Nothing Special   »   [go: up one dir, main page]

KR101008402B1 - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
KR101008402B1
KR101008402B1 KR1020080130258A KR20080130258A KR101008402B1 KR 101008402 B1 KR101008402 B1 KR 101008402B1 KR 1020080130258 A KR1020080130258 A KR 1020080130258A KR 20080130258 A KR20080130258 A KR 20080130258A KR 101008402 B1 KR101008402 B1 KR 101008402B1
Authority
KR
South Korea
Prior art keywords
support
reaction
fuel
monolith
reformer
Prior art date
Application number
KR1020080130258A
Other languages
Korean (ko)
Other versions
KR20100071517A (en
Inventor
이성철
신우철
손인혁
안진구
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020080130258A priority Critical patent/KR101008402B1/en
Priority to JP2009215882A priority patent/JP5152811B2/en
Priority to US12/564,391 priority patent/US20100158769A1/en
Priority to EP09252797.7A priority patent/EP2198951B1/en
Priority to CN2009102608453A priority patent/CN101746725B/en
Publication of KR20100071517A publication Critical patent/KR20100071517A/en
Application granted granted Critical
Publication of KR101008402B1 publication Critical patent/KR101008402B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0407Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds
    • B01J8/0415Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00117Controlling the temperature by indirect heating or cooling employing heat exchange fluids with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00265Preventing flame propagation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2493Means for assembling plates together, e.g. sealing means, screws, bolts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 촉매 산화 방식의 반응부에서 발생하는 역화를 방지할 수 있는 개질장치에 관한 것이다. 본 발명의 개질장치는 제1 챔버, 제1 챔버 내에 배치되는 제1 촉매를 구비하며, 제1 연료를 연소시켜 열을 생성하는 제1 반응부; 제2 촉매를 구비하고, 제1 반응부의 열에 의해 가열되며, 제2 연료를 개질하는 제2 반응부; 및 제1 챔버 내의 제1 연료가 유입되는 상류측에 제1 촉매와 일정 간격을 두고 배치되는 역화방지부를 포함한다.The present invention relates to a reforming apparatus capable of preventing backfire occurring in a reaction portion of a catalytic oxidation method. The reforming apparatus of the present invention includes a first chamber and a first reaction unit including a first catalyst disposed in the first chamber and generating heat by burning the first fuel; A second reaction part having a second catalyst, heated by heat of the first reaction part, and reforming the second fuel; And a flashback prevention part disposed at a predetermined distance from the first catalyst on an upstream side into which the first fuel in the first chamber flows.

개질장치, 촉매 산화 방식, 촉매, 역화 방지, 모노리스 Reformer, Catalytic Oxidation, Catalyst, Flashback Prevention, Monolith

Description

개질장치{Reformer}Reformer

본 발명은 촉매 산화 방식의 반응부에서 발생하는 역화를 방지할 수 있는 개질장치에 관한 것이다.The present invention relates to a reforming apparatus capable of preventing backfire occurring in a reaction portion of a catalytic oxidation method.

연료전지는 화학에너지를 전기에너지로 직접 변환하는 고효율의 발전시스템이며, 공해 물질의 배출이 매우 낮다는 점에서 환경 친화적이다. 따라서, 연료전지는 청정 에너지원으로써 차세대 에너지원의 하나로 주목받고 있다.Fuel cells are highly efficient power generation systems that convert chemical energy directly into electrical energy and are environmentally friendly in that emissions of pollutants are very low. Therefore, fuel cells are attracting attention as one of the next generation energy sources as a clean energy source.

용융탄산염 연료전지(molten carbonate fuel cell), 고체산화물 연료전지(solid oxide fuel cell) 등과 같이 약 600℃ 이상에서 작동하는 고온형 연료전지와 인산형 연료전지(phosphoric acid fuel cell)와 같이 약 200℃ 이상에서 작동하는 중온형 연료전지는 대규모 발전이나 바이오 가스 플랜트(bio gas plant) 등을 주용도로 개발되고 있다. 그리고, 고분자 전해질막이 채용되어 약 100℃ 이하의 저온 영역에서 작동되는 고분자 전해질형 연료전지(polyner electrolyte fuel cell; PEFC)는 주로 수송용, 가정용, 휴대용 전원으로 개발되고 있다.About 200 ° C, such as high temperature fuel cells and phosphoric acid fuel cells that operate above 600 ° C, such as molten carbonate fuel cells, solid oxide fuel cells, etc. Medium-temperature fuel cells operating in the above is being developed for large-scale power generation or bio gas plant (bio gas plant). In addition, a polyelectrolyte fuel cell (PEFC) operating in a low temperature region of about 100 ° C. or less by employing a polymer electrolyte membrane is mainly developed as a transport, household, and portable power source.

PEFC 시스템은 크게 수소 가스를 직접 이용하는 시스템과 탄화수소계 연료를 이용하는 개질기 기반의(reformer-based) 시스템으로 구분할 수 있다.PEFC systems can be broadly divided into systems using hydrogen gas directly and reformer-based systems using hydrocarbon fuels.

개질기는 액화천연가스(LNG), 액화프로판가스(LPG), 등유(diesel) 등의 탄화수소계 연료나 부틸 알코올 등의 알코올계 연료를 수소와 일산화탄소 등의 혼합물로 변환한다. 개질 반응의 산화제로는 스팀이나 공기가 이용될 수 있다. 부탄의 개질 반응은 약 600℃에서 이루어지며, 메탄의 개질 반응은 약 800℃에서 이루어진다. 또한, 부탄과 스팀을 이용한 개질 반응과 메탄과 이산화탄소를 이용한 개질 반응은 흡열 반응이다.The reformer converts hydrocarbon fuels such as liquefied natural gas (LNG), liquefied propane gas (LPG), diesel, and alcohol fuels such as butyl alcohol into a mixture of hydrogen and carbon monoxide. Steam or air may be used as the oxidizing agent of the reforming reaction. The reforming reaction of butane is at about 600 ° C. and the reforming reaction of methane is at about 800 ° C. In addition, the reforming reaction using butane and steam and the reforming reaction using methane and carbon dioxide are endothermic.

부탄이나 메탄과 같은 탄화수소계 연료를 사용하는 개질기에서는 약 600℃ 이상에서 운전하는데 요구되는 열 에너지를 공급할 수 있는 열원을 필요로 한다. 이러한 열원으로는 버너가 일반적이다. 그런데, 버너 방식은 직열을 피하기 위해 최소한의 연소 공간이 필요하므로 소형 개질기에는 적합하지 않다. 대안적으로 개질기의 또 다른 열원으로는 촉매 산화 방식의 열원을 고려할 수 있다.Reformers using hydrocarbon fuels such as butane or methane require a heat source capable of supplying the thermal energy required to operate above about 600 ° C. Burners are common as such heat sources. However, the burner method is not suitable for small reformers because it requires a minimum combustion space to avoid direct heat. Alternatively, another heat source for the reformer may be considered a heat source of catalytic oxidation.

하지만, 촉매 산화 방식의 열원은 열원 자체가 상대적으로 고른 온도 분포를 가지는 장점이 있지만, 약 600℃ 이상의 고온 분위기에서 촉매층으로부터 연료가 유입되는 상류측으로 역화가 발생하는 문제가 있다. 역화는 개질기의 연료 공급 노즐에 화염이 생기도록 작용하기 때문에 개질기의 수명에 악영향을 미칠 수 있다.However, although the heat source of the catalytic oxidation method has an advantage that the heat source itself has a relatively even temperature distribution, there is a problem that backfire occurs in an upstream side where fuel is introduced from the catalyst layer in a high temperature atmosphere of about 600 ° C. or more. Flashback can adversely affect the life of the reformer because it acts on the fuel supply nozzle of the reformer.

본 발명의 목적은 촉매 산화 방식의 반응부에서 원하지 않는 고온 부위를 형성되는 것을 방지하고 연료 분배의 개선을 통해 반응부 내에 일정한 공간 속도(gas hourly space velocity)를 형성함으로써 역화(flash back)를 방지할 수 있는 개질장치를 제공하는 것이다.An object of the present invention is to prevent the formation of unwanted high temperature sites in the catalytic oxidation reaction zone and to prevent flash back by forming a gas hourly space velocity in the reaction zone through improved fuel distribution. It is to provide a reformer capable of doing so.

상기 기술적 과제를 해결하기 위하여 본 발명의 일 측면에 의하면, 제1 챔버, 제1 챔버 내에 배치되는 제1 촉매를 구비하며, 제1 연료를 연소시켜 열을 생성하는 제1 반응부; 제2 촉매를 구비하고, 제1 반응부의 열에 의해 가열되며, 제2 연료를 개질하는 제2 반응부; 및 제1 챔버 내의 제1 연료가 유입되는 상류측에 제1 촉매와 일정 간격을 두고 배치되는 역화방지부를 포함하는 개질장치가 제공된다.According to an aspect of the present invention to solve the above technical problem, the first chamber, having a first catalyst disposed in the first chamber, the first reaction unit for generating heat by burning the first fuel; A second reaction part having a second catalyst, heated by heat of the first reaction part, and reforming the second fuel; And a backfire prevention unit disposed at a predetermined distance from the first catalyst on an upstream side in which the first fuel in the first chamber is introduced.

바람직하게, 일정 간격은 5㎜ 내지 15㎜의 범위를 가진다.Preferably, the intervals range from 5 mm to 15 mm.

제1 연료가 유동하는 방향을 길이 방향이라고 할 때, 역화방지부의 길이 방향에서의 길이는 폭 방향에서의 길이에 대하여 50% 내지 100%의 범위에서 설계될 수 있다.When the direction in which the first fuel flows is called the longitudinal direction, the length in the longitudinal direction of the flashback prevention portion may be designed in the range of 50% to 100% with respect to the length in the width direction.

제2 촉매의 일단은 역화방지부에 인접하게 배치될 수 있다.One end of the second catalyst may be disposed adjacent to the flame arrester.

제1 촉매는 복수의 통로들을 가진 제1 지지체 및 제1 지지체에 담지되는 활성 물질을 포함한다.The first catalyst includes a first support having a plurality of passages and an active material supported on the first support.

제1 지지체는 모노리스를 포함한다.The first support comprises a monolith.

역화방지부는 제1 지지체와 동일한 단면 구조 및 형상을 가진 모노리스를 포함한다.The flashback prevention part includes a monolith having the same cross-sectional structure and shape as the first support.

모노리스의 단면은 벌집 형상일 수 있다.The cross section of the monolith may be honeycomb shaped.

모노리스는 시트상 제1 부재와 파상형 제2 부재가 중첩되어 감긴 나선 형상일 수 있다.The monolith may have a spiral shape in which a sheet-shaped first member and a wavy second member are overlapped and wound.

모노리스의 복수의 통로들의 개면적은 모노리스의 단면적의 40% 내지 95%의 범위에서 설계될 수 있다.The open area of the plurality of passageways of the monolith can be designed in the range of 40% to 95% of the cross-sectional area of the monolith.

모노리스의 셀 밀도는 200 cpi 내지 1500 cpi의 범위에서 설계될 수 있다.The cell density of the monolith can be designed in the range of 200 cpi to 1500 cpi.

제2 반응부는 제1 챔버에 접하는 제2 챔버, 및 제2 챔버 내에 배치되는 제2 지지체를 구비하고, 제2 촉매는 제2 지지체와 제2 지지체에 담지된 활성 물질을 포함할 수 있다.The second reaction unit may include a second chamber in contact with the first chamber, and a second support disposed in the second chamber, and the second catalyst may include the second support and the active material supported on the second support.

제2 연료가 유입되는 상류측에 위치한 제2 지지체의 일단은 역화방지부에 인접하게 배치될 수 있다.One end of the second support located upstream of the second fuel may be disposed adjacent to the flashback prevention unit.

제2 지지체는 펠릿 또는 구슬 모양을 구비할 수 있다.The second support may have a pellet or bead shape.

제2 지지체는 세라믹 또는 금속 모노리스일 수 있다.The second support may be a ceramic or metal monolith.

제1 반응부 및 제2 반응부는 양단이 폐쇄되며 유체 유동을 위한 복수의 개구부들을 가진 2중관 구조를 구비할 수 있다.The first reaction part and the second reaction part may have a double tube structure having both ends closed and having a plurality of openings for fluid flow.

제1 연료는 부탄, 메탄, 천연가스, 프로판가스, 디젤 중 적어도 어느 하나를 포함한다.The first fuel includes at least one of butane, methane, natural gas, propane gas and diesel.

제1 촉매는 알루미나(Al2O3), 실리카(SiO2), 또는 티타니아(TiO2)로 이루어진 지지체에 PdAl2O3, NiO, CuO, CeO2 및 Al2O3, Pu, Pd 및 Pt, 및 이들의 조합으로 이루어진 그룹에서 선택되는 물질을 담지하여 이루어질 수 있다.The first catalyst is PdAl 2 O 3 , NiO, CuO, CeO 2 and Al 2 O 3 , Pu, Pd and Pt on a support made of alumina (Al 2 O 3 ), silica (SiO 2 ), or titania (TiO 2 ) It can be made by supporting a material selected from the group consisting of, and combinations thereof.

개질장치는 제1 반응부에 제1 연료를 분사하는 노즐을 더 포함할 수 있다.The reformer may further include a nozzle for injecting the first fuel into the first reaction unit.

개질장치는 제1 반응부에 공급되는 제1 연료를 점화시키는 점화부를 더 포함할 수 있다.The reformer may further include an ignition unit for igniting the first fuel supplied to the first reaction unit.

본 발명에 의하면, 촉매 산화 방식의 반응부 내에서 역화가 발생하는 것을 방지할 수 있으므로 개질장치의 내구성을 향상시킬 수 있다. 아울러, 열효율 향상을 통해 개질장치의 촉매 산화 방식의 반응부에 공급되는 공기의 양을 감소시킴으로써 개질장치를 채용한 연료전지 시스템의 BOP(balance of plants)의 소모 전력을 낮출 수 있고 열교환기의 용량도 감소시킬 수 있다. 따라서, 개질장치 및 이를 구비하는 연료전지 시스템의 소형화 및 고효율화에 기여할 수 있다.According to the present invention, since backfire can be prevented from occurring in the reaction portion of the catalytic oxidation method, the durability of the reformer can be improved. In addition, by improving the thermal efficiency, the amount of air supplied to the reaction part of the catalytic oxidation method of the reformer can be reduced, thereby reducing the power consumption of the BOP (balance of plants) of the fuel cell system employing the reformer, and the capacity of the heat exchanger. Can also be reduced. Therefore, it can contribute to miniaturization and high efficiency of the reforming apparatus and the fuel cell system having the same.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

도 1은 본 발명의 일 실시예에 따른 개질장치의 사시도이다. 도 2는 도 1의 개질장치의 Ⅱ-Ⅱ선에 의한 횡단면도이다.1 is a perspective view of a reformer according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line II-II of the reforming apparatus of FIG. 1.

도 1 및 도 2를 참조하면, 개질장치(10)는 적어도 하나의 챔버를 형성하는 하우징(20), 하우징(20) 내에 배치되는 제1 반응부(30), 하우징(20) 내에 배치되는 제2 반응부(40), 및 하우징(20) 내에 배치되는 역화방지부(50)를 포함한다.1 and 2, the reformer 10 may include a housing 20 forming at least one chamber, a first reaction unit 30 disposed in the housing 20, and a second agent disposed in the housing 20. 2 includes a reaction part 40 and a backfire prevention part 50 disposed in the housing 20.

본 실시예에서 하우징(20)은 소정 단면적을 가지고 실질적으로 양측 단부가 폐쇄되며 유체 유동을 위한 복수의 개구부들을 구비한 파이프 형태로 이루어진다. 하우징(20)은 단열성을 갖는 금속 또는 비금속 단열 소재로 형성될 수 있다.In this embodiment the housing 20 is in the form of a pipe having a predetermined cross-sectional area, substantially closed at both ends, and having a plurality of openings for fluid flow. The housing 20 may be formed of a metal or nonmetal insulating material having heat insulating properties.

예를 들면, 하우징(20)은 2중관 구조를 구비할 수 있다. 그 경우, 제1 하우징(22)은 소정의 제1 단면적을 가지면서 실질적으로 양측 단부가 폐쇄된 파이프 형태를 구비한다. 제2 하우징(24)은 제1 단면적보다 작은 제2 단면적을 가지면서 실질적으로 양측 단부가 폐쇄된 파이프 형태를 구비하고, 파이프의 길이 방향에서 제1 하우징(22)에 의해 포위된다. 이때, 제1 하우징(22)의 내주면과 제2 하우징(24)의 외주면은 일정 간격을 두고 이격될 수 있고, 제2 하우징(24)의 내주면과 배관(60)의 외주면은 일정 간격을 두고 이격될 수 있다. 배관(60)은 제2 하우징의 제2 단면적보다 작은 제3 단면적을 가지면서 실질적으로 양측 단부가 개방되며, 제2 하우징 내의 제2 반응부(40)에서 생성된 리포메이트를 외부로 이송하기 위한 통로로서 기능한다.For example, the housing 20 may have a double tube structure. In that case, the first housing 22 has a pipe shape with a predetermined first cross-sectional area and substantially closed at both ends. The second housing 24 has a pipe shape with a second cross-sectional area smaller than the first cross-sectional area and substantially closed at both ends, and is surrounded by the first housing 22 in the longitudinal direction of the pipe. In this case, the inner circumferential surface of the first housing 22 and the outer circumferential surface of the second housing 24 may be spaced apart from each other at a predetermined interval, and the inner circumferential surface of the second housing 24 may be spaced apart from the outer circumferential surface at a predetermined interval. Can be. The tubing 60 has a third cross-sectional area smaller than the second cross-sectional area of the second housing and is substantially open at both ends thereof, and is used to transfer the reformate generated by the second reaction part 40 in the second housing to the outside. It functions as a passage.

제1 하우징(22)과 제2 하우징(24) 사이의 공간은 제1 반응부(30)용 제1 챔버를 형성하고, 제2 하우징(24)과 배관(60) 사이의 공간은 제2 반응부(40)용 제2 챔버를 형성한다. 제1 반응부(30)와 제2 반응부(40)를 2중관 구조로 형성하면, 제1 반응부(30)가 제2 반응부(40)를 둘러싸는 형태를 구비하므로, 제1 반응부(30)에서 발생한 열을 효과적으로 제2 반응부(40)에 공급할 수 있다. 따라서, 장치의 열 효율을 높일 수 있다.The space between the first housing 22 and the second housing 24 forms a first chamber for the first reaction part 30, and the space between the second housing 24 and the pipe 60 is a second reaction. A second chamber for the portion 40 is formed. When the first reaction part 30 and the second reaction part 40 are formed in a double tube structure, since the first reaction part 30 has a form surrounding the second reaction part 40, the first reaction part Heat generated at 30 may be effectively supplied to the second reaction unit 40. Thus, the thermal efficiency of the device can be increased.

제1 반응부(30)는 제2 반응부(40)의 개질 반응에 필요한 열을 공급하는 열원으로서 기능한다. 제1 반응부(30)는 약 600~800℃ 범위의 반응온도를 가진다.The first reaction unit 30 functions as a heat source for supplying heat required for the reforming reaction of the second reaction unit 40. The first reaction unit 30 has a reaction temperature in the range of about 600 ~ 800 ℃.

본 실시예의 제1 반응부(30)는 제1 챔버 내에 배치되는 제1 지지체(substrate, 35), 및 제1 지지체(35)에 담지되는 활성 물질(36)을 구비한다. 지지체(35)는 복수의 통로들(38)을 가진 모노리스(monolith)를 포함한다. 모노리스는 세라믹이나 금속 모노리스로 구현될 수 있다. 이하에서는, 활성물질이 담지되어 있는 지지체를 촉매로서 언급한다. 즉, 활성 물질(36)이 담지된 제1 지지체(35)는 제1 촉매를 형성한다.The first reaction part 30 of the present embodiment includes a first support 35 disposed in the first chamber, and an active material 36 supported on the first support 35. The support 35 includes a monolith with a plurality of passages 38. Monoliths can be implemented with ceramic or metal monoliths. In the following, the support on which the active substance is supported is referred to as a catalyst. That is, the first support 35 on which the active material 36 is supported forms a first catalyst.

제1 촉매는 산화 촉매로서 제1 연료를 산화시켜 열과 연소 가스를 발생시킨다. 제1 촉매로는 알루미나(Al2O3), 실리카(SiO2), 또는 티타니아(TiO2)로 이루어진 지지체에 PdAl2O3, NiO, CuO, CeO2 및 Al2O3, Pu, Pd 및 Pt, 및 이들의 조합으로 이루어진 그룹에서 선택되는 물질을 담지하여 형성할 수 있다. 또 다른 측면에서, 제1 촉매는 복수의 통로들을 가진 지지체를 산화 및/또는 환원 처리하여 지지체에 직접 활성 물질이 담지되도록 구현될 수 있다.The first catalyst oxidizes the first fuel as an oxidation catalyst to generate heat and combustion gas. The first catalyst may be PdAl 2 O 3 , NiO, CuO, CeO 2 and Al 2 O 3 , Pu, Pd, and the like on a support made of alumina (Al 2 O 3 ), silica (SiO 2 ), or titania (TiO 2 ). It can be formed by supporting a material selected from the group consisting of Pt, and combinations thereof. In another aspect, the first catalyst may be implemented such that the active material is supported directly on the support by oxidizing and / or reducing the support having a plurality of passages.

또한, 제1 반응부(30)는 제1 연료와 산화제가 유입되는 적어도 하나의 제1 개구부(31a)와, 연소 가스의 배기를 위한 제2 개구부(31b)를 구비한다. 제1 개구 부(31a)에는 노즐(32)이 구비될 수 있다. 노즐(32)은 제1 반응부(30) 내에 제1 연료를 분사한다. 또한, 제1 반응부(30)는 점화기(33)를 구비할 수 있는데, 점화기(33)는 제1 반응부(30) 내에 분사되는 제1 연료를 점화한다.In addition, the first reaction unit 30 includes at least one first opening 31a through which the first fuel and the oxidant flow, and a second opening 31b for exhausting the combustion gas. The nozzle 32 may be provided in the first opening portion 31a. The nozzle 32 injects a first fuel into the first reaction part 30. In addition, the first reaction unit 30 may include an igniter 33, which ignites the first fuel injected into the first reaction unit 30.

제2 반응부(40)는 제1 반응부(30)에서 열을 받고 제2 연료를 개질하여 리포메이트를 생성한다. 본 실시예에서, 제2 반응부(40)는 제2 챔버 내에 배치되는 펠릿 또는 구슬 모양의 지지체에 활성 물질이 담지되어 있는 제2 촉매(42)를 구비한다. 제2 반응부(40)에는 제2 촉매(42)의 비산을 방지하기 위하여 제2 촉매(42)를 포위하는 망상체(44)가 구비될 수 있다. 다른 측면에서, 제2 촉매(42)는 복수의 관형반응기에 충진된 채로 제2 챔버 내에 배치될 수도 있다.The second reaction unit 40 receives heat from the first reaction unit 30 and reforms the second fuel to generate a reformate. In the present embodiment, the second reaction unit 40 includes a second catalyst 42 in which an active material is supported on a pellet or bead-like support disposed in the second chamber. The second reaction unit 40 may be provided with a network 44 surrounding the second catalyst 42 in order to prevent scattering of the second catalyst 42. In another aspect, the second catalyst 42 may be disposed in the second chamber filled with a plurality of tubular reactors.

제2 촉매(42)는 알루미나(Al2O3), 실리카(SiO2), 또는 티타니아(TiO2)로 이루어진 펠릿(pellet) 형태의 담체(support)에 Cu-Zn, Ni/Al2O3, Ru/ZrO2, Ru/Al2O3/Ru/CeO2-Al2O3, 및 이들의 조합으로 이루어진 그룹에서 선택되는 물질을 담지하여 형성될 수 있다.The second catalyst 42 is a pellet-type support made of alumina (Al 2 O 3 ), silica (SiO 2 ), or titania (TiO 2 ), Cu-Zn, Ni / Al 2 O 3 , Ru / ZrO 2 , Ru / Al 2 O 3 / Ru / CeO 2 -Al 2 O 3 , and combinations thereof.

제2 촉매(42)의 일단은 역화방지부(50)에 인접하게 배치되는 것이 바람직하다. 그것은 역화방지부(50)가 제1 반응부(30)의 제1 챔버 내에 배치되므로 제1 연료의 연소시 발생하는 열에 의해 가열되고, 가열된 역화방지부(50)를 통해서 제2 촉매(42)에 열이 전달될 수 있기 때문이다. 전술한 구성에 의하면, 개질장치(10)의 열효율을 향상시킬 수 있다.One end of the second catalyst 42 is preferably disposed adjacent to the flashback prevention portion 50. It is heated by the heat generated during combustion of the first fuel because the flame arrester 50 is disposed in the first chamber of the first reaction unit 30, the second catalyst 42 through the heated flame arrester (50) Heat can be transferred. According to the above configuration, the thermal efficiency of the reformer 10 can be improved.

또한, 제2 반응부(40)는 제2 연료와 수증기가 유입되는 적어도 하나의 제1 개구부(41a), 및 제2 연료와 수증기의 개질 반응에 의해 발생한 리포메이트가 유출되는 적어도 하나의 제2 개구부(41b)를 구비한다. 제2 개구부(41b)는 하우징(20)의 중심부에 위치한 배관(60)의 일단에 연결된다. 배관(60)의 타단은 하우징(20)의 외부에 노출된다. 리포메이트는 배관(60)을 통해 연료전지 스택 등에 공급될 수 있다.In addition, the second reaction unit 40 includes at least one first opening 41a through which the second fuel and water vapor flow in, and at least one second through which the reformate generated by the reforming reaction between the second fuel and water vapor flows out. The opening part 41b is provided. The second opening 41b is connected to one end of the pipe 60 located at the center of the housing 20. The other end of the pipe 60 is exposed to the outside of the housing 20. The reformate may be supplied to the fuel cell stack or the like through the pipe 60.

전술한 구성에 있어서, 제1 반응부(30)에서 제2 반응부에 필요한 열을 공급할 때, 제1 반응부(30)에서 부탄과 같은 연료를 촉매 산화 방식으로 연소시키는 경우, 역화가 쉽게 발생할 수 있다. 하지만, 본 실시예에서는 제1 반응부(30)에서 발생할 수 있는 역화를 방지하기 위하여 제1 챔버 내의 제1 연료가 유입되는 상류측에 역화방지부(50)를 배치한다.In the above-described configuration, when the first reaction unit 30 supplies the heat required for the second reaction unit, when the fuel such as butane is burned by the catalytic oxidation method in the first reaction unit 30, backfire easily occurs. Can be. However, in this embodiment, in order to prevent backfire that may occur in the first reaction part 30, the backfire prevention part 50 is disposed upstream of the first fuel flow in the first chamber.

특히, 2중관 구조의 개질장치(10)의 경우, 제1 연료와 공기가 유입되기 시작하는 제1 촉매의 일단에서 큰 열점(hot spot)이 쉽게 발생하고, 이러한 열점에 의해 역화가 발생할 수 있지만, 본 실시예의 역화방지부(50)를 이용하면, 이를 방지할 수 있다.In particular, in the case of the reformer 10 having a double pipe structure, a large hot spot easily occurs at one end of the first catalyst where the first fuel and the air starts to flow, and backfire may occur due to the hot spot. By using the backfire prevention part 50 of this embodiment, it can be prevented.

여기서, 역화(flash-back)는 제1 연료 및/또는 공기가 제1 촉매(36)의 전체 영역으로 균일하게 분산 공급되지 않고 제1 촉매의 특정 영역에 집중됨으로써 제1 연료와 공기의 국지적인 산화 반응에 의해 다른 영역보다 열 에너지가 집중적으로 발생하는 영역에서 불꽃이 발생하고, 발생된 불꽃이 제1 연료의 흐름상에서 상류측으로 번지는 현상을 의미한다.Here, flash-back is achieved by localization of the first fuel and air by concentrating on a specific region of the first catalyst rather than uniformly distributing the first fuel and / or air to the entire region of the first catalyst 36. It means a phenomenon in which a flame is generated in a region where heat energy is concentrated more than other regions by the oxidation reaction, and the generated flame spreads upstream on the flow of the first fuel.

본 실시예의 역화방지부(50)는, 좀더 효과적인 역화 방지를 위하여 제1 반응 부(30) 내에 배치되는 제1 지지체(35)와 동일한 구조를 구비하는 것이 바람직하다. 또한, 역화방지부(50)는 제1 지지체(35)와의 사이에 소정 공간(54)을 두고 배치된다. 즉. 역화방지부(50)와 제1 지지체(35)는 소정 간격(L)을 두고 배치된다. 간격(L)은 약 5㎜ 내지 약 15㎜ 범위를 가진다.The flashback prevention part 50 of the present embodiment preferably has the same structure as the first support 35 disposed in the first reaction part 30 in order to more effectively prevent backfire. In addition, the flashback prevention part 50 is disposed with a predetermined space 54 between the first support 35. In other words. The flashback prevention part 50 and the 1st support body 35 are arrange | positioned at the predetermined space | interval (L). The spacing L ranges from about 5 mm to about 15 mm.

상기 간격(L)이 5㎜ 미만이면, 역화방지부(50)를 통과한 연료가 지지체(35)의 복수의 통로들(38)로 원활히 분배되지 못하여 각 통로(38)에서 연료의 선속도 차이가 발생하고, 그것에 의해 역화가 발생할 수 있다. 그리고, 상기 간격(L)이 15㎜를 초과하면, 역화방지부(50)에서 분배된 연료가 다시 합쳐져 연료 분배 효과가 없어진다. 따라서, 지지체(35)의 복수의 통로들(38)에서 연료의 선속도 차이가 발생하며, 그것에 의해 역화가 발생할 수 있다.When the gap L is less than 5 mm, the fuel passing through the flashback preventing unit 50 may not be smoothly distributed to the plurality of passages 38 of the support 35, so that the linear velocity difference of the fuel in each passage 38 may be different. Occurs, whereby backfire may occur. When the gap L exceeds 15 mm, the fuels dispensed from the flashback prevention unit 50 recombine to lose the fuel distribution effect. Accordingly, a difference in linear velocity of fuel occurs in the plurality of passages 38 of the support 35, whereby backfire may occur.

제1 촉매의 지지체(35)가 모노리스인 경우, 역화방지부(50)는 촉매가 담지되지 않은 상태의 모노리스 지지체(35)와 실질적으로 동일한 모노리스로 구현되는 것이 바람직하다. 다만, 역화방지부(50)는 일 방향에서의 크기만 제1 촉매의 모노리스 지지체(35)와 다를 수 있다.When the support 35 of the first catalyst is monolith, it is preferable that the flashback preventing unit 50 is implemented with a monolith substantially the same as the monolith support 35 in the state where the catalyst is not supported. However, the flashback prevention part 50 may differ from the monolith support 35 of the first catalyst only in one direction.

전술한 역화방지부(50)는 제1 개구부(31a) 및/또는 노즐(32)을 통해 공급되는 제1 연료 및 공기를 적절하게 분배하며, 제1 반응부(30)의 제1 개구부(31a)와 제1 촉매 사이의 공간에서 일정한 공간 속도를 형성함으로써 제1 촉매의 일단 부분에 상대적으로 큰 고온 부위가 형성되는 것을 방지하고, 제1 반응부(30)에서 역화가 발생하는 것을 방지할 수 있다.The above-described flashback prevention part 50 properly distributes the first fuel and the air supplied through the first opening 31a and / or the nozzle 32 and the first opening 31a of the first reaction part 30. By forming a constant space velocity in the space between the first catalyst and the first catalyst, it is possible to prevent the formation of a relatively large high temperature portion at one end of the first catalyst, and to prevent backfire from occurring in the first reaction part 30. have.

전술한 개질장치(10)의 작동과정을 상세히 설명하면 다음과 같다.Referring to the operation of the above-described reforming device 10 in detail as follows.

노즐(32) 및/또는 제1 개구부(31a)를 통해 제1 연료와 공기가 제1 반응부(30) 내에 공급되면, 제1 연료와 공기는 역화방지부(50)의 복수의 통로들(52)을 통해 분배되어 제1 촉매(36)의 복수의 통로들(38)에 들어간다. 즉, 복수의 통로들(52)을 구비한 역화방지부(50)의 구조 및 형태와 또 다른 복수의 통로들(38)을 구비한 지지체(35)의 구조 및 형태는 실질적으로 동일하므로 제1 반응부(30) 내에 유입된 제1 연료와 공기는 역화방지부(50)를 통과한 후 자연스럽게 지지체(35)의 통로들(38)에 유입될 수 있다.When the first fuel and the air are supplied into the first reaction part 30 through the nozzle 32 and / or the first opening 31a, the first fuel and the air may pass through the plurality of passages of the flashback prevention part 50 ( 52 is distributed through the plurality of passages 38 of the first catalyst 36. That is, since the structure and the shape of the flashback prevention part 50 having the plurality of passages 52 and the structure and the shape of the support 35 having the plurality of the passages 38 are substantially the same, The first fuel and air introduced into the reaction part 30 may naturally flow into the passages 38 of the support 35 after passing through the backfire prevention part 50.

지지체(35)의 통로들(38)에 유입된 제1 연료 및 공기는 제1 촉매의 촉매 작용에 의해 발열 산화 반응을 하며 연소된다. 이때, 제1 연료가 유입되는 상류측에 위치한 제1 촉매의 일단에서 상대적으로 큰 열점이 발생하는 것이 방지되므로, 역화가 발생하지 않는다.The first fuel and air introduced into the passages 38 of the support 35 are combusted with an exothermic oxidation reaction by the catalytic action of the first catalyst. At this time, since a relatively large hot spot is prevented from occurring at one end of the first catalyst located on the upstream side where the first fuel is introduced, backfire does not occur.

제1 반응부(30)에서 생성된 열 에너지는 제2 반응부(40)에 공급된다. 이때, 제1 반응부(30)의 제1 챔버 내에 함께 배치된 역화방지부(50)도 제1 반응부(30)와 실질적으로 동일한 온도로 가열되기 때문에 제1 반응부(30)와 함께 제2 반응부(40)에 열을 공급하는 열원으로서도 작용한다. 제1 연료의 산화 반응에 의해 발생한 연소 가스는 제2 개구부(31b)를 통해 외부로 배출된다.The heat energy generated by the first reaction unit 30 is supplied to the second reaction unit 40. At this time, since the backfire prevention part 50 disposed together in the first chamber of the first reaction part 30 is also heated to substantially the same temperature as the first reaction part 30, the first reaction part 30 is formed together with the first reaction part 30. It also acts as a heat source for supplying heat to the reaction unit 40. The combustion gas generated by the oxidation reaction of the first fuel is discharged to the outside through the second opening 31b.

한편, 노즐(32) 및/또는 또 다른 제1 개구부(41a)를 통해 제2 반응부(40) 내에 유입된 제2 연료와 수증기는 개질 반응을 촉진시키는 제2 촉매(42)의 도움으로 수증기 개질 반응한다. 수증기 개질 반응은 수증기와 탄화수소 연료를 고온의 분위기에서 분해하여 수소 분자와 이산화탄소로 재구성한다. 제2 연료로써 부탄을 사용 하는 경우, 수증기 개질 반응의 관계식은 아래의 반응식 1과 같다.On the other hand, the second fuel and water vapor introduced into the second reaction part 40 through the nozzle 32 and / or another first opening 41a are supported by the second catalyst 42 to promote the reforming reaction. Reforming reaction. The steam reforming reaction decomposes steam and hydrocarbon fuels in a high temperature atmosphere to reconstitute hydrogen molecules and carbon dioxide. In the case of using butane as the second fuel, the equation for the steam reforming reaction is shown in Scheme 1 below.

C4H10 + 8H2O ↔ 4CO2 + 13H2 C 4 H 10 + 8H 2 O ↔ 4CO 2 + 13H 2

반응식 1을 보면, 수증기 개질 반응은 낮은 에너지 상태의 물분자에서 높은 에너지 상태의 수소분자를 생성하므로 흡열 반응이 된다. 수증기 개질 반응은 수소의 발생량이 많은 장점이 있다. 제2 반응부(40)에서 생성된 리포메이트는 제2 개구부(41b)에 연결된 배관(60)을 통해 외부로 방출된다. 리포메이트는 수소 가스, 이산화탄소 등을 포함한다.In Reaction Scheme 1, the steam reforming reaction is an endothermic reaction because water molecules of low energy state generate hydrogen molecules of high energy state. The steam reforming reaction has an advantage of generating a large amount of hydrogen. The reformate generated in the second reaction unit 40 is discharged to the outside through the pipe 60 connected to the second opening 41b. Reformates include hydrogen gas, carbon dioxide, and the like.

도 3은 본 발명의 또 다른 실시예에 따른 개질장치의 단면도이다.3 is a cross-sectional view of a reforming apparatus according to another embodiment of the present invention.

도 3을 참조하면, 본 실시예의 개질장치(100)는 제1 챔버와 제2 챔버를 형성하는 2중관 구조의 하우징(120), 하우징(122) 내에 각각 배치되는 제1 반응부(130), 제2 반응부(140), 및 역화방지부(150)를 포함한다.Referring to FIG. 3, the reforming apparatus 100 according to the present exemplary embodiment includes a housing 120 having a double tube structure forming a first chamber and a second chamber, a first reaction part 130 disposed in the housing 122, respectively. The second reaction unit 140, and the backfire prevention unit 150.

하우징(120)은 소정의 제1 단면적과 일정 길이를 갖고 실질적으로 양단이 폐쇄된 파이프 형상의 제1 하우징(122)과, 제1 단면적보다 큰 제2 단면적을 갖고 제1 하우징(122)의 길이 방향에서 제1 하우징(122)을 둘러싸며 실질적으로 양단이 폐쇄된 파이프 형상의 제2 하우징(124)을 포함한다. 제1 하우징(122)은 제1 연료와 공기의 유입을 위한 적어도 하나의 제1 개구부(131a), 및 제1 연료의 산화 반응시 발생하는 연소 가스를 배출하기 위한 적어도 하나의 제2 개구부(131b)를 구비한다. 제2 하우징(124)은 제2 연료와 수증기의 유입을 위한 적어도 하나의 제1 개구 부(141a), 및 제2 연료와 수증기의 개질 반응에 의해 생성된 리포메이트를 방출하기 위한 적어도 하나의 제2 개구부(141b)를 구비한다.The housing 120 has a predetermined first cross-sectional area and a predetermined length and has a pipe-shaped first housing 122 substantially closed at both ends, and a length of the first housing 122 having a second cross-sectional area larger than the first cross-sectional area. A pipe-shaped second housing 124 that surrounds the first housing 122 in a direction and is substantially closed at both ends. The first housing 122 has at least one first opening 131a for the inflow of the first fuel and air, and at least one second opening 131b for discharging the combustion gas generated during the oxidation reaction of the first fuel. ). The second housing 124 has at least one first opening portion 141a for the inflow of the second fuel and water vapor, and at least one agent for discharging the reformate produced by the reforming reaction of the second fuel and water vapor. 2 opening part 141b is provided.

제1 반응부(130)는 제1 하우징(122)에 의해 형성되는 제1 챔버를 구비한다. 제1 반응부(130)는 제1 챔버 내에 배치되며 일 방향으로 연장되는 복수의 통로들(138)을 가진 지지체(135), 및 지지체(135)에 담지되는 활성 물질(136)을 구비한다. 활성 물질(136)이 담지된 지지체(135)는 제1 촉매를 형성한다.The first reaction unit 130 includes a first chamber formed by the first housing 122. The first reaction unit 130 includes a support 135 having a plurality of passages 138 disposed in the first chamber and extending in one direction, and an active material 136 supported on the support 135. The support 135 on which the active material 136 is supported forms a first catalyst.

지지체(135)는 세라믹이나 금속 모노리스로 구현될 수 있다. 지지체(135)는 복수의 통로들(138) 중 인접한 통로들이 그 중간 부분에서 유체 소통가능하게 서로 연결되도록 구현될 수 있다.The support 135 may be implemented with a ceramic or metal monolith. The support 135 may be implemented such that adjacent ones of the plurality of passages 138 are connected to each other in fluid communication at an intermediate portion thereof.

제1 촉매는 지지체(135)를 산화 및/또는 환원 처리하여 지지체(135)에 직접 활성 물질(136)이 담지되도록 구현될 수 있다. 예를 들면, 제1 촉매는 활성 금속 종을 균질하게 함유하는 결정성의 전구체를 소성, 환원하는 고상정성법(solid phase crystalization method; SPC-)으로 제작될 수 있다. 전구체로는 페로브스카이트 또는 하이드로탈사이트 계의 전구체가 이용될 수 있다. 예컨대, 니켈(Ni)을 함유하는 Mg-Al계의 HT를 전구체로 준비하고, 준비된 전구체를 소성하여 NiO-MgO 고용체를 생성한 다음, 그것을 환원하여 고 분산되고 안정적인 spc-Ni/MgAl 촉매를 제조할 수 있다.The first catalyst may be implemented to oxidize and / or reduce the support 135 to support the active material 136 directly on the support 135. For example, the first catalyst can be prepared by a solid phase crystalization method (SPC-) that calcines and reduces crystalline precursors homogeneously containing active metal species. As the precursor, a precursor of perovskite or hydrotalcite system may be used. For example, Mg-Al-based HT containing nickel (Ni) is prepared as a precursor, and the prepared precursor is calcined to produce a NiO-MgO solid solution, which is then reduced to prepare a highly dispersed and stable spc-Ni / MgAl catalyst. can do.

본 실시예에서, 촉매는 기본적으로 활성 물질이 담지되어 있는 지지체(support)를 의미한다. 하지만, 촉매는 넓은 의미에서 촉매 작용을 하는 활성 물질 자체를 의미하거나, 지지체의 비표면적(specific geometric surface area)을 일 정 크기(예컨대, 100㎡/g) 이상이 되도록 지지체에 또 다른 지지체가 부가된 구조체에 활성 물질이 담지되어 있는 촉매시스템을 의미할 수도 있다.In this embodiment, the catalyst basically means a support on which an active substance is supported. However, the catalyst means, in a broad sense, the active material itself which catalyzes, or another support is added to the support such that the specific geometric surface area of the support is above a certain size (eg 100 m 2 / g). It may also mean a catalyst system in which the active material is supported on the structure.

제2 반응부(140)는 제1 하우징(122)의 외표면과 제2 하우징(124)의 내표면에 의해 형성되는 제2 챔버를 구비한다. 제2 반응부(140)는 제2 챔버 내에 배치되며 일 방향으로 연장되는 복수의 통로들(143)을 가진 제2 지지체(141), 및 제2 지지체(141)에 코팅되는 활성 물질(142)을 구비한다.The second reaction unit 140 includes a second chamber formed by an outer surface of the first housing 122 and an inner surface of the second housing 124. The second reaction unit 140 is disposed in the second chamber and has a second support 141 having a plurality of passages 143 extending in one direction, and an active material 142 coated on the second support 141. It is provided.

제2 지지체(141)는 세라믹이나 금속 모노리스로 구현될 수 있다. 예컨대, 제1 반응부(130)의 제1 지지체(135)가 제1 금속모노리스인 경우, 제2 반응부(140)의 제2 지지체(141)는 제1 금속모노리스를 둘러싸는 제2 금속모노리스로 구현될 수 있다. 제2 지지체(141)는 복수의 통로들(143) 중 인접한 통로들이 그 중간 부분에서 유체 소통가능하게 서로 연결되도록 구현될 수 있다.The second support 141 may be made of ceramic or metal monolith. For example, when the first support 135 of the first reaction unit 130 is the first metal monolith, the second support 141 of the second reaction unit 140 may have a second metal monolith surrounding the first metal monolith. It can be implemented as. The second support 141 may be implemented such that adjacent ones of the plurality of passages 143 are connected to each other in fluid communication with an intermediate portion thereof.

활성 물질(142)이 담지된 제2 지지체(141)는 제2 촉매를 형성한다. 제2 촉매는 지지체 상에 활성 물질을 도포하는 방식으로 구현되거나 지지체를 산화 및/또는 환원 처리하여 지지체에 직접 활성 물질이 담지되도록 구현될 수 있다.The second support 141 on which the active material 142 is supported forms a second catalyst. The second catalyst may be implemented by applying the active material on the support or by oxidizing and / or reducing the support so that the active material is supported directly on the support.

역화방지부(150)는 제1 챔버 내에서 제1 개구부(131a)와 제2 지지체(135) 사이에 배치된다. 역화방지부(150)는 세라믹이나 금속성 재료로 이루어진 몸체(151)를 구비한다.The flashback prevention part 150 is disposed between the first opening 131a and the second support 135 in the first chamber. Flashback prevention portion 150 has a body 151 made of a ceramic or metallic material.

몸체(151)는 일 방향으로 연장하는 복수의 통로들(152)을 구비한다. 제1 반응부(130)의 제1 지지체(135)가 금속모노리스인 경우, 역화방지부(150)의 몸체(151)도 제1 지지체(135)와 실질적으로 동일한 금속모노리스로 구현되는 것이 바 람직하다. 이때, 몸체(151)에는 촉매가 담지되지 않는다.The body 151 has a plurality of passages 152 extending in one direction. When the first support 135 of the first reaction unit 130 is a metal monolith, it is preferable that the body 151 of the flashback preventing unit 150 is also made of substantially the same metal monolith as the first support 135. Do. At this time, the body 151 does not carry a catalyst.

또한, 역화방지부(150)는 제1 반응부(130)의 지지체(135)의 일단 즉, 제1 개구부(131a)와 마주하는 일단과 약 5㎜ 내지 약 15㎜ 정도의 간격(L)을 두고 배치된다. 전술한 역화방지부(150)에 의하면, 제1 연료 분배의 개선을 통해 제1 반응부(130)의 상류측에서 연료의 선속도를 균일하게 함으로써 제1 촉매에서 큰 열점이 형성되는 것을 방지할 수 있다.In addition, the flashback prevention part 150 has an interval L of about 5 mm to about 15 mm with one end of the support 135 of the first reaction part 130, that is, one end facing the first opening 131a. Placed and placed. According to the above-described flashback prevention part 150, by improving the first fuel distribution, it is possible to prevent the formation of a large hot spot in the first catalyst by making the linear velocity of the fuel upstream of the first reaction part 130 uniform. Can be.

도 4는 본 발명의 개질장치에 채용가능한 역화방지부의 사시도이다.Figure 4 is a perspective view of a flashback prevention portion that can be employed in the reforming apparatus of the present invention.

도 4를 참조하면, 본 실시예의 역화방지부(250)는 몸체(251)와, 일 방향으로 몸체(251)를 관통하는 복수의 통로들(252)을 구비한다.Referring to FIG. 4, the flashback prevention part 250 of the present exemplary embodiment includes a body 251 and a plurality of passages 252 penetrating the body 251 in one direction.

몸체(251)는 원통형 또는 원반형의 세라믹이나 금속 모재를 가공하여 모재를 일 방향으로 관통하는 복수의 통로들(252)을 형성하거나 복수의 통로들(252)이 구비된 형태로 제조될 수 있다.The body 251 may be manufactured in the form of a plurality of passages 252 having a plurality of passages 252 penetrating the base material in one direction by processing a cylindrical or disc-shaped ceramic or metal base material.

본 실시예에서 복수의 통로들(252)이 연장하는 방향과 대략적으로 직교하는 방향에서의 단면은 벌집 형상이다. 이러한 벌집 형상의 단면은 일례이며, 몸체(251)의 단면 형상은 삼각형, 사각형, 육각형, 사다리꼴, 또는 둥근 형상을 가질 수 있다.In this embodiment, the cross section in the direction substantially orthogonal to the direction in which the plurality of passages 252 extend is honeycomb-shaped. Such a honeycomb cross-section is an example, the cross-sectional shape of the body 251 may have a triangular, square, hexagonal, trapezoidal, or round shape.

역화방지부(250)의 제곱인치당 셀의 개수(cells per square inch, cpsi)는 200 ~ 1500cpsi의 범위를 가질 수 있다. 다른 측면에서, 복수의 통로들(252)의 개면적(open frontal area)은 몸체(251)의 단면적에 대하여 약 40% 내지 약 95% 정도의 범위를 가질 수 있다. 전술한 범위는 촉매 산화 방식의 반응부에 배치된 제1 지 지체의 셀 밀도를 고려하여 설정된 것이다.The number of cells per square inch (cpsi) of the flashback protection unit 250 may range from 200 to 1500 cpsi. In another aspect, the open frontal area of the plurality of passages 252 may range from about 40% to about 95% relative to the cross-sectional area of the body 251. The above range is set in consideration of the cell density of the first support disposed in the reaction portion of the catalytic oxidation method.

또한, 몸체(251)의 일 방향에서의 길이(H1)는 폭 방향에서의 길이가 커지는만큼 커질 수 있다. 예컨대, 몸체(251)의 단면이 대략 원형인 경우, 몸체(251)의 길이(H1)는 폭 방향에서의 길이(예컨대, 지름)에 대하여 약 50% 내지 약 100%의 범위를 가질 수 있다. 즉, 몸체(251)의 길이(H1)는 몸체(251)의 단면적이 커짐에 따라서 일정 범위 내에서 커지도록 설계될 수 있다. 상기 일정 범위에 있어서, 길이(H1)가 폭 방향에서의 길이의 50%보다 작거나 100%보다 크면, 역화방지부(250)에서의 연료 분배나 공간 속도의 개선 효과는 미미할 수 있다.In addition, the length H1 in one direction of the body 251 may be increased as the length in the width direction increases. For example, when the cross section of the body 251 is approximately circular, the length H1 of the body 251 may range from about 50% to about 100% with respect to the length (eg, the diameter) in the width direction. That is, the length H1 of the body 251 may be designed to increase within a predetermined range as the cross-sectional area of the body 251 increases. In the above predetermined range, when the length H1 is smaller than 50% or greater than 100% of the length in the width direction, the effect of improving fuel distribution or space velocity in the flashback prevention part 250 may be insignificant.

본 실시예의 역화방지부(250)는, 도 3에 도시한 개질장치의 역화방지부와 유사하게, 개질 반응을 수행하는 제2 반응부가 산화 반응을 수행하는 제1 반응부를 둘러싸는 2중관 구조에 채용될 수 있다. 한편, 제1 반응부가 제2 반응부를 둘러싸는 2중관 구조인 경우, 본 실시예의 역화방지부(250)의 몸체(251)는 중앙부에 제2 반응부가 배치될 수 있는 공간을 가진 원반 링 형태로 변형될 수 있을 것이다.The flashback prevention part 250 of the present embodiment has a double pipe structure surrounding the first reaction part performing the oxidation reaction, similarly to the flashback prevention part of the reformer shown in FIG. 3. Can be employed. On the other hand, when the first reaction unit has a double tube structure surrounding the second reaction unit, the body 251 of the flashback prevention unit 250 of the present embodiment is in the shape of a disk ring having a space in which the second reaction unit can be disposed in the center. It may be modified.

도 5는 본 발명의 개질장치에 채용가능한 또 다른 역화방지부의 사시도이다.5 is a perspective view of yet another flashback prevention unit employable in the reforming apparatus of the present invention.

도 5를 참조하면, 본 실시예의 역화방지부(350)는 금속으로 이루어진 몸체(351)와, 일 방향으로 몸체(351)를 관통하는 복수의 통로들(352)을 구비한다.Referring to FIG. 5, the flashback prevention part 350 of the present embodiment includes a body 351 made of metal and a plurality of passages 352 penetrating the body 351 in one direction.

몸체(351)의 단면은 나선형으로 되어 있다. 하지만, 이러한 나선 형상의 단면은 일례이며, 몸체(351)는 원형이나 타원형과 같은 대칭적 구조를 갖도록 변형될 수 있다.The cross section of the body 351 is spiral. However, such a spiral cross section is an example, and the body 351 may be deformed to have a symmetrical structure such as a circle or an ellipse.

몸체(351)는 시트상의 제1 몸체(351a)와 주름진 형태의 제2 몸체(351b)를 겹 쳐서 나선형으로 감은 후, 제1 몸체(351a)와 제2 몸체(351b) 사이에 소정의 접착제를 도포한 후 열을 가해 브레이징 함으로써 제작될 수 있다. 제1 몸체(351a)와 제2 몸체(351b) 사이의 공간은 복수의 통로들(352)을 형성한다. 이러한 제작 방법은 본 실시예의 역화방지부(350)나 촉매 산화 방식의 반응부용 제1 지지체를 금속모노리스 형태로 간단하게 제작할 수 방법으로서, 제조 비용을 절약할 수 있고 양산에 적합한 이점이 있다. 또한, 역화방지부(350)를 금속모노리스로 제조하면, 단위체적당 높은 표면적과, 넓은 입구의 개면적, 및 뛰어난 내마멸성(attrition resistance) 등을 가질 수 있다.The body 351 overlaps the sheet-shaped first body 351a and the corrugated second body 351b and spirally winds thereon, and then a predetermined adhesive is applied between the first body 351a and the second body 351b. It can be manufactured by applying heat and brazing after application. The space between the first body 351a and the second body 351b forms a plurality of passages 352. Such a manufacturing method is a method of simply manufacturing the first support for the flashback prevention part 350 or the catalytic oxidation method of the present embodiment in the form of a metal monolith, which can reduce the manufacturing cost and has an advantage for mass production. In addition, when the flashback prevention part 350 is made of metal monolith, it may have a high surface area per unit volume, a large opening area, and excellent attrition resistance.

역화방지부(350)의 제곱인치당 셀의 개수는 200 ~ 1500cpsi의 범위를 가질 수 있다. 다른 측면에서, 복수의 통로들(352)의 개면적은 몸체(351)의 단면적에 대하여 약 40% 내지 약 95% 정도의 범위를 가질 수 있다. 전술한 범위는 촉매 산화 방식의 반응부에 배치된 제1 지지체의 셀 밀도를 고려하여 설정된 것이다. 본 실시예의 역화방지부(350)의 셀 밀도는 개질장치에서 요구되는 열전달 조건 또는 전열 표면적에 따라, 및/또는 몸체(351)의 구성이나 형상에 따라 통로들(352)의 반복 거리, 통로들(352) 간의 벽두께를 설계하면서 적절히 조정될 수 있다.The number of cells per square inch of the flame arrester 350 may range from 200 to 1500 cpsi. In another aspect, the open area of the plurality of passages 352 may range from about 40% to about 95% relative to the cross-sectional area of the body 351. The above range is set in consideration of the cell density of the first support disposed in the reaction portion of the catalytic oxidation method. The cell density of the flashback prevention part 350 of the present embodiment depends on the heat transfer condition or heat transfer surface area required in the reformer, and / or the repetition distance of the passages 352, the passages depending on the configuration or shape of the body 351. The wall thickness between the 352 can be adjusted as appropriate.

또한, 몸체(351)의 일 방향에서의 길이(H2)는 폭 방향에서의 길이가 커지는만큼 커질 수 있다. 예컨대, 몸체(351)의 단면이 대략 원형이라고 가정할 때, 몸체(351)의 길이(H2)는 폭 방향에서의 길이(예컨대, 지름)에 대하여 약 50% 내지 약 100%의 범위를 가질 수 있다. 즉, 몸체(351)의 길이(H2)는 몸체(351)의 단면적이 커짐에 따라서 일정 범위 내에서 커지도록 설계될 수 있다. 상기 일정 범위에 있어 서, 길이(H2)가 폭 방향에서의 길이의 50%보다 작거나 100%보다 크면, 역화방지부(350)에서의 연료 분배나 공간 속도의 개선 효과는 미미할 수 있다.In addition, the length H2 in one direction of the body 351 may be increased as the length in the width direction is increased. For example, assuming that the cross section of the body 351 is approximately circular, the length H2 of the body 351 may range from about 50% to about 100% with respect to the length (eg, diameter) in the width direction. have. That is, the length H2 of the body 351 may be designed to increase within a predetermined range as the cross-sectional area of the body 351 increases. In the above range, if the length (H2) is less than 50% or greater than 100% of the length in the width direction, the effect of improving the fuel distribution or space velocity in the flashback prevention portion 350 may be insignificant.

본 실시예의 역화방지부(350)는, 제2 반응부(140)가 제1 반응부(130) 및 역화방지부(150)를 일 방향에서 둘러싸는 2중관 구조(도 3 참조)와 유사하게, 촉매 산화 반응을 수행하는 제1 반응부와 함께 개질 반응을 수행하는 제2 반응부에 의해 둘러싸이도록 2중관 구조 내에 배치될 수 있다.The flashback prevention part 350 of the present embodiment has a structure similar to a double tube structure in which the second reaction part 140 surrounds the first reaction part 130 and the flashback prevention part 150 in one direction (see FIG. 3). It may be disposed in the double tube structure so as to be surrounded by the first reaction unit performing the catalytic oxidation reaction and the second reaction unit performing the reforming reaction.

다른 측면에서, 몸체(351)의 중심부(353)에는 도 1 및 도 2의 배관(60)과 유사하게 유체를 이송하기 위한 배관이 배치될 수 있다. 또 다른 측면에서, 몸체(351)의 중심부(353)에는 도 1 및 도 2의 배관(60) 및 제2 반응부(40)와 유사하게 배관 및 제2 반응부가 배치될 수 있다. 이 경우, 중심부(353)는 배관 및 제2 반응부가 배치될 수 있도록 더 넓게 형성될 수 있다.In another aspect, the central portion 353 of the body 351 may be disposed in the pipe for transferring the fluid similar to the pipe 60 of FIGS. 1 and 2. In another aspect, a pipe and a second reaction part may be disposed in the central portion 353 of the body 351 similar to the pipe 60 and the second reaction part 40 of FIGS. 1 and 2. In this case, the center portion 353 may be formed wider so that the pipe and the second reaction portion may be disposed.

전술한 발명에 대한 권리범위는 이하의 특허청구범위에서 정해지는 것으로써, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등 범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다.The scope of the above-described invention is defined in the following claims, which are not bound by the description of the specification, and all modifications and variations belonging to the equivalent scope of the claims will belong to the scope of the present invention.

도 1은 본 발명의 일 실시예에 따른 개질장치의 사시도.1 is a perspective view of a reforming apparatus according to an embodiment of the present invention.

도 2는 도 1의 개질장치의 Ⅱ-Ⅱ선에 의한 횡단면도.FIG. 2 is a cross-sectional view taken along line II-II of the reformer of FIG. 1. FIG.

도 3은 본 발명의 또 다른 실시예에 따른 개질장치의 단면도.3 is a cross-sectional view of a reforming apparatus according to another embodiment of the present invention.

도 4는 본 발명의 개질장치에 채용가능한 역화방지부의 사시도.Figure 4 is a perspective view of a flashback prevention portion that can be employed in the reforming apparatus of the present invention.

도 5는 본 발명의 개질장치에 채용가능한 또 다른 역화방지부의 사시도.5 is a perspective view of yet another flashback prevention unit employable in the reforming apparatus of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10, 100 : 개질장치10, 100: reformer

20, 120 : 하우징20, 120: housing

30, 130 : 제1 반응부30, 130: first reaction part

40, 140 : 제2 반응부40, 140: second reaction part

50, 150, 250, 350 : 역화방지부50, 150, 250, 350: Flashback prevention part

Claims (20)

제1 챔버, 상기 제1 챔버 내에 배치되는 제1 산화촉매를 구비하며, 제1 산화연료를 연소시켜 열을 생성하는 제1 반응부;A first reaction part having a first chamber and a first oxidation catalyst disposed in the first chamber, the first reaction part generating heat by burning the first oxidation fuel; 제2 산화촉매를 구비하고, 상기 제1 반응부의 열에 의해 가열되며, 제2 산화연료를 개질하는 제2 반응부; 및A second reaction part having a second oxidation catalyst, heated by heat of the first reaction part, and reforming a second oxidation fuel; And 상기 제1 챔버 내의 상기 제1 산화연료가 유입되는 상류측에 상기 제1 산화촉매와 일정 간격을 두고 배치되는 역화방지부를 포함하는 개질장치.And a backfire prevention unit disposed at a predetermined distance from the first oxidation catalyst on an upstream side of the first oxidant fuel in the first chamber. 제1항에 있어서,The method of claim 1, 상기 일정 간격은 5㎜ 내지 15㎜의 범위를 가지는 개질장치.The constant interval reformer having a range of 5mm to 15mm. 제1항에 있어서,The method of claim 1, 상기 제1 산화연료가 유동하는 방향을 길이 방향이라고 할 때, 상기 역화방지부의 길이 방향에서의 길이는 폭 방향에서의 길이에 대하여 50% 내지 100%의 범위를 가지는 개질장치.When the direction in which the first oxidant fuel flows is called the longitudinal direction, the length in the longitudinal direction of the flashback prevention portion has a range of 50% to 100% of the length in the width direction. 제1항에 있어서,The method of claim 1, 상기 제2 산화촉매의 일단은 상기 역화방지부에 인접하게 배치되는 개질장치.One end of the second oxidation catalyst is disposed adjacent to the flame arrester. 제1항에 있어서,The method of claim 1, 상기 제1 산화촉매는 복수의 통로들을 가진 제1 지지체 및 상기 제1 지지체에 담지되는 활성 물질을 포함하는 개질장치.Wherein the first oxidation catalyst comprises a first support having a plurality of passages and an active material supported on the first support. 제5항에 있어서,The method of claim 5, 상기 제1 지지체는 모노리스인 개질장치.Wherein the first support is monolith. 제6항에 있어서,The method of claim 6, 상기 역화방지부는 상기 제1 지지체와 동일한 단면 구조 및 형상을 가진 모노리스인 개질장치.The backfire prevention unit is a monolith reformer having the same cross-sectional structure and shape as the first support. 제7항에 있어서,The method of claim 7, wherein 상기 모노리스의 단면은 벌집 형상인 개질장치.The cross section of the monolith is a honeycomb reformer. 제7항에 있어서,The method of claim 7, wherein 상기 모노리스는 시트상 제1 부재와 파상형 제2 부재가 중첩되어 감긴 나선 형상을 구비하는 개질장치.The monolith has a spiral shape in which a sheet-shaped first member and a wave-shaped second member are overlapped and wound. 제7항에 있어서,The method of claim 7, wherein 상기 모노리스의 복수의 통로들의 개면적은 상기 모노리스의 단면적의 40% 내지 95%인 개질장치.A reforming area of the plurality of passageways of the monolith is 40% to 95% of the cross-sectional area of the monolith. 제7항에 있어서,The method of claim 7, wherein 상기 모노리스의 셀 밀도는 200 cpi 내지 1500 cpi인 개질장치.The cell density of the monolith is 200 cpi to 1500 cpi reformer. 제1항에 있어서,The method of claim 1, 상기 제2 반응부는 상기 제1 챔버에 접하는 제2 챔버, 및 상기 제2 챔버 내에 배치되는 제2 지지체를 구비하고,The second reaction unit includes a second chamber in contact with the first chamber, and a second support disposed in the second chamber, 상기 제2 산화촉매는 상기 제2 지지체와 상기 제2 지지체에 담지된 활성 물질을 포함하는 개질장치.Wherein the second oxidation catalyst comprises the second support and the active material supported on the second support. 제12항에 있어서,The method of claim 12, 상기 제2 산화연료가 유입되는 상류측에 위치한 상기 제2 지지체의 일단은 상기 역화방지부에 인접하게 배치되는 개질장치.One end of the second support located on the upstream side of the second oxidant fuel is disposed adjacent to the flashback preventing portion. 제12항에 있어서,The method of claim 12, 상기 제2 지지체는 펠릿 또는 구슬 모양을 구비하는 개질장치.The second support is a reformer having a pellet or a bead shape. 제12항에 있어서,The method of claim 12, 상기 제2 지지체는 세라믹 또는 금속 모노리스인 개질장치.Wherein the second support is a ceramic or metal monolith. 제1항에 있어서,The method of claim 1, 상기 제1 반응부 및 상기 제2 반응부는 양단이 폐쇄되며 유체 유동을 위한 복수의 개구부들을 가진 2중관 구조를 구비하는 개질장치.And the first reaction unit and the second reaction unit are closed at both ends and have a double tube structure having a plurality of openings for fluid flow. 제1항에 있어서,The method of claim 1, 상기 제1 산화연료는 부탄, 메탄, 천연가스, 프로판가스, 디젤 중 적어도 어느 하나를 포함하는 개질장치.The first oxidant fuel reformer including at least one of butane, methane, natural gas, propane gas, diesel. 제1항에 있어서,The method of claim 1, 상기 제1 산화촉매는 알루미나(Al2O3), 실리카(SiO2), 또는 티타니아(TiO2)로 이루어진 지지체에 PdAl2O3, NiO, CuO, CeO2 및 Al2O3, Pu, Pd 및 Pt, 및 이들의 조합으로 이루어진 그룹에서 선택되는 물질을 담지하여 이루어지는 개질장치.The first oxidation catalyst is PdAl 2 O 3 , NiO, CuO, CeO 2 and Al 2 O 3 , Pu, Pd on a support made of alumina (Al 2 O 3 ), silica (SiO 2 ), or titania (TiO 2 ). And Pt, and a combination thereof. 제1항에 있어서,The method of claim 1, 상기 제1 반응부에 상기 제1 산화연료를 분사하는 노즐을 더 포함하는 개질장치.The reformer further comprises a nozzle for injecting the first oxidant fuel in the first reaction unit. 제1항에 있어서,The method of claim 1, 상기 제1 반응부에 공급되는 상기 제1 산화연료를 점화시키는 점화부를 더 포함하는 개질장치.And an ignition unit for igniting the first oxidized fuel supplied to the first reaction unit.
KR1020080130258A 2008-12-19 2008-12-19 Reformer KR101008402B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020080130258A KR101008402B1 (en) 2008-12-19 2008-12-19 Reformer
JP2009215882A JP5152811B2 (en) 2008-12-19 2009-09-17 Reformer
US12/564,391 US20100158769A1 (en) 2008-12-19 2009-09-22 Reformer
EP09252797.7A EP2198951B1 (en) 2008-12-19 2009-12-16 Reformer
CN2009102608453A CN101746725B (en) 2008-12-19 2009-12-21 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080130258A KR101008402B1 (en) 2008-12-19 2008-12-19 Reformer

Publications (2)

Publication Number Publication Date
KR20100071517A KR20100071517A (en) 2010-06-29
KR101008402B1 true KR101008402B1 (en) 2011-01-14

Family

ID=42102293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080130258A KR101008402B1 (en) 2008-12-19 2008-12-19 Reformer

Country Status (5)

Country Link
US (1) US20100158769A1 (en)
EP (1) EP2198951B1 (en)
JP (1) JP5152811B2 (en)
KR (1) KR101008402B1 (en)
CN (1) CN101746725B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348031B1 (en) 2011-12-29 2014-01-03 세종공업 주식회사 Dual Combustion Reformer and Fuel Cell System

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040885B1 (en) * 2009-05-28 2011-06-16 삼성에스디아이 주식회사 Catalytic Combustor and Fuel Reformer having the same
US9102535B2 (en) * 2011-12-27 2015-08-11 Korea Institute Of Energy Research Flameless steam reformer
KR101401108B1 (en) * 2012-12-10 2014-05-30 한국가스공사 A reactor for producing syn-gas using tri-reforming reaction and a tri-reforming reaction system using same
KR101929012B1 (en) * 2017-08-30 2018-12-13 고등기술연구원 연구조합 Module type reforming reactor
CN109630245B (en) * 2018-12-14 2020-12-01 武汉理工大学 Light hydrocarbon/diesel fuel reforming system and reforming method
CN111346590B (en) * 2020-03-31 2021-10-08 上海岚泽能源科技有限公司 Integrated reactor
AU2021313320A1 (en) * 2020-07-23 2023-01-19 Topsoe A/S A structured catalyst
CA3220562A1 (en) * 2021-06-28 2023-01-05 Anders Helbo Hansen A structured body for heating gas
US20240123415A1 (en) 2021-08-04 2024-04-18 Ihara Co., Ltd. Method for designing and arranging structural catalyst for decomposition of hydrocarbons, method for producing reactor for decomposition of hydrocarbons, reactor for decomposition of hydrocarbons and reaction furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692242B2 (en) * 1986-01-16 1994-11-16 株式会社日立製作所 Fuel reformer
JPH09259910A (en) * 1996-03-25 1997-10-03 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel battery and power generator using this battery
KR100599668B1 (en) * 2004-08-19 2006-07-12 한국과학기술연구원 Catalyst stack for partial oxidation reforming of fuel, apparatus for fuel reforming using the catalyst and method for fuel reforming using the catalyst
KR100814888B1 (en) * 2007-04-13 2008-03-18 삼성에스디아이 주식회사 Combustor, reforming apparatus and driving method of the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO166394C (en) * 1985-10-17 1991-07-17 Inst Francais Du Petrole GAS PHASE OXIDIZATION PROCEDURE, AND THE REACTOR USE OF THE PROCEDURE.
JPH0422829Y2 (en) * 1987-12-24 1992-05-26
JPH04206157A (en) * 1990-11-29 1992-07-28 Mitsubishi Heavy Ind Ltd Power generation system by fuel cell
EP0649327B2 (en) * 1992-06-30 2002-05-02 Combustion Controls, Inc., Flame arrestor apparatus
USRE39675E1 (en) * 1996-06-28 2007-06-05 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
JP2002080203A (en) * 2000-07-07 2002-03-19 Nippon Soken Inc Reformer
DE10042746A1 (en) * 2000-08-31 2002-03-28 Degussa Method and device for carrying out reactions in a reactor with slit-shaped reaction spaces
US6712603B2 (en) * 2002-08-07 2004-03-30 General Motors Corporation Multiple port catalytic combustion device and method of operating same
US7862631B2 (en) * 2003-02-07 2011-01-04 Gm Global Technology Operations, Inc. Fuel processor primary reactor and combustor startup via electrically-heated catalyst
DE10326150B4 (en) * 2003-06-06 2005-12-15 Leinemann Gmbh & Co. Kg Durable fire barrier
US7255840B2 (en) * 2003-06-26 2007-08-14 Praxair Technology, Inc. Autothermal reactor and method for production of synthesis gas
JP2005213133A (en) * 2004-02-02 2005-08-11 Nippon Oil Corp Reforming device and fuel cell system
KR101125650B1 (en) * 2004-12-10 2012-03-27 삼성에스디아이 주식회사 Fuel cell system, reformer and burner
US7547422B2 (en) * 2006-03-13 2009-06-16 Praxair Technology, Inc. Catalytic reactor
US20070227070A1 (en) * 2006-03-31 2007-10-04 Fischer Bernhard A Staged modular hydrocarbon reformer with internal temperature management
DE102006019409B4 (en) * 2006-04-23 2010-02-04 Zentrum für Brennstoffzellen-Technik GmbH Reformer reactor, its use and method of operation of the reformer
KR100857703B1 (en) * 2007-03-29 2008-09-08 삼성에스디아이 주식회사 Reaction vessel and reaction device
KR100823515B1 (en) * 2007-04-24 2008-04-21 삼성에스디아이 주식회사 Apparatus for reforming fuel and driving method of the same
KR20100126373A (en) * 2008-02-14 2010-12-01 컴팩트지티엘 피엘씨 Catalytic reaction module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692242B2 (en) * 1986-01-16 1994-11-16 株式会社日立製作所 Fuel reformer
JPH09259910A (en) * 1996-03-25 1997-10-03 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel battery and power generator using this battery
KR100599668B1 (en) * 2004-08-19 2006-07-12 한국과학기술연구원 Catalyst stack for partial oxidation reforming of fuel, apparatus for fuel reforming using the catalyst and method for fuel reforming using the catalyst
KR100814888B1 (en) * 2007-04-13 2008-03-18 삼성에스디아이 주식회사 Combustor, reforming apparatus and driving method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348031B1 (en) 2011-12-29 2014-01-03 세종공업 주식회사 Dual Combustion Reformer and Fuel Cell System

Also Published As

Publication number Publication date
JP2010143816A (en) 2010-07-01
CN101746725A (en) 2010-06-23
KR20100071517A (en) 2010-06-29
EP2198951A3 (en) 2010-09-15
EP2198951A2 (en) 2010-06-23
EP2198951B1 (en) 2013-07-31
CN101746725B (en) 2013-11-06
US20100158769A1 (en) 2010-06-24
JP5152811B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
KR101008402B1 (en) Reformer
KR101040885B1 (en) Catalytic Combustor and Fuel Reformer having the same
JP6549601B2 (en) Integrated system of gaseous fuel CPOX reformer and fuel cell, and method of generating electricity
KR101865032B1 (en) Liquid fuel cpox reformer and fuel cell systems, and methods of producing electricity
KR101210127B1 (en) Combustor for reformer
JP2015517175A (en) Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell
EP2158962B1 (en) Method for forming a fuel cell reformer
KR101152586B1 (en) fuel reformer
US9102535B2 (en) Flameless steam reformer
KR100846715B1 (en) Apparatus for reforming fuel
KR101001395B1 (en) Fuel Reformer
US20100119421A1 (en) Catalyst support, method of manufacturing the same, and reformer having the same
KR20180113272A (en) Reformer for fuel cell
JP5448985B2 (en) Auxiliary device for solid oxide fuel cell, solid oxide fuel cell, and solid oxide fuel cell system
JP4645161B2 (en) Fuel reformer, fuel cell system
KR101909378B1 (en) Heat exchanger for fuel cell
JP5266122B2 (en) Oxidation autothermal reformer and fuel cell system
JP2000302404A (en) Apparatus for reforming reaction
KR101022147B1 (en) Catalytic Combustor and Fuel Reformer having the same
JP2010235348A (en) Self-heated oxidation reforming apparatus and fuel cell system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141211

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee