Nothing Special   »   [go: up one dir, main page]

KR100679173B1 - 위암 진단용 단백질 마커 및 이를 이용한 진단키트 - Google Patents

위암 진단용 단백질 마커 및 이를 이용한 진단키트 Download PDF

Info

Publication number
KR100679173B1
KR100679173B1 KR1020060019517A KR20060019517A KR100679173B1 KR 100679173 B1 KR100679173 B1 KR 100679173B1 KR 1020060019517 A KR1020060019517 A KR 1020060019517A KR 20060019517 A KR20060019517 A KR 20060019517A KR 100679173 B1 KR100679173 B1 KR 100679173B1
Authority
KR
South Korea
Prior art keywords
gastric cancer
alpha
marker
stomach cancer
protein
Prior art date
Application number
KR1020060019517A
Other languages
English (en)
Inventor
김철우
온승엽
한미영
신용성
Original Assignee
주식회사 바이오인프라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오인프라 filed Critical 주식회사 바이오인프라
Priority to KR1020060019517A priority Critical patent/KR100679173B1/ko
Priority to EP06835536.1A priority patent/EP1989552B1/en
Priority to PCT/KR2006/005836 priority patent/WO2007100183A1/en
Priority to ES06835536.1T priority patent/ES2623986T3/es
Priority to US12/281,086 priority patent/US7892761B2/en
Application granted granted Critical
Publication of KR100679173B1 publication Critical patent/KR100679173B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Data Mining & Analysis (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 위암 진단용 단백질 마커 및 이를 이용한 진단키트에 관한 것으로, 보다 구체적으로 2 차원 전기영동과 바이오인포머틱스(bioinformatics)를 이용하여 발굴한 단백질 마커 및 이를 이용한 진단키트에 관한 것이다. 본 발명의 단백질 마커에 대한 항체를 이용한 진단키트로 정상인과 위암환자에서 마커 단백질 발현량 차이를 확인함으로써 위암 진단과 위암의 진행 정도 평가에 유용하게 사용될 수 있다.
위암, 진단키트, 단백질 마커, 바이오인포머틱스, 2 차원 전기영동

Description

위암 진단용 단백질 마커 및 이를 이용한 진단키트{Protein markers for diagnosing stomach cancer and the diagnostic kit using them}
도 1은 대표적인 혈청 프로테옴 2 차원 전기영동 전체 이미지와 2 차원 전기영동시 최적의 우레아(urea) 농도를 나타낸 사진이고,
1. 2 차원 전기영동 전체 이미지
2. 8M 우레아 3. 2M 티로우레아/7M 우레아
도 2는 2차원 전기영동시 정상과 암 환자에서 발현량이 변화하는 단백질을 나타낸 사진이고,
도 3은 위암 병기별로 단백질 발현을 분석한 결과를 나타낸 그래프이고,
A: Haptoglobin beta E: ProApolipoprotein A-Ⅰ
B: Haptoglobin alpha F: Apolipoprotein H
C: Leucine-rich alpha-2-glycoprotein(LRG) G: Clusterin
D: A1 antitrypsin H: Apo lipoprotein A-Ⅵ
I: Transthyretin
도 4는 발굴된 위암 마커 단백질의 발현량 변화를 면역블럿으로 검증한 결과를 나타낸 사진이다.
NS: normal serum(정상 혈청)
SC: stomach cancer serum (위암 환자 혈청)
Haptoglobin beta
Figure 112006014846542-pat00001
Haptoglobin alpha
Figure 112006014846542-pat00002
Transthyretin
Figure 112006014846542-pat00003
Alpha-1-antitrypsin
Figure 112006014846542-pat00004
본 발명은 위암 진단용 단백질 마커 및 이를 이용한 진단키트에 관한 것으로, 보다 상세하게는 2 차원 전기영동과 바이오인포머틱스(bioinformatics)를 이용하여 발굴한 단백질 마커 및 이를 이용한 진단키트에 관한 것이다.
암은 21세기에 접어들면서 심장질환을 추월하여 질병사망원인 1위를 차지하고 있어 이의 예방, 진단, 치료에 전 세계적인 관심이 기울여져 왔다. 우리나라에서도 1988년도부터 전체 사망원인 중 암이 제1위를 차지하게 되었고, 그 중 위암의 경우 구미 선진국에서는 감소되고 있는 추세이나, 아직도 한국, 일본 등에서는 가장 많은 빈도를 차지하고 있다. 서울지역 암 등록소(1992-95)에 따르면 암 환자의 23%(남자 24.7%, 여자 17.3%)가 위암 환자로 보고되었다. 발병 평균 연령은 54세 이며 대부분이 40~60대이나 20대의 젊은 사람들에서 발견된 경우도 3%가량 되며 남자에서 여자보다 2배로 발생빈도가 높다. 그러나, 조기 진단될 경우 생존율이 90% 이상이므로 위암의 조기발견은 국가 보건에 있어서 매우 중요하다.
암의 발생, 진행 및 악성화는 유전적 요인과 환경적 요인이 복합적으로 작용하여 관련 프로테옴(proteome)의 총체적인 변화를 보이게 된다. 암세포를 포함한 모든 세포의 생존에 필수적인 대사 및 조절경로에 직접 작용하는 단백질과 유전자(mRNA)의 양적인 상관관계(correlation coefficiency=0.48)는 매우 낮아서 유전자 대량 발굴에 의한 mRNA 변화 연구에만 의존하는 것은 단백질의 생물학적 기능을 이해하는데 잘못된 결과를 발생시킬 가능성이 있다. 또한 세포의 생존, 분화, 사멸을 조절하는 단백질의 활성, 안정성, 세포내 위치, 전환(turnover)이 단백질의 수식화(Post-Translational Modification, PTM)에 의해 조절되므로 mRNA 변화 연구보다는 프로테옴 분석의 중요성이 더욱 강조되고 있다.
상기와 같이 암 질환은 한 두 종류의 세포나 조직뿐 아니라 여러 장기의 기능과 생물학적 과정이 영향을 받는 전체적인(systemic) 질환이므로 총체적인 프로테옴의 변화가 반영되는 임상시료, 즉 혈청과 같은 체액의 분석이 필요하다. 일상적인 임상진단이 이미 체액을 대상으로 이루어지고 있으므로 체액을 통한 진단방법이 개발되어 이를 통해 일차 스크리닝만 할 수 있게 되더라도 조기진단으로 생존율을 향상시킬 수 있는 획기적인 전기가 마련될 수 있다.
생물기술(biotechnology, BT)과 정보기술(information technology, IT) 간 학제연구를 통해 방대한 양의 데이터를 빠르고 효율적으로 가공하고 처리하는 기술 로 크게 바이오인포머틱스과 바이오일렉트로닉스를 들 수 있는데 이 중 바이오인포머틱스는 생명체가 지니고 있는 광대한 양의 정보를 수집, 저장, 분석하고, 그 결과를 제약, 식품, 농업, 환경 등의 분야에 이용하여 부가가치를 창출하는 기술로 생물정보 S/W, 생물정보서비스, 정보기술 인프라 등을 그 예로 들 수 있다. 그 중 이미지 마이닝(image mining) 기술은 새로운 데이터 베이스 응용분야로 이미지 데이터 베이스 기술과 데이터 마이닝 기술이 결합된 응용기술이라 할 수 있다. 이미지 마이닝 기술은 바이오인포머틱스(bioinformatics) 분야에서 시도되는 일반적인 데이터 마이닝과는 달리 아직까지 국내ㆍ외적으로 시도된 바가 없다. 일반적인 데이터 마이닝들도 대부분 응용 통계학(applied statistics)을 중심으로 접근되어 상세한 정보를 얻는데 한계를 갖는다. 예컨대, 2 차원 전기영동 이미지상에 나타나는 프로테옴 스팟들에는 정상/질병 여부뿐만 아니라, 해당 환자만이 가질 수 있는 다양한 특성들이 내재되어 있을 것이다. 이미지 마이닝 기술을 통해 이러한 중요한 정보들을 추출해 낼 수 있다면, 병기와 병리조직학적 분류에 의존하고 있는 현재의 진단 및 예후판정 기술을 혁신적으로 개선/보완할 수 있을 것이다.
대한민국 특허 제2004-0055893호에는 단백질 상호작용 네트워크 구축을 위한 템플릿 자동 생성방법이 기재되어 있고, 대한민국 특허 제2003-0092462호에는 p53 단백질 또는 Bcl-X L 단백질 또는 이들 두 단백질과 Bcl-2 단백질의 수준을 검정하여 암의 진행 정도를 진단하는 방법 및 키트에 관해 기재되어 있다. 그러나 상기 문헌들에는 2 차원 전기영동과 바이오인포머틱스 방법을 이용한 위암 마커 발굴에 대한 내용은 나타나있지 않다.
이에, 본 발명자들은 300여개가 넘는 위암 환자와 정상인 혈청 샘플의 프로테옴 변화 양상을 2 차원 전기영동을 통해 데이터베이스화하고, 이로부터 수득된 데이터를 바이오인포머틱스 도구와 통계적 기법을 이용함으로써 위암을 진단할 수 있는 단백질 마커를 다수 찾을 수 있었으며, 이 단백질들의 조합을 위암 진단에 적용하였을 때, 위암 환자와 정상인의 보다 감도 높은 구분이 가능함을 확인함으로써 본 발명을 완성하였다.
한편, Ciphergen Biosystems, INC.의 미국 특허 제2005050913호("Use of biomarkers for detecting ovarian cancer)가 본 발명의 참고문헌으로 인용되었다.
본 발명의 목적은 2 차원 전기영동과 바이오인포머틱스 기법을 이용하여 위암 환자에서 발현량이 변화하는 단백질을 발굴하고 이를 위암 조기진단용 마커로 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 Leucine-rich alpha-2-glycoprotein(LRG), Clusterin, Alpha-1-antitrypsin, Apolipoprotein A-Ⅳ, Transthyretin, ProApolipoprotein A-Ⅰ, Haptoglobin beta, Haptoglobin alpha-2 및 Apolipoprotein H로 이루어진 군으로부터 선택되는 것을 특징으로 하는 위암 진 단용 마커를 제공한다.
또한, 본 발명은 상기 9개의 마커 중 하나 이상의 마커의 양을 측정하여 측정결과와 위암 진행 상태의 연관성을 분석하는 위암 스크리닝 방법을 제공한다.
또한, 본 발명은 상기 9 개의 마커 중 하나 이상의 마커에 결합하는 물질을 포함하는 위암 진단키트를 제공한다.
본 발명의 이해를 돕기 위하여, 사용된 용어를 정의하면 하기와 같다.
"마커"는 정상 개체의 혈청 샘플과 비교하여 어떤 질환을 가진 개체의 혈청 샘플에 구별되게 존재하는 것을 말한다. 이 마커 또는 마커들은 단일의 폴리펩타이드 또는 폴리펩타이드의 조합으로 이루어질 수 있다.
"프로테옴 패턴"은 정상 개체의 혈청 샘플과 비교하여 어떤 질환을 가진 개체의 혈청 샘플에서 구별되게 존재하는 폴리펩타이드의 특징적인 그룹 또는 그룹핑되는 형태를 의미한다. 즉, 특정 질환의 경우에 특이적으로 변화 양상을 나타내는 혈청 단백질의 그룹 또는 이들의 2차원에서의 위치 형태 등을 포함한다.
"데이터 마이닝"은 수많은 데이터 가운데 숨겨져 있는 유용한 상관 관계를 발견하는 것으로, 데이터베이스로부터 과거에는 알지 못했지만 데이터 속에서 유도된 새로운 데이터 모델을 발견하여 미래에 실행 가능한 정보를 추출해 내고 의사 결정에 이용하는 과정을 말한다. 즉, 데이터에 숨겨진 패턴과 관계를 찾아내어 정보를 발견해 내는 것을 의미한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 Leucine-rich alpha-2-glycoprotein(LRG), Clusterin, Alpha-1-antitrypsin, Apolipoprotein A-Ⅳ, Transthyretin, ProApolipoprotein A-Ⅰ, Haptoglobin beta, Haptoglobin alpha-2 및 Apolipoprotein H로 이루어진 군으로부터 선택되는 것을 특징으로 하는 위암 진단용 마커를 제공한다.
본 발명자들은 정상적인 개체 및 암 질환 개체의 혈청 시료를 수득하여 혈청 프로테옴에 대한 2차원 이미지 처리를 수행하고, 상기 데이터에 바이오인포머틱스 방법을 도입하여 양자(정상 또는 위암 환자)를 구별할 수 있는 최적의 마커 단백질을 찾아내었다.
구체적으로, 본 발명자들은 2차원 전기영동을 실시하여 정상인과 위암 환자에서 발현량에 변화를 나타내는 단백질에 대한 이미지 데이터를 구축하고 여기에 바이오인포머틱스 기법을 접목하여 위암 진단용 단백질 마커를 발굴하였다. 먼저, 정상인과 암 환자의 혈청을 수득하였는데, 실험에 사용한 위암 환자 시료들의 연령 및 성별 분포는 평균 연령의 경우 남자는 58.7세(33-78세), 여자는 56.2세(29-77세)였다(표 1 참조).
상기 시료들의 혈청 프로테옴을 나타내기 위한 2차원 전기영동을 실시하기 위하여, 최적의 조건을 탐색한 결과, pH4-7 범위에서 13cm의 스트립을 사용하였고 IEF(isoelectric focusing)시 전체 volt hour는 62,000Vhr, 로딩(loading)하는 혈청 단백질의 양은 200 ug, 재수화 완충용액(rehydration buffer)의 조성은 8M 우레아(urea)로 확정하였다.
전기영동이 끝난 후 염색하여 단백질을 검출하였고 2 차원 전기영동 젤 이미 지는 컴퓨터 소프트웨어 프로그램을 이용하여 이미지 필터링(image filtering), 백그라운드(background) 제거, 수직의 불균일한 선 제거, 수평의 불균일한 선 제거, 스팟 검출 변수 등의 이미지 비교분석 조건을 확립하고 이미지 상의 스팟을 검출한 후 그 결과를 데이터베이스로 구축하였다.
시료가 측정되어 데이터베이스가 생성되면 데이터는 바이오인포머틱스 방법에 의해 분석된다. 바이오인포머틱스에 사용되는 소프트웨어는 이미지 데이터를 컴퓨터가 읽을 수 있는 형태로 변환하는 코드를 구성할 수 있고 알고리즘을 본 발명의 마커가 나타내는 정보에 적용할 수 있는 코드를 포함할 수 있다. 본 발명의 실시예에서도 혈청내 위암관련 단백질 마커를 찾기 위해 여러가지 바이오인포머틱스 분석방법을 사용하였다. 본 발명에 의한 바이오인포머틱스 분석방법은 질환에 특이적인 프로테옴 패턴을 가진 프로테옴 표본을 생성하고 데이터베이스화하는 과정[훈련(training) 단계]; 및 분석을 원하는 대상 혈청 프로테옴의 특징 데이터를 추출하여 상기 질환 특이적 프로테옴 표본과의 비교를 통한 대상 혈청 프로테옴의 질환 여부를 분석하는 과정[평가(testing) 단계]을 포함한다.
“훈련”은 위암 또는 정상인으로부터 수득한 것이 알려진 시료를 사용하여 도출된 데이터로부터 알고리즘을 이용하여 적합한 분류(classification) 모델을 형성할 수 있도록 학습시키는 것을 의미하는데, 분류모델을 만들기 위해 사용되는 데이터는 “훈련 데이터 세트”로, 이를 추출한 집단은 “훈련 집단”으로 명명될 수 있다. 한번 훈련되면, 분류 모델은 미지의 시료로부터 유도된 데이터 패턴을 인식하여 이를 분류할 수 있다.
서포트 벡터 머신은 패턴 인식에 유용하게 사용되는 학습용 프로그램으로서, 다수의 변수를 동시에 처리함으로써 벡터를 분류하는데 유용하게 사용될 수 있다. 서포트 벡터 머신은, 입력 공간의 비선형적인 데이터를 선형적으로 해석할 수 있도록 하며, 각 특징 사이의 최적의 경계(최적 분리면 또는 초평면, hyperplane)를 제시한다. 서포트 벡터 머신은 크게 훈련 과정과 평가 과정의 두 부분으로 이루어지는데, 훈련 과정에서는 서포트 벡터가 생성되며 평가 과정에서는 특정 규칙에 의한 판단이 수행된다. 표본은 n개의 객체로 이루어지며, i번째 객체를 p개의 변수로 이루어진 벡터 xi 로 표기하며 이에 대응하는 이미 분류된 클래스(class)를 yi로 표기한다. 두 가지의 클래스를 갖는다고 가정하면 yi는 '1'또는 '-1'을 갖는다(예를 들어 암 또는 정상). 임의의 입력패턴에 대한 식별함수는 하기와 같다.
Figure 112006014846542-pat00005
W: 무게 벡터(weight vector)
b: 경계(threshold)
데이터를 두 클래스로 정확하게 분류하는 최적의 초평면(hyperplane)은 다음의 그래프의 점선과 같다. 두 점선과 마진(d)은 다음과 같이 씌여질 수 있다.
(w ㆍ x) + b = ±1, d = 2 / || w ||
목적에 적합한 서포트 벡터를 설계하는 일은 바로 무게 벡터(w)와 경계(b)를 정하는 일이다. 따라서, y [( wㆍx ) + b] ≥1 이라는 제약 하에서 ||w||를 최소 화하도록 w 와 b 를 찾으면 된다.
Figure 112006014846542-pat00006
유전자 알고리즘(Genetic Algorithm)은 자연계에 있어서 생물의 유전과 진화의 메커니즘을 공학적으로 모델화하여 생물의 주변 환경에서의 적응능력을 취급하는 것으로, 풀고자 하는 문제에 대한 가능한 해들을 정해진 형태로 표현한 다음 이들을 점차적으로 변형함으로써 점점 더 좋은 해들을 생성해 내는 방법이다. 보다 구체적으로, 유전자 알고리즘은 어떤 범위 내에서 정의되어 있는 변수 x에 대한 함수 f(x)의 최대치 또는 최소치를 이끌어 내는 x 값을 고속으로 구하기 위한 최적화 탐색 알고리즘의 일종이라고 할 수 있다. 유전자 알고리즘은 유전자 요소를 기호열로 변환하는 코딩 작업을 수행하는 유전자형 결정 단계, 유전자형 결정 단계에서 결정된 유전자형으로부터 요소가 다른 다양한 개체를 발생시키기 위한 초기 유전자 집단 결정 단계, 각 개체의 적응도를 미리 결정한 방법에 의해 연산하기 위한 개체의 적응도 평가 단계, 적응도 평가 단계에서 결정한 적응도에 기초하여 개체의 생존 분포를 결정하기 위한 선택 단계, 2개의 염색체 사이에서 유전자를 바꾸어 넣어 새로운 개체를 발생시키는 교배처리 단계, 유전자의 어떤 부분의 값을 강제적으로 바꾸고 유전자 집단으로서의 다양성을 극대화하여 보다 좋은 해를 가지는 개체가 발생되도록 하는 돌연변이 처리 단계, 각 개체의 적응도 평가단계로 복귀하는 단계로 이루어진다. 유전자 알고리즘을 이용하게 되면 복수의 개체 사이에서 선택, 교배 등의 유전적 조작에 의해 상호 협력적으로 해의 탐색을 수행하기 때문에 단순한 병렬적 해의 탐색과 비교하여 보다 좋은 해를 발견하기 쉽고, 알고리즘이 단순하여 실시가 용이한 장점이 있다.
GA와 SVM을 연동한 과정은 다음 그림과 같다.
Figure 112006014846542-pat00007
구체적으로, 본 발명자들은 전체 311명(위암 환자 143명, 정상인 168명)의 프로테옴 데이터 중에서 위암 환자와 정상인 각 100명 씩을 무작위로 선택하여 훈련집단과 평가집단을 구성하도록 하였고(표 2 참고) 200명의 훈련집단 데이터만 사용하여 서포트 벡터 머신(support vector machine, SVM)에 유전자 알고리즘(genetic algorithm, GA)을 연동하여(대한민국 특허 10-2002-0067298 “프로테옴 이미지 마이닝을 이용한 암 질환 분석 방법 및 시스템” 참고) 위암 진단용 마커 9 개를 찾고 데이터베이스를 구축하였다. 데이터베이스 상의 각 스팟 별로 암 환자 전체 및 정상인 전체의 평균값을 구하고 그 값들을 비교하였으며, t-test를 시행하여 각각의 p-value를 구해 현저한 발현량 차이를 나타내는 스팟 9개의 유의성을 확인하였다(표 3 참고).
훈련집단을 대상으로 상기 단백질을 다른 바이오인포머틱스 분석방법인 랜덤 포레스트(Random Forest)와 교차 타당성 검증 방법으로 확인한 결과, 위암 판정률(민감도-암환자를 암환자로 판정하는 비율; 특이도-정상인을 정상인으로 판정하는 비율)이 높은 것을 확인하였다. 이와 더불어 훈련집단에 포함되지 않은 111명의 평가집단(위암 환자 43명, 정상인 68명)의 데이터에 대해 랜덤 포레스트를 수행한 결과, 두 개의 알고리즘 모두 80%에 가까운 높은 결과를 보였다. 이로써 발굴한 9개 위암 마커 후보 단백질의 유용성을 검증하였고 면역블럿팅(immunoblotting)을 수행하여 다시 한번 위암 환자와 정상인 혈청에 존재하는 마커 후보 단백질의 농도 차이를 검증하였다.
또한, 전체 위암 환자 143명(훈련집단 100명, 평가집단 43명)의 데이터를 환자의 병기별로 구분해서 병기에 따라 상기 9개 단백질들의 발현량 변화를 조사한 결과, 도 3에 나타난 바와 같이 단백질 별로 병기에 따라 증감에 차이가 있음을 확인하였다. 이로써 상기 9개 단백질이 위암의 진행과도 상관관계를 보임으로 위암 관련 바이오마커로의 유용성을 다시 한번 확인케 되었다.
또한, 본 발명은 (a) 환자의 시료로부터 상기 9개의 마커 중 하나 이상의 마커의 유무, 양 또는 발현 패턴을 측정하는 단계; 및
(b) 측정결과와 위암 상태의 연관성을 분석하는 단계를 포함하는 위암 스크리닝 방법을 제공한다.
상기 마커 단백질을 이용하면, 암 질환의 발병 여부를 확인하고자 하는 분석 대상 혈청 프로테옴을 입력받아 상기 분석 대상 혈청 프로테옴을 2차원 이미지화하여 질환 특이적 마커 단백질의 패턴을 가진 표본과 비교하거나 혈청내 본 발명의 마커 단백질의 양과 정상 표본의 단백질 양을 수치화한 후 비교하여, 비교 결과에 따라 분석 대상 혈청 프로테옴 패턴이 정상인지 암 질환 상태인지 확인하는 위암 스크리닝이 가능하다.
상기에서 시료내에 존재하는 마커는 2 차원 전기영동 또는 바이오칩 어레이(단백질 칩 어레이 또는 핵산 어레이)를 사용하여 측정되며, 단계 (b)에서 위암 상태란, 환자가 암에 걸릴 위험이 있는지, 질병에 걸렸는지 또는 질병의 진행 정도는 어떠한지를 나타내는 것을 의미한다. 연관성을 분석하는 단계는 상기한 바와 같이 바이오인포머틱스 및 통계적 분석방법에 의해 수행될 수 있다.
또한, 본 발명은 하나 이상의 마커에 결합하는 물질을 포함하는 위암 진단키트를 제공한다.
상기 키트는 위암 환자와 정상인에서 발현에 차이가 있는 본 발명의 하나 이상의 마커를 측정하는데 사용될 수 있다. 본 발명의 키트는 환자가 위암인지 아닌지를 구별하여 의사 등 진료 행위자가 위암을 진단하는 것을 가능하게 할 뿐 아니라, 치료에 대한 환자의 반응을 모니터하여 그 결과에 따라 치료를 변경하는 것을 가능하게 한다. 또한, 위암 모델(예: 마우스, 래트 등의 동물모델)의 생체 내 또는 생체 외에서 하나 이상의 마커의 발현을 조절하는 화합물을 동정하는데 사용될 수 있다.
본 발명의 진단키트는 (i) 발굴한 9개 단백질 중 하나 이상에 결합하는 1차 획득 시약(capture reagent) 및 (ii) 1차 획득시약에 결합하지 않는 2차 획득 시약을 포함할 수 있다.
1차 획득시약은 항체 또는 금속킬레이트, 바람직하게는 항체이고 2차 획득시약은 발색 효소, 형광물질, 방사성 동위원소 또는 콜로이드로 표지한 접합체(conjugate)로 2차 항체이다. 발색효소는 퍼록시다제(peroxidase), 알칼라인 포스파타제(alkaline phosphatase) 또는 산성 포스파타제(acid phosphatase)(예: 양고추냉이 퍼록시다제(horseradish peroxidase))일 수 있고 형광물질인 경우, 플루오레신카복실산(FCA), 플루오레신 이소티오시아네이트(FITC), 플루오레신 티오우레아(FTH), 7-아세톡시쿠마린-3-일, 플루오레신-5-일, 플루오레신-6-일, 2',7'-디클로로플루오레신-5-일, 2',7'-디클로로플루오레신-6-일, 디하이드로테트라메틸로사민-4-일, 테트라메틸로다민-5-일, 테트라메틸로다민-6-일, 4,4-디플루오로-5,7-디메틸-4-보라-3a,4a-디아자-s-인다센-3-에틸 또는 4,4-디플루오로-5,7-디페닐-4-보라-3a,4a-디아자-s-인다센-3-에틸이 가능하다.
환자로부터 수득된 시료를 1차 획득시약, 바람직하게는 마커에 특이적으로 결합하는 항체와 접촉시키는 경우, 시료는 항체와 접촉 전에 알맞은 정도로 희석될 수 있고 항체는 세척이나 복합체의 분리 등 그 이후의 단계를 용이하게 하기위해 고형상에 고정될 수 있다. 고형상은 유리나 플라스틱 예를 들어 미세역가 플레이트(microtiter plate), 막대, 비드(bead) 또는 미세비드(microbead) 등이 될 수 있다. 항체는 또한 프로브 기질이나 단백질칩에 결합될 수 있다. 시료를 항체와 정온배치한 후 세척하여 항체-마커 복합체를 측정할 수 있다. 이는 세척된 혼합물을 2차 획득시약, 바람직하게는 2차 항체와 정온배치하여 수행된다. 항체-마커 복합체의 양 측정이나 존재 검출은 형광, 발광, 화학발광(chemiluminescence), 흡광도, 반사 또는 투과를 통해 이루어질 수 있다. 상기 방법 외에도 시료 내의 마커는 간접적인 분석방법 예를 들어, 마커의 다른 에피토프에 결합하는 모노클론 항체와 경쟁 또는 억제 반응 분석을 실시하여 검출할 수 있다.
또한, 키트는 효소와 발색반응할 기질 및 결합되지 않은 단백질 등은 제거하고 결합된 바이오마커만을 보유할 수 있는 세척액 또는 용리액을 포함할 수 있다. 분석을 위해 사용되는 시료는 혈청, 뇨, 눈물 타액 등 정상적인 상태와 구별될 수 있는 질환 특이적 폴리펩타이드를 확인할 수 있는 생체 시료를 포함한다. 바람직하게는 생물학적 액체 시료, 예를 들어 혈액, 혈청, 혈장 보다 바람직하게는, 혈청으로부터 측정될 수 있다. 시료는 마커의 탐지감도를 증가시키도록 준비될 수 있는데 예를 들어 환자로부터 수득한 혈청 시료는 음이온 교환 크로마토그래피, 친화도 크로마토그래피, 크기별 배제 크로마토그래피(size exclusion chromatography), 액체 크로마토그래피, 연속추출(sequential extraction) 또는 젤 전기영동 등의 방법을 이용하여 전처리될 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1> 2차원 전기영동
<1-1> 혈청 수득
서울대학교 병원 외과학 교실에서 2년 6개월의 기간 동안 위암 환자(143명)로부터 수술전 말초 혈액, 녹십자 의료재단에서 건강검진 결과 위암이 없음이 확인된 정상인(168명)의 말초혈액을 수득하였다. Vacutainer SST Ⅱ tube(Becton Dickinson)를 이용하여 채혈한 후 원심분리하여 혈청을 분리하였다.
표 1: 혈청을 수득한 정상인과 환자수 분포
Figure 112006014846542-pat00008
<1-2> 2 차원 전기영동 조건 최적화
<1-2-1> 2 차원 전기영동 방법 확립
혈청 프로테옴을 나타내기 위하여 여러가지 실험 조건들을 살펴보았다. 먼저 IEF(Isoelectric focusing) 시 사용할 IPG(Immobilised pH Gradient) 스트립(strip, Amersham Bioscience)은 실험 시간 등을 고려하여 혈청 프로테옴을 효율적으로 많이 볼 수 있는 pH4-7 범위, 길이는 13cm를 사용하였다. IEF시 전체 volt hour는 62,000Vhr로 맞추어 실험했을 때 결과가 가장 좋은 것으로 나타났다. 시료 로딩(loading) 양은 200 ug을 사용하였으며 전체적인 2 차원 전기영동 이미지는 도 1의 1과 같다.
<1-2-2> 시료 처리 방법 확립
혈청 프로테옴 분석을 위한 재수화 완충용액(rehydration buffer)의 조성은 8M 우레아(urea, Sigma) 조건(도 1의 2)과 7M 우레아/2M 티오우레아(Thiourea, Sigma) 조건(도 1의 3)을 비교하였는데 티오우레아를 사용하였을 때, 수직의 불균일한 선(vertical streak)이 많이 나타나 스팟 분석에 어려움이 있어, 8M 우레아 조건으로 실험하였다(도 1의 2).
<1-2-3> 단백질 염색방법의 확립
은 염색(silver stain)은 미량의 단백질을 검출할 수 있는 염색방법으로 실험실에서 흔히 사용하고 있지만, 재현성의 어려움과 사용되는 시약 중 글루타르알데하이드(glutaraldehyde)가 단백질과 공유 결합을 하기 때문에 나중에 MALDI-TOF Mass Spectrometry 분석에 사용할 수 없는 단점이 있다. 본 연구에서는 이러한 단점을 극복하기 위해 은 염색 필요시 은염색 과정에서 용액의 부피와 반응시간을 정확히 지켜 염색과정에서 발생하는 편차를 최소로 줄였으며, 이미지 데이터베이스 구축을 위해서는 재현성과 정량성이 뛰어난 SyproRuby(Molecular Probe)로 염색하였다.
<1-3> 2 차원 전기영동
혈청 단백질 200 ㎍을 2% SDS(Sigma)/100 mM Dithiothreitol(DTT, Sigma) 용액에 넣고 95°C에서 5분간 가열한 후 재수화 용액(8M Urea, 4% CHAPS(Sigma), 50 mM DTT, 0.5 % IPG 완충용액(Amersham Bioscience))에 넣고 교반한 후 상온에서 원심분리하여 상등액을 수득하였다. IEF(Isoelectric focusing)은 Immobilized pH Gradient(IPG) strip(pH4-7, 13 cm Amersham Bioscience)을 사용하여 IPGphor system(Amersham Biosciences)에서 시행하였으며, SDS-PAGE는 12.5% 폴리아크릴아마이드 젤을 사용하여 수직 전기영동(vertical electrophoresis)하였다. 전기영동이 끝난 후 SyproRuby(Molecular Probe)로 염색하여 단백질을 검출하였고 2 차원 전기영동 젤 이미지는 PDQuest 소프트웨어(Bio-Rad)를 통해 분석하였다.
<실시예 2> 이미지 데이터 베이스 구축
최적화된 분석방법을 찾기 위해 이미지 필터링(image filtering), 백그라운드(background) 제거, 수직의 불균일한 선 제거, 수평의 불균일한 선 제거, 스팟 검출 변수 등 여러 요소를 조절하여 최적의 조건을 찾았다. 이를 바탕으로 이미지 상의 스팟을 검출한 후 주위 스팟으로부터 명확히 구분되어 분석이 용이한 110여 개의 스팟들에 대해 집중적으로 분석하였다. 이 과정에서 시료 계량시 생기는 편차나 이미지 획득 과정에서 생기는 기계적 편차 등, 실제 단백질 발현양 차이가 아닌 다른 원인에 의해 발생하는 2 차원 전기영동 이미지의 진하기 정도 차이를 보정해 주기 위해 이미지 내의 각 스팟의 양을 모든 스팟들 양의 합으로 나누어 비율을 계산하는 방법으로 표준화(normalization)를 적용하였다.
<실시예 3> 바이오인포머틱스 분석(Bioinformatic Analysis)
혈청내 위암관련 단백질 마커를 찾기 위해 여러 가지 바이오인포머틱스 분석방법을 사용하였다.
표 1에 나타난 전체 311명(위암 환자 143명, 정상인 168명)의 프로테옴 데이터 중에서 위암 환자와 정상인 각 100명 씩을 무작위로 선택하여 훈련집단(training)을 구성하도록 하였고 200명의 훈련집단 데이터만 사용하여 서포트 벡터 머신(support vector machine, SVM)과 유전자 알고리즘(genetic algorithm, GA)을 연동하여(대한민국 특허 10-2002-0067298 “프로테옴 이미지 마이닝을 이용한 암 질환 분석 방법 및 시스템” 참고) 정상인과 암 환자 분류에 이용될 위암 마커 후보 단백질을 찾아내었다(표 3).
훈련집단에 포함되지 않은 111명의 데이터(위암 환자 43명, 정상인 68명)로 평가(test)를 수행하여 훈련 과정에서 선택한 위암 마커 후보 단백질의 진단 능력을 검증하였다. 각 과정을 좀 더 자세히 살펴보면 하기와 같다.
표 2: 성별, 연령 및 병기 분포
Figure 112006014846542-pat00009
* 데이터 분석에 사용한 정상인과 위암환자의 성별 연령별 분포를 훈련집단(A, 200명)과 평가집단(B, 111명)으로 구분하여 나타내었다.
<3-1> SVM/GA를 이용한 단백질 마커 선택
위암 환자 100명과 정상인 100명의 프로테옴 데이터에서 위암 환자 그룹과 정상인 그룹을 잘 구별하는 단백질을 찾기 위해 서포트 벡터 머신[Support Vector Machine(V. N. Vapnik et. al., Theory of Support Vector Machines, Technical Report CSD-TR-96-17, Univ. of London, 1996.)]과 유전자 알고리즘을 연동하여 훈련하였다. 위암 환자 100명과 정상인 100명의 훈련집단을 구성하여 SVM과 GA를 연동하여 학습시킨후 학습결과(민감도 91%, 특이도 97%)가 뛰어난, 위암 마커로 사용될 수 있는 최적의 스팟 조합(9개)을 찾아내었다.
<3-2> t-test
상기 실시예에서 1차적으로 발굴한 단백질의 발현량 차이가 위암 진단 마커로 이용될 정도의 유의한 값인지 알아보는 통계기법 중 하나인 t-test를 실시하였다. 구체적으로 SAS 프로그램(Statistical Analysis System Institute Inc)을 이용하여 위암 환자 그룹과 정상인 그룹 간 발현량의 평균값을 비교하고 각각의 유의성을 나타내는 값인 p-value를 구하였고 p<0.05인 경우 스팟의 발현량 차이가 유의하다고 판단하였다. t-test 결과 하기(표 3)와 같이 9개 스팟이 현저하게 발현량 차이가 있음을 나타내었다.
마커 단백질 LRG Clusterin Alpha-1-antitrypsin Apolipoprotein A-Ⅳ Transthyretin
t-test 1.32E-07 4,24E-02 3.12E-05 3.82E-05 6.41E-07
ProApolipoprotein A-Ⅰ Haptoglobin beta Haptoglobin alpha-2 Apolipoprotein H
3.85E-08 1.16E-07 3.85E-14 3.32E-04
<3-3> 랜덤 포레스트(Random Forest)를 이용한 진단
상기 실시예에서 SVM/GA로 찾은 위암 마커 단백질 후보를 다른 바이오인포머틱스 알고리즘인 랜덤 포레스트(다수의 트리 분류 결정기들의 결과를 다수결로 통합하여 분류의 최종 결과로 삼는 방법, L. Breiman, "Random forests", Machine Learning, Vol. 45. Issue 1,October 2001)에 적용하여 SVM/GA를 실시한 동일한 200명의 훈련집단에 적용하였을 때에도 80.0%(민감도 78%, 특이도 82%)의 높은 판정률을 수득하였다.
<3-4> 교차 타당성 검증(Cross-validation)
무작위로 선택된 훈련집단의 에러 추정 검증을 위하여 leave-one-out 방법(일반화 에러를 추정하기 위한 방법으로서 데이터를 크기가 같은 k개의 부분 집합으로 분할하고 k-1 개의 집합을 훈련 집합으로 하고 나머지 한 개의 집합을 시험 집합으로 하는 분류 실험을 k 번 실시한 후 k 개의 분류 에러율의 평균을 구하는 방법)으로 교차 타당성 검증을 하였다. 그 결과, 판정률 81.5%(민감도 78%, 특이도 85%)을 나타내었다.
<3-5> 선택된 단백질 동정
2차원 전기영동 젤 상의 각 스팟을 피킹(picking)하여 증류수가 담긴 튜브에 넣은 후, 젤 상에서 트립신으로 절단하여(in gel trypsin digestion)하여 펩티드 상태로 잘라 한국기초과학지원연구원(대전)에 의뢰하였다. 상기 단백질은 MALDI-TOF-TOF(ABI 4700 Proteomics Analyzer)로 분석하였으며 MALDI-TOF-TOF에서 얻은 스펙트럼은 MASCOT(database)를 이용하여 펩티드 매스 핑거 프린트(peptide mass finger print), MS/MS 이온 검색(MS/MS ion search)하여 단백질 이름을 동정하였다(Michael O. Glocker et al., Proteomics, 4: 3921-3032, 2004).
<3-6> 선택된 단백질에 대한 검증
상기 방법에 의해 선택된 위암 마커 단백질 후보의 암 환자와 정상인 구별 능력을 검증하기 위해, 이번에는 훈련 집단이 아닌 평가집단(훈련집단 데이터에 포함되지 않은 111명; 위암 환자 43명, 정상인 68명)의 프로테옴 데이터를 대상으로 랜덤 포레스트를 이용하여 평가를 수행하였다. 그 결과 위암 마커 단백질 후보는 서포트 벡터 머신 알고리즘의 경우 민감도 81.39% 특이도 77.94% , 랜덤 포레스트 알고리즘의 경우 민감도 86.05% 특이도 82.35%를 나타내었다. 두 개의 알고리즘 모두 80%에 가까운 높은 결과를 보이고 있어 단백질 마커로서의 유용성이 검증되었다.
<실시예 4> 위암 마커 단백질의 검증-면역블럿팅
위암 마커 단백질의 암 환자와 정상인 혈청에 존재하는 단백질 농도 차이를 검증하기 위하여, 정상인과 위암환자 각각 50명씩의 혈청 샘플을 동일한 부피로 합쳐서 각각의 단백질에 대한 항체를 이용한 면역블럿팅을 수행하였다. 그 결과, 도 4에 나타난 바와 같이, 위암환자의 혈청에 존재하는 마커 단백질의 양이 정상인의 혈청에 존재하는 양에 비하여 증가 또는 감소하는 것을 확인하였다(도 4).
1) Alpha-1-antitrypsin
인간 혈청 샘플 1 ul당 0.0016 ul가 되도록 증류수와 5x 시료 완충용액(sample buffer)로 희석한 후 12% SDS-PAGE에 각각 1, 2, 4, 6 ul씩 로딩하였고, 양성 대조군으로는 정제된 alpha-1-antitrypsin(Sigma)을 48 ng 로딩한 후 25 mA로 전기영동하였다. 웨스턴 블럿은 젤을 PVDF 막으로 트랜스퍼한 후 5% skimmed milk/PBST (0.05% Tween 20)로 블로킹하였고 alpha-1-antitrypsin 항체(chicken IgY, Abcam)를 5% skim milk/PBST에 희석하여 1차 처리하고(1:10000) 항-닭(chicken) IgY-HRP(Abcam)을 2차 처리하였다(1:20000).
2) Haptoglobin alpha
인간 혈청이 샘플 1 ul당 0.04 ul가 되도록 희석한 후, 정제한 his-Hp α2 및 haptoglobin(Sigma) 50 ng을 양성 대조군으로 하여 시료들을 SDS-PAGE에 로딩하였다. 1차 항체로 폴리클론 항-Haptoglobin alpha를 1:1000으로 희석하여 처리하였고, 2차 항체로 항-Rabbit IgG-HRP(Sigma)을 1:20000으로 처리하였다. 1차 항체로 쓰인 다중클론 항-Haptoglobin alpha는 재조합 his-haptoglobin alpha 2를 래빗에 주입하여 만들어진 항체로 아산병원에서 제공되었다.
(his-Hp : haptoglobin 히스티딘을 표지한 융합 재조합단백질)
3) Haptoglobin beta
인간 혈청이 샘플 1 ul당 0.04 ul가 되도록 희석한 후 SDS-PAGE에 로딩하였다. 1차 항체로 폴리클론 항-Haptoglobin(Sigma)을 1:5000으로 희석하여 처리하였고, 2차 항체로 항-mouse IgG-HRP(Sigma)를 1:20000으로 처리하였다.
4) Transthyretin
인간 혈청이 1 ul당 0.0016 ul이 되도록 희석한 후 SDS-PAGE에 로딩하였다. 1차 항체로 폴리클론 항-transthyretin (Dakocytomation, Inc.)을 1:1000으로 희석하여 처리하였고 2차 항체로 항-래빗 IgG-HRP(Sigma)를 1:20000으로 처리하였다.
5) ProApolipoprotein A-I :
Apolipoprotein A-I의 전구체인데 N 말단에 있는 아미노산 7개가 떨어져 나간 형태이므로 Apolipoprotein A-I과 구별할 수 있는 항체를 입수 및 제작하는 것이 불가능하여 웨스턴 블럿으로 확인할 수는 없었다.
<실시예 5> 선택된 단백질의 병기별 발현량 변화 조사
전체 위암 환자 143명(훈련집단 100명, 평가집단 43명)의 데이터를 환자의 병기별로 구분해서 병기(1-4기)에 따라 위의 9개 단백질들의 발현양 변화를 조사하였다(도 3). 그 결과, 상기 9개 단백질들이 각 병기별로 발현이 증가 또는 감소하는 특징적인 패턴을 나타냄을 확인하였다. 이로써 상기 실시예에서 발굴한 위암 마커로 위암 여부 뿐 아니라 암의 병기에 따라 증감 폭에 차이가 있음을 확인하였다.
본 발명의 위암 진단용 단백질 마커 및 이를 이용한 진단키트는 체액 내의 단백질 발현량 확인만으로 간편하게 위암의 조기진단을 가능하게 함으로써 신속한 치료가 가능하게 하여 매년 국내에서 20,000명 이상 발생하는 위암 환자의 생존율을 향상 시키고 암 치료로 인한 국가적 손실을 줄이는데 기여할 수 있을 것이다.
서열목록 전자파일 첨부

Claims (13)

  1. 삭제
  2. 삭제
  3. 삭제
  4. (1) 환자의 시료로부터 류신-풍부성 알파-2-글리코프로테인(Leucine-rich alpha-2-glycoprotein, LRG), 클러스터린(Clusterin), 알파-1-안티트립신(Alpha-1-antitrypsin), 아포리포프로테인(Apolipoprotein) A-Ⅳ, 트랜스티레틴(Transthyretin) 및 프로아포리포프로테인(ProApolipoprotein) A-Ⅰ로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는 위암 진단용 마커의 유무, 발현양 또는 발현 패턴을 측정하는 단계; 및
    (2) 측정결과와 위암 진행 상태의 연관성을 분석하는 단계를 포함하는 위암 스크리닝 방법.
  5. 제 4항에 있어서, 위암 상태는 환자가 암에 걸릴 위험, 질병의 유무 및 질병의 단계로 이루어진 군으로부터 선택되는 것을 특징으로 하는 방법.
  6. 제 4항에 있어서, 단계 1의 시료내 마커는 2 차원 전기영동 또는 바이오칩 어레이를 사용하여 측정되는 것을 특징으로 하는 방법.
  7. 제 6항에 있어서, 바이오칩 어레이는 단백질 칩 어레이 또는 핵산 어레이인 것을 특징으로 하는 방법.
  8. 제 4항에 있어서, 연관성을 분석하는 단계는 바이오인포머틱스 및 통계적 분석방법에 의해 수행되는 것을 특징으로 하는 방법.
  9. 제 4항에 있어서, 시료는 혈액, 혈청 및 혈장으로부터 선택되는 것을 특징으로 하는 방법.
  10. (i) 류신-풍부성 알파-2-글리코프로테인(Leucine-rich alpha-2-glycoprotein, LRG), 클러스터린(Clusterin), 알파-1-안티트립신(Alpha-1-antitrypsin), 아포리포프로테인(Apolipoprotein) A-Ⅳ, 트랜스티레틴(Transthyretin) 및 프로아포리포프로테인(ProApolipoprotein) A-Ⅰ로 이루어진 군으로부터 하나 이상 선택되는 위암 진단용 마커에 결합하는 1차 획득 시약(capture reagent) 및 (ii) 1차 획득시약에 결합하지 않는 2차 획득 시약을 포함하는 위암 진단키트.
  11. 제 10항에 있어서, 1차 획득시약은 항체 또는 금속 킬레이트인 것을 특징으로 하는 위암 진단키트.
  12. 제 10항에 있어서, 2차 획득시약은 발색 효소, 형광물질, 방사성 동위원소 또는 콜로이드로 표지한 접합체(conjugate)인 것을 특징으로 하는 위암 진단키트.
  13. 제 4항에 있어서, 위암 진단용 마커의 발현양은 류신-풍부성 알파-2-글리코프로테인(Leucine-rich alpha-2-glycoprotein, LRG), 클러스터린(Clusterin), 알파-1-안티트립신(Alpha-1-antitrypsin) 및 프로아포리포프로테인(ProApolipoprotein) A-Ⅰ은 정상인에 비해 위암 환자에서 발현양이 증가하고 아포리포프로테인(Apolipoprotein) A-Ⅳ와 트랜스티레틴(Transthyretin)은 위암 환자에서 발현량이 감소하는 것을 특징으로 하는 위암 스크리닝 방법.
KR1020060019517A 2006-02-28 2006-02-28 위암 진단용 단백질 마커 및 이를 이용한 진단키트 KR100679173B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020060019517A KR100679173B1 (ko) 2006-02-28 2006-02-28 위암 진단용 단백질 마커 및 이를 이용한 진단키트
EP06835536.1A EP1989552B1 (en) 2006-02-28 2006-12-28 Protein markers for diagnosing stomach cancer and the diagnostic kit using them
PCT/KR2006/005836 WO2007100183A1 (en) 2006-02-28 2006-12-28 Protein markers for diagnosing stomach cancer and the diagnostic kit using them
ES06835536.1T ES2623986T3 (es) 2006-02-28 2006-12-28 Marcadores proteicos para diagnosticar cáncer de estómago y kit de diagnóstico que usa los mismos
US12/281,086 US7892761B2 (en) 2006-02-28 2006-12-28 Protein markers for diagnosing stomach cancer and the diagnostic kit using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060019517A KR100679173B1 (ko) 2006-02-28 2006-02-28 위암 진단용 단백질 마커 및 이를 이용한 진단키트

Publications (1)

Publication Number Publication Date
KR100679173B1 true KR100679173B1 (ko) 2007-02-06

Family

ID=38105480

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060019517A KR100679173B1 (ko) 2006-02-28 2006-02-28 위암 진단용 단백질 마커 및 이를 이용한 진단키트

Country Status (5)

Country Link
US (1) US7892761B2 (ko)
EP (1) EP1989552B1 (ko)
KR (1) KR100679173B1 (ko)
ES (1) ES2623986T3 (ko)
WO (1) WO2007100183A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091230A2 (ko) * 2008-01-18 2009-07-23 Bioinfra Inc. 유방암 모니터링,진단 및 스크리닝용 단백질 마커 및 이를 이용한 유방암 모니터링,진단 및 스크리닝 방법
WO2009113832A1 (ko) 2008-03-14 2009-09-17 주식회사 바이오인프라 Des-R 프로트롬빈 활성 펩티드 단편 F2의 혈청 내 농도 측정을 통한 암의 모니터링,진단 및 스크리닝 방법
WO2015093800A1 (ko) * 2013-12-19 2015-06-25 한국기초과학지원연구원 대사체학을 이용한 위암 진단 방법
WO2019022370A1 (ko) * 2017-07-24 2019-01-31 (주) 바이오인프라생명과학 위암 진단용 조성물 및 상기 조성물을 이용한 위암 진단 방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2543341T3 (es) * 2005-09-13 2015-08-18 National Research Council Of Canada Métodos y composiciones para modular la actividad de células tumorales
ES2573954T3 (es) 2008-12-30 2016-06-13 Children's Medical Center Corporation Método de predicción de apendicitis aguda
SG168431A1 (en) 2009-07-23 2011-02-28 Univ Singapore Cancer biomarker and the use thereof
US8802826B2 (en) 2009-11-24 2014-08-12 Alethia Biotherapeutics Inc. Anti-clusterin antibodies and antigen binding fragments and their use to reduce tumor volume
US8709732B2 (en) * 2010-02-11 2014-04-29 The Hong Kong Polytechnic University Biomarkers of gastric cancer and use thereof
US20120171694A1 (en) * 2010-07-30 2012-07-05 Vermillion, Inc. Predictive markers and biomarker panels for ovarian cancer
EP2592421B1 (en) * 2011-11-14 2017-08-30 Universitätsklinikum Jena Diagnosis of sepsis and systemic inflammatory response syndrome
EP2805167B1 (en) * 2012-01-20 2020-04-22 Adelaide Research & Innovation Pty Ltd Biomarkers for gastric cancer and uses thereof
CA2862739A1 (en) 2012-02-22 2013-08-29 Alethia Biotherapeutics Inc. Co-use of a clusterin inhibitor with an egfr inhibitor to treat cancer
EP2770326B1 (en) * 2013-02-26 2019-09-11 Instituto Oftalmologico Fernandez - Vega, S.L. Method for the diagnosis of glaucoma based on the determination of serum protein levels
US20140279752A1 (en) * 2013-03-14 2014-09-18 Opera Solutions, Llc System and Method for Generating Ultimate Reason Codes for Computer Models
WO2017204295A1 (ja) * 2016-05-27 2017-11-30 和光純薬工業株式会社 消化器癌の判定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394182A1 (en) 2002-07-08 2004-03-03 Europroteome AG Agents and methods for diagnosis and therapy of cancer and cancer risk assessment
US20040121343A1 (en) 2002-12-24 2004-06-24 Biosite Incorporated Markers for differential diagnosis and methods of use thereof
KR20060013868A (ko) * 2004-08-09 2006-02-14 한국생명공학연구원 위암 유전자 마커 및 이를 이용한 위암 진단킷트

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027733A2 (en) * 2003-09-18 2005-03-31 Ppd Biomarker Discovery Sciences, Llc Biological markers for diagnosing multiple sclerosis
US20050266467A1 (en) * 2004-05-19 2005-12-01 Ppd Biomarker Discovery Sciences, Llc Biomarkers for multiple sclerosis and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394182A1 (en) 2002-07-08 2004-03-03 Europroteome AG Agents and methods for diagnosis and therapy of cancer and cancer risk assessment
US20040121343A1 (en) 2002-12-24 2004-06-24 Biosite Incorporated Markers for differential diagnosis and methods of use thereof
KR20060013868A (ko) * 2004-08-09 2006-02-14 한국생명공학연구원 위암 유전자 마커 및 이를 이용한 위암 진단킷트

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1020060019517 - 697545
1020060019517 - 697547
논문
염기서열

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091230A2 (ko) * 2008-01-18 2009-07-23 Bioinfra Inc. 유방암 모니터링,진단 및 스크리닝용 단백질 마커 및 이를 이용한 유방암 모니터링,진단 및 스크리닝 방법
WO2009091230A3 (ko) * 2008-01-18 2009-10-08 주식회사 바이오인프라 유방암 모니터링,진단 및 스크리닝용 단백질 마커 및 이를 이용한 유방암 모니터링,진단 및 스크리닝 방법
WO2009113832A1 (ko) 2008-03-14 2009-09-17 주식회사 바이오인프라 Des-R 프로트롬빈 활성 펩티드 단편 F2의 혈청 내 농도 측정을 통한 암의 모니터링,진단 및 스크리닝 방법
WO2015093800A1 (ko) * 2013-12-19 2015-06-25 한국기초과학지원연구원 대사체학을 이용한 위암 진단 방법
WO2019022370A1 (ko) * 2017-07-24 2019-01-31 (주) 바이오인프라생명과학 위암 진단용 조성물 및 상기 조성물을 이용한 위암 진단 방법
KR20190011358A (ko) * 2017-07-24 2019-02-07 (주) 바이오인프라생명과학 위암 진단용 조성물 및 상기 조성물을 이용한 위암 진단 방법
KR102018209B1 (ko) * 2017-07-24 2019-09-05 (주) 바이오인프라생명과학 위암 진단용 조성물 및 상기 조성물을 이용한 위암 진단 방법

Also Published As

Publication number Publication date
US20090018026A1 (en) 2009-01-15
WO2007100183A1 (en) 2007-09-07
US7892761B2 (en) 2011-02-22
ES2623986T3 (es) 2017-07-12
EP1989552A4 (en) 2009-05-06
EP1989552A1 (en) 2008-11-12
EP1989552B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
KR100679173B1 (ko) 위암 진단용 단백질 마커 및 이를 이용한 진단키트
Brennan et al. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology
US8389222B2 (en) Apolipoprotein fingerprinting technique and methods related thereto
JP6374070B2 (ja) 被験体の肺がん診断のための複合バイオマーカー群、これを利用する肺がん診断用キット、複合バイオマーカー群の情報を利用する方法およびこれを実行するコンピューティングシステム
Cao et al. Specific glycoforms of MUC5AC and endorepellin accurately distinguish mucinous from nonmucinous pancreatic cysts
US20170059581A1 (en) Methods for diagnosis and prognosis of inflammatory bowel disease using cytokine profiles
US10444235B2 (en) Systems and methods for treating, diagnosing and predicting the response to therapy of breast cancer
Ren et al. Machine learning reveals salivary glycopatterns as potential biomarkers for the diagnosis and prognosis of papillary thyroid cancer
Heegaard et al. Circulating antinuclear antibodies in patients with pelvic masses are associated with malignancy and decreased survival
CN105283763A (zh) 用于前列腺癌的生物标志物检测中的方法和阵列
CN107121551B (zh) 鼻咽癌的生物标志物组合、检测试剂盒及应用
CN115128285A (zh) 一种蛋白质组合对甲状腺滤泡性肿瘤鉴别评估的试剂盒、系统
EP2812694A2 (en) Assays and methods for the diagnosis of ovarian cancer
US20050079099A1 (en) Generation of biochemical images and methods of use
CN105102986A (zh) 用于评价前列腺癌进度的分析方法、前列腺癌进度的评价方法、前列腺癌的检测方法以及检查试剂盒
CN116413430B (zh) 一种用于肝癌早期预测的自身抗体/抗原组合及检测试剂盒
CN113718032B (zh) 生物标志物在早期检测宫颈癌中的应用
Al Balushi et al. The Potential of Salivary Biomarkers in Early Detection of Pancreatic Ductal Adenocarcinoma: A Systematic Review
CN116699136A (zh) 一种用于胰腺导管腺癌早期筛查和诊断的血清蛋白标志物、应用和相应分析方法
CN108369233A (zh) 基于标志物人附睾蛋白4(he4)检测肺腺癌的复发的方法及相关用途
Yousif et al. Novel Biomarkers in Histopathology: Implications for Diagnosis and Prognosis
CN118130795A (zh) Trim23和hax1在制备诊断或辅助诊断结直肠癌产品中的应用
Dudas et al. Detecting tumor-specific autoantibodies for cancer diagnosis: a technology overview
CN117233389A (zh) 用于快速鉴定急性髓系白血病中cebpa双突变的标志物
CN113721030A (zh) 用于桥本甲状腺炎不同证候特征性自身抗体检测的生物标志物及其应用

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130130

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160129

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180123

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190108

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 14