 .

구분
division
포집
Capture
회수
collection
유량
flux
총 측정시간
Total measurement time
비고
Remarks
중금속heavy metal 측정간격Measuring interval 막(a)Membrane (a) 25 ppmCd(Ⅱ)25 ppmCd (II) 매 30분
Every 30 minutes
0.1 MHCl
0.1 MHCl
0.1 mL/분0.1 mL / min 180 분180 minutes 대조군Control group
막(b)Membrane (b)

도 11은 유도결합플라즈마 원자방출분광분석(ICP-AES)을 이용하여 상기 조건으로 샘플의 카드뮴 농도를 측정한 다음 누적된 포집량을 나타낸 결과이다. 총 투입된 카드뮴 이온량은 450.7 μg이었으며 그 중 실시예 3(a)에서 제조된 막(a)의 경우 누적 포집량이 5.1 μg으로 매우 저조한 포집량을 보였다. 반면에 실시예 3(b)에서 제조된 덴드리틱 고분자가 부착된 막(b)의 경우 228.6 μg으로 높은 포집량을 보였으며 산 수용액 처리로 카드뮴을 회수한 결과 197.5 μg으로 86.7%의 높은 막 회복율을 보였다.
11 is a result showing the accumulated amount after measuring the cadmium concentration of the sample under the above conditions using inductively coupled plasma atomic emission spectrometry (ICP-AES). The total amount of cadmium ions added was 450.7 μg , and among the membranes (a) prepared in Example 3 (a), the cumulative collection amount was 5.1 μg, which was very low. In contrast to the third embodiment with (b) an den result 197.5 μ g which showed a high absorption capacity to 228.6 μ g for laundry tick the film (b) is attached to a polymer recovering cadmium in the acid treatment solution prepared from a 86.7% It showed a high membrane recovery rate.

Claims (13)

양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립(self-assembly)된 용액 내 중금속 이온 제거용 금속성 이온 흡착막.A metal ion adsorption membrane for removing heavy metal ions in a solution in which a hydrophobic chain of an amphiphilic dendritic polymer is self-assembled on a surface thereof. 제1항에 있어서, 상기 덴드리틱 고분자는 금속성 이온을 공액시킬 수 있는 다수의 작용기를 갖는 것을 특징으로 하는, 용액 내 중금속 이온 제거용 금속성 이온 흡착막. The metallic ion adsorption membrane of claim 1, wherein the dendritic polymer has a plurality of functional groups capable of conjugating metallic ions. 제2항에 있어서, 상기 작용기는 -CH2-, -CONH-, 및 -NH2- 으로 이루어진 군에서 선택된 1이상의 작용기인 것을 특징으로 하는, 용액 내 중금속 이온 제거용 금속성 이온 흡착막. The metal ion adsorption membrane of claim 2, wherein the functional group is at least one functional group selected from the group consisting of -CH 2- , -CONH-, and -NH 2- . 제1항에 있어서, 상기 소수성 사슬은 탄소수 5 내지 18의 치환 또는 비치환 알킬사슬인 것을 특징으로 하는, 용액 내 중금속 이온 제거용 금속성 이온 흡착막. The metal ion adsorption membrane of claim 1, wherein the hydrophobic chain is a substituted or unsubstituted alkyl chain having 5 to 18 carbon atoms. 제1항에 있어서, 상기 소수성 사슬은 덴드리틱 고분자 1개당 3 내지 12개를 포함하는 것을 특징으로 하는, 용액 내 중금속 이온 제거용 금속성 이온 흡착막.The metal ion adsorption membrane of claim 1, wherein the hydrophobic chain comprises 3 to 12 per dendritic polymer. 지지체 위에 소수성 사슬을 가지는 양친성 덴드리틱 고분자 및 막 형성용 고분자를 포함하는 금속성 이온 흡착막 도포용 조성물을 도포하고, 친수성 응고액 내에 투입하여, 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 용액 내 중금속 이온 제거용 금속성 이온 흡착막을 제조하는 방법. The composition for coating a metal ion adsorption membrane comprising an amphiphilic dendritic polymer having a hydrophobic chain and a membrane-forming polymer is coated on a support, and then injected into a hydrophilic coagulating solution, so that the hydrophobic chain of the amphiphilic dendritic polymer is coated on the surface. A method for preparing a metallic ion adsorption membrane for removing heavy metal ions in a self-assembled solution. 제6항에 있어서, 상기 막 형성용 고분자는 폴리술폰, 폴리이미드, 폴리아마이드이미드, 폴리아마이드,폴리아크릴로니트릴 및 폴리비닐리덴플로라이드로 이루어진 군에서 선택된 1이상인 것을 특징으로 하는, 방법.The method of claim 6, wherein the film-forming polymer is at least one selected from the group consisting of polysulfone, polyimide, polyamideimide, polyamide, polyacrylonitrile, and polyvinylidene fluoride. 제6항에 있어서, 상기 금속성 이온 흡착막 도포용 조성물에는 유기용매 또는 첨가제를 추가로 포함하는 것을 특징으로 하는, 방법.The method of claim 6, wherein the metallic ion adsorption membrane coating composition further comprises an organic solvent or an additive. 제8항에 있어서, 상기 금속성 이온 흡착막 도포용 조성물은 막 형성용 고분자 10 내지 20 중량%, 덴드리틱 고분자 1 내지 10 중량%, 유기용매 60 내지 85 중량% 및 첨가제 2 내지 20 중량%를 포함하는 것을 특징으로 하는, 방법.The method of claim 8, wherein the metallic ion adsorption membrane coating composition comprises 10 to 20% by weight of the membrane-forming polymer, 1 to 10% by weight dendritic polymer, 60 to 85% by weight of the organic solvent and 2 to 20% by weight of the additive Characterized in that it comprises a method. 삭제delete 제6항에 있어서, 상기 금속성 이온 흡착막 도포용 조성물 중 양친성 덴드리틱 고분자는 에스테르 화합물을 용매에 넣고 용해하는 단계; 아민류 화합물을 반응시키는 단계; 및 상기 반응물을 용해한 후 소수성 화합물과 반응시키는 단계를 포함하여 제조되는 것을 특징으로 하는 방법.The method of claim 6, wherein the amphiphilic dendritic polymer in the composition for applying the metallic ion adsorption membrane is a step of dissolving an ester compound in a solvent; Reacting amine compounds; And reacting with a hydrophobic compound after dissolving the reactant. 중금속 이온이 포함된 용액 내 양친성 덴드리틱 고분자의 소수성 사슬이 표면에 자기조립된 금속성 이온 흡착막을 투입하여 용액 내의 중금속 이온을 흡착시키는 단계, 및 상기 흡착된 중금속 이온을 산·염기 조절을 통해 세척하는 단계를 포함하는, 용액 내 중금속 이온 제거방법.Adsorbing heavy metal ions in the solution by introducing a self-assembled metallic ion adsorption membrane onto the surface of a hydrophobic chain of amphiphilic dendritic polymer in a solution containing heavy metal ions, and adjusting the adsorbed heavy metal ions through acid / base control A method of removing heavy metal ions in a solution, comprising the step of washing. 제1항에 있어서, 상기 양친성 덴드리틱 고분자의 분자량은 3000 내지 15000 gmol-1인 것을 특징으로 하는, 용액 내 중금속 이온 제거용 금속성 이온 흡착막.The method of claim 1, wherein the amphiphilic dendritic polymer molecular weight is characterized in that the 3000 to 15000 gmol -1 , the metal ion adsorption membrane for removing heavy metal ions in the solution.
KR1020110008814A 2010-02-17 2011-01-28 Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof KR101294270B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100014115 2010-02-17
KR1020100014115 2010-02-17

Publications (2)

Publication Number Publication Date
KR20110095140A KR20110095140A (en) 2011-08-24
KR101294270B1 true KR101294270B1 (en) 2013-08-07

Family

ID=44931019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110008814A KR101294270B1 (en) 2010-02-17 2011-01-28 Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof

Country Status (1)

Country Link
KR (1) KR101294270B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110314562B (en) * 2019-07-01 2022-02-11 中国石油大学(华东) Tree-like branched molecule modified separation membrane and preparation method thereof, composite separation membrane and application
CN111644077B (en) * 2020-06-15 2022-04-29 上海迅江科技有限公司 Hydrophilic polyvinylidene fluoride nanofiltration membrane and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080003789A (en) * 2005-03-09 2008-01-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Nanocomposite membranes and methods of making and using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080003789A (en) * 2005-03-09 2008-01-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Nanocomposite membranes and methods of making and using same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Supramolecular chemistry of dendrimers, Topics in current chemistry, vol 217 (2001) *
Supramolecular chemistry of dendrimers, Topics in current chemistry, vol 217 (2001)*
Surface Properties of a Series of Amphiphilic Dendrimers with Short Hydrophobic Chains, Langmuir, 24, 1858-1862(2008.) *
Surface Properties of a Series of Amphiphilic Dendrimers with Short Hydrophobic Chains, Langmuir, 24, 1858-1862(2008.)*

Also Published As

Publication number Publication date
KR20110095140A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
Han et al. Hyperbranched poly (amidoamine)/polysulfone composite membranes for Cd (II) removal from water
Li et al. Fabrication of a novel nanofiltration membrane with enhanced performance via interfacial polymerization through the incorporation of a new zwitterionic diamine monomer
KR102041519B1 (en) Nanocomposite polymer-carbon based nanomaterial filter for the simultaneous removal of bacteria and heavy metals
US7670509B2 (en) Composite nanofiber, composite nanofiber association, complex structure, and production method thereof
WO2019210159A1 (en) In situ fabrication of metal-organic framework films and mixed-matrix membranes
CN107709454B (en) Graphene-based film and method for manufacturing same
US20130220121A1 (en) Adsorbent of volatile organic compounds and adsorption method using thereof
US20140309410A1 (en) Amine grafted chitosan nanofiber, method for preparation thereof and its use in heavy metal adsorption
Bayrami et al. Thin-film nanocomposite membranes containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance
Li et al. Crosslinked electro-spun chitosan nanofiber mats with Cd (II) as template ions for adsorption applications
Ndaya et al. Synthesis of ordered, functional, robust nanoporous membranes from liquid crystalline brush-like triblock copolymers
CN114920907B (en) Aminated porous aromatic skeleton compound and preparation method and application thereof
Attia et al. Emerging advances and current applications of nanoMOF-based membranes for water treatment
CN110066512B (en) Preparation method of polyaniline compound for antibiosis and heavy metal removal and polyaniline compound prepared by method
SG184446A1 (en) Polyimide membranes and their preparation
KR101294270B1 (en) Hydrphobic chain of amphiphilic dendritic polymer self-assembled membrane for adsorption of metallic ion and method for preparation thereof
Satilmis et al. Electrospinning of ultrafine poly (1-trimethylsilyl-1-propyne)[ptmsp] fibers: highly porous fibrous membranes for volatile organic compound removal
Zhu et al. Preparation and photo-oxidative functions of poly (ethylene-co-methacrylic acid)(PE-co-MAA) nanofibrous membrane supported porphyrins
Dong et al. “Clickable” Interfacial Polymerization of Polythioether Ultrathin Membranes for Ion Separation
Koh et al. Synthesis of silver halide nanocomposites templated by amphiphilic graft copolymer and their use as olefin carrier for facilitated transport membranes
Ebrahimi et al. Synthesis and characterization of amphiphilic star copolymer of polyaniline and polyacrylic acid based on calix [4] resorcinarene as an efficient adsorbent for removal of paraquat herbicide from water
KR100702873B1 (en) Carbon nanotube-chitosan composites and method of manufacturing the same
Wang et al. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study
CN116764606B (en) BPA molecular imprinting PAN/MOF nanofiber polymer membrane and preparation method and application thereof
CN113769714B (en) UIO-66-X-loaded glass fiber composite, preparation method and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 7