Nothing Special   »   [go: up one dir, main page]

KR100267193B1 - Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof - Google Patents

Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof Download PDF

Info

Publication number
KR100267193B1
KR100267193B1 KR1019980019528A KR19980019528A KR100267193B1 KR 100267193 B1 KR100267193 B1 KR 100267193B1 KR 1019980019528 A KR1019980019528 A KR 1019980019528A KR 19980019528 A KR19980019528 A KR 19980019528A KR 100267193 B1 KR100267193 B1 KR 100267193B1
Authority
KR
South Korea
Prior art keywords
acid
aliphatic
polyester resin
molecular weight
aliphatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019980019528A
Other languages
Korean (ko)
Other versions
KR19990086518A (en
Inventor
안병두
박길종
Original Assignee
박종인
재단법인 한국화학시험연구원
정효식
유한회사 신한물산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종인, 재단법인 한국화학시험연구원, 정효식, 유한회사 신한물산 filed Critical 박종인
Priority to KR1019980019528A priority Critical patent/KR100267193B1/en
Publication of KR19990086518A publication Critical patent/KR19990086518A/en
Application granted granted Critical
Publication of KR100267193B1 publication Critical patent/KR100267193B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

본 발명은 생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 토양중에서 미생물에 의해 분해될 뿐만 아니라, 종래의 호모폴리머에 비하여 융점과 기계적 강도가 개선되어 각종 성형품 및 가공품으로 가공될 수 있는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법에 관한 것이다.The present invention relates to a high molecular weight thermoplastic aliphatic polyester resin having a biodegradability and a method for preparing the same, and more particularly, it is not only decomposed by microorganisms in soil, but also has improved melting point and mechanical strength as compared to conventional homopolymers. The present invention relates to a high molecular weight thermoplastic aliphatic polyester resin that can be processed into various molded articles and processed articles, and a method of manufacturing the same.

본 발명의 폴리에스테르 수지는 사출, 압출 등의 성형성이 뛰어나 쓰레기 봉투 등의 산업용 필름이나, 시트, 플라스틱 용기 등에 유용하고, 특히 연신율이 우수하여 실, 부직포, 복합섬유, 망사체 등의 가공품에 적합하게 사용할 수 있다.The polyester resin of the present invention has excellent moldability, such as injection and extrusion, and is useful for industrial films such as garbage bags, sheets, plastic containers, and the like. In particular, the polyester resins have excellent elongation, and thus can be used for processed products such as yarns, nonwoven fabrics, composite fibers, and mesh bodies. It can use suitably.

Description

생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법Biodegradable high molecular weight thermoplastic aliphatic polyester resin and its preparation method

본 발명은 생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 토양중에서 미생물에 의해 분해될 뿐만 아니라, 종래의 호모폴리머에 비하여 융점과 기계적 강도가 개선되어 각종 성형품 및 가공품으로 가공될 수 있는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법에 관한 것이다.The present invention relates to a high molecular weight thermoplastic aliphatic polyester resin having a biodegradability and a method for preparing the same, and more particularly, it is not only decomposed by microorganisms in soil, but also has improved melting point and mechanical strength as compared to conventional homopolymers. The present invention relates to a high molecular weight thermoplastic aliphatic polyester resin that can be processed into various molded articles and processed articles, and a method of manufacturing the same.

폴리올레핀 및 방향족 폴리에스테르 등의 합성고분자는 일상생활에서 필수적인 플라스틱 제품의 원자재로서 대량으로 사용되고 있으나, 자연환경에서 분해되지 않기 때문에 소비량의 증가에 따른 환경문제 때문에 환경보호의 전면에서 커다란 문제를 야기하고 있다.Synthetic polymers such as polyolefins and aromatic polyesters are used in large quantities as raw materials for plastic products, which are essential for daily life, but because they are not decomposed in the natural environment, they cause great problems in front of environmental protection due to environmental problems caused by increased consumption. .

이에, 생분해성의 지방족 폴리에스테르 수지가 주목받고 있으나, 가격이나 강도면에서 해결해야할 문제가 많다.Accordingly, although biodegradable aliphatic polyester resins have attracted attention, there are many problems to be solved in terms of price and strength.

예를 들어, 폴리히드록시부틸레이트는 용융온도가 높고 성능이 좋은 폴리에스테르이나, 용융온도와 열분해온도와의 차이가 적어 성형시에 열분해되어 성능저하 및 냄새발생 등의 문제를 일으킬 가능성이 높고, 미생물을 이용해 생산되는 고분자 물질이기 때문에 생산성이 낮고 가격이 비싸다.For example, polyhydroxybutylate has a high melting temperature and high performance polyester, but a small difference between the melting temperature and the thermal decomposition temperature causes thermal decomposition during molding to cause problems such as deterioration and odor generation. Because it is a high molecular material produced using microorganisms, its productivity is low and its price is high.

또한, 폴리카프로락톤은 현재 공업적으로 생산되고 있는 대표적인 생분해성 폴리에스테르이나 용융온도가 약 60℃에 지나지 않아 용도에 제약을 받고 있다.In addition, polycaprolactone is a representative biodegradable polyester currently produced industrially, but the melting temperature is only about 60 ° C., and thus is limited in use.

또, 히드록시카르복실산의 중합체는 생분해성이 양호한 중합체로서 주목되고 있고, 특히 락트산과의 중합체는 생체흡수성 재료로 이용될 정도로 생체친화적인 중합체이나, 이들은 제조공정이 복잡하고 가격이 비싸며 가수분해에 의한 분해속도가 빨라 일반 플라스틱 재료로는 사용에 제약을 받고 있다.In addition, polymers of hydroxycarboxylic acid are attracting attention as polymers having good biodegradability. In particular, polymers with lactic acid are biocompatible polymers that can be used as bioabsorbable materials, but they are complex, expensive, and hydrolyzed. Due to its fast decomposition rate, it is restricted to use as a general plastic material.

이러한 지방족 폴리에스테르 수지의 제조와 성능에 관한 문제를 해결하기 위해, 최근에는 지방족 디카르복실산과 디올과의 축합반응에 의해 얻어지는 폴리에스테르 수지가 주목을 받고 있다. 이들은 하기 화학식 1의 구조를 가지며, 생분해성이 매우 우수하다.In order to solve the problem regarding manufacture and performance of such aliphatic polyester resin, the polyester resin obtained by the condensation reaction of aliphatic dicarboxylic acid and diol is attracting attention in recent years. They have a structure of the following general formula (1) and are very excellent in biodegradability.

특히, R1, R2가 저급 알킬기인 하기 화학식 2의 구조의 열가소성 폴리에스테르 수지가 대부분을 차지하고 있다.In particular, the thermoplastic polyester resin of the structure of following General formula (2) whose R <1> , R <2> is a lower alkyl group occupies most.

이들은, x, y값에 따라 (4, 4)구조, (4, 2)구조의 폴리에스테르 수지라 명명되고 있다.These are named polyester resins of (4, 4) structure and (4, 2) structure according to x and y values.

이들중에서, 숙신산을 원료로 하는 (4, 2) 구조의 중합체는 용융온도가 70℃ 이상이어서 활용 범위가 넓다. 그러나, 호모폴리머는 분자량이 증가함에 따라 생분해성이 현격하게 감소되어 실용적인 충분한 분자량을 얻는 것이 한계가 있다. 실제 호모폴리머의 경우 분자량 10만 이상의 것을 얻기가 어렵다. 또한, 수평균분자량이 수천정도에 미치지 못하기 때문에 필름이나 섬유를 제조할 수 있는 정도의 기계적 강도를 얻을 수가 없다. 이에, 분자량 증가에 따른 생분해성의 저하를 막기 위하여 2종 이상의 지방족 디카르복실산을 혼용하여 하기 화학식 3의 폴리에스테르 수지도 개발되고 있으나, 디카르복실산의 혼용에 따른 탈색 및 반응성 저하의 문제가 있다. 특히, 알킬기를 측쇄로 갖는 디카르복실산의 부가는 대규모 생상시 탈색현상이 현저하게 나타난다. 또한, 기계적 강도 등의 물성저하를 해결하지 못하고 있는 상태이다.Among these, the polymer of the (4, 2) structure which uses succinic acid as a raw material has a melting range of 70 degreeC or more, and its utilization range is wide. However, the homopolymer has a limitation in that its biodegradability is drastically reduced as the molecular weight is increased to obtain a practically sufficient molecular weight. In fact, it is difficult to obtain a homopolymer having a molecular weight of 100,000 or more. In addition, since the number average molecular weight is less than thousands, it is impossible to obtain mechanical strength that can produce a film or fiber. Thus, in order to prevent the degradation of biodegradability due to the increase in molecular weight, a polyester resin of the following Chemical Formula 3 is also developed by mixing two or more aliphatic dicarboxylic acids, but there is a problem of decolorization and reactivity due to the mixing of dicarboxylic acids. have. In particular, the addition of the dicarboxylic acid having an alkyl group as the side chain is markedly decolorized at large scale. Moreover, it is a state which does not solve the physical property degradation, such as mechanical strength.

생분해성 폴리에스테르 수지에 있어서 이러한 물성저하를 개선하기 위하여 일본특허 공개 4-189822호 및 4-189823호 공보에서는, 지방족 디카르복실산과 글리콜과의 반응에 의해 수평균분자량 1.5만 정도의 지방족 폴리에스테르를 제조하고, 이것을 디이소시아네이트로 가교화시켜 분자량을 늘리는 제조법을 제안하고 있다. 그러나, 이 방법에 의하면 마이크로 겔이 생성되어 중합체 품질을 저하시키는 문제가 있다.In order to improve such deterioration of physical properties in biodegradable polyester resins, Japanese Patent Laid-Open Nos. 4-189822 and 4-189823 disclose aliphatic polyesters having a number average molecular weight of about 150,000 by reaction of aliphatic dicarboxylic acids and glycols. And a method for increasing the molecular weight by crosslinking with diisocyanate is proposed. However, this method has a problem that microgels are generated to degrade polymer quality.

또한, 일본특허 공개 6-192374호 공보에는 지방족 디카르복실산 및 글리콜과 다가알콜 또는 다가 카르복실산으로부터 저분자량 지방족 폴리에스테르를 합성하여, 이것에 말단이 이소시아네이트기로 되어 있는 지방족 폴리에스테르를 반응시켜, 고분자량 중합체를 얻는 방법이 제안되어 있으나, 반응공정이 2단계 이상 증가되어 복잡하며, 또한 제조한 폴리에스테르 수지는 분자중에 우레탄 결합과 Star형 결합이 다량 들어 있어, 결정화도(crystallinity)와 융점이 떨어지는 문제와 생분해성이 저하되는 문제가 있다.In addition, Japanese Patent Laid-Open No. 6-192374 discloses low molecular weight aliphatic polyesters from aliphatic dicarboxylic acids and glycols with polyhydric alcohols or polyhydric carboxylic acids, and reacts aliphatic polyesters having terminal groups with isocyanate groups. However, a method of obtaining a high molecular weight polymer has been proposed, but the reaction process is increased by two or more steps, and the prepared polyester resin has a large amount of urethane bonds and star type bonds in the molecule, and thus crystallinity and melting point There are problems of falling and degrading biodegradability.

그외에, 일본특허 공개 5-287041호 및 5-287042호 공보에서는, 지방족 디카르복실산과 글리콜 및 이소시아네이트의 3성분을 공중합시킴으로써 수평균분자량과 기계적 강도가 증가된 공중합체를 얻을 수 있으며, 분자량 분포가 넓어서 필름 등의 성형품을 제조하는데 적합하다고 보고하고 있다. 같은 목적으로 일본특허 공개 5-287068호 공보에서는 전술한 3성분 외에 3,3',4,4'-벤조페논테트라카르복실산 무수물을 부가한 4성분계 공중합체가 제안되어 있으나 생분해성 및 환경유해성에 대해서는 보고된바 없다.In addition, Japanese Patent Laid-Open Nos. 5-287041 and 5-287042 disclose copolymers having increased number average molecular weight and mechanical strength by copolymerizing three components of aliphatic dicarboxylic acid, glycol and isocyanate, and having a molecular weight distribution. Is widely reported to be suitable for producing molded articles such as films. For the same purpose, Japanese Patent Application Laid-Open No. 5-287068 proposes a four-component copolymer in which 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride is added in addition to the above-mentioned three components, but is biodegradable and environmentally harmful. Has not been reported.

이에, 본 발명자들은 생분해성을 악화시키기 않으면서, 실용적인 면에서 충분한 융점을 가지며, 열안정성, 기계적 강도 및 가공성이 우수한 고분자량의 지방족 폴리에스테르 수지를 제공하고자 예의 연구하여 왔으며, 그 결과로서 종래 지방족 폴리에스테르 수지의 제법에서 디카르복실산과 디올로 이루어진 2성분계에 제 3성분으로서 다른 종류의 디올을 부가하여 공중합시킴으로써, 즉, 2종 이상의 지방족 디올을 혼용함으로써, 합성시간이 단축되고, 탈색을 방지하며, 작업성이 개선되고, 종래의 호모폴리머에 비하여 융점과 기계적 강도가 크게 개선됨을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have intensively studied to provide a high molecular weight aliphatic polyester resin having sufficient melting point in practical terms and excellent in thermal stability, mechanical strength and processability without degrading biodegradability, and as a result, In the manufacturing method of the polyester resin, by adding and copolymerizing another kind of diol as a third component to the two-component system consisting of dicarboxylic acid and diol, that is, mixing two or more aliphatic diols, the synthesis time is shortened and discoloration is prevented. In addition, the workability is improved and the melting point and mechanical strength are greatly improved compared to the conventional homopolymer, and the present invention has been completed.

따라서, 본 발명의 목적은 종래의 호모폴리머에 비하여 융점과 기계적 강도가 개선되어 각종 성형품 및 가공품으로 가공될 수 있는, 생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지 및 이의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a biodegradable high molecular weight thermoplastic aliphatic polyester resin and a method for producing the same, which can be processed into various molded articles and processed articles with improved melting point and mechanical strength compared to conventional homopolymers. .

도 1은 실시예 1에서 얻은 폴리에스테르 수지의13C-NMR 스펙트럼이다.1 is a 13 C-NMR spectrum of the polyester resin obtained in Example 1. FIG.

도 2는 실시예 2에서 얻은 폴리에스테르 수지의1H-NMR 스펙트럼이다.2 is a 1 H-NMR spectrum of the polyester resin obtained in Example 2. FIG.

도 3은 실시예 3에서 얻은 폴리에스테르 수지의1H-NMR 스펙트럼이다.3 is a 1 H-NMR spectrum of a polyester resin obtained in Example 3. FIG.

도 4는 실시예 4에서 얻은 폴리에스테르 수지의1H-NMR 스펙트럼이다.4 is a 1 H-NMR spectrum of the polyester resin obtained in Example 4. FIG.

도 5는 실시예 1에서 얻은 폴리에스테르 수지의 DSC곡선이다.5 is a DSC curve of the polyester resin obtained in Example 1. FIG.

도 6은 실시예 2에서 얻은 폴리에스테르 수지의 DSC곡선이다.6 is a DSC curve of the polyester resin obtained in Example 2. FIG.

도 7은 실시예 3에서 얻은 폴리에스테르 수지의 DSC곡선이다.7 is a DSC curve of the polyester resin obtained in Example 3.

도 8은 실시예 4에서 얻은 폴리에스테르 수지의 DSC곡선이다.8 is a DSC curve of the polyester resin obtained in Example 4. FIG.

도 9는 실시예 1~4에서 얻은 폴리에스테르 수지의 생분해성을 평가한 결과이다.9 is a result of evaluating the biodegradability of the polyester resin obtained in Examples 1-4.

상기한 목적을 달성하기 위하여, 본 발명에 따른 생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지의 제조방법은,In order to achieve the above object, the method for producing a biodegradable high molecular weight thermoplastic aliphatic polyester resin according to the present invention,

(1) 지방족 디카르복실산과, 지방족 디올, 및 제 3성분으로서 전술한 지방족 디올과는 다른 1종 이상의 지방족 디올을 160~200℃에서 질소기류중에서 탈수반응에 의한 에스테르화반응시키는 단계; 및(1) esterifying an aliphatic dicarboxylic acid with an aliphatic diol and at least one aliphatic diol other than the aliphatic diols described above as a third component by dehydration in a nitrogen stream at 160 to 200 ° C; And

(2) 탈수반응이 완료된 후에, 티탄 촉매를 (1)에서 얻은 올리고머 100중량부에 대해 0.05~0.5중량부의 양으로 투입하고, 215~240℃에서 감압하여 탈글리콜반응시키는 단계(2) After the dehydration reaction is completed, the titanium catalyst is added in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the oligomer obtained in (1), followed by deglycol reaction at 215 to 240 ° C under reduced pressure.

를 포함하며, 상기한 제 3성분으로서의 1종 이상의 지방족 디올은, 전체 지방족 디올 100몰%에 대하여 5~30몰% 함유되어 있음을 특징으로 한다.Wherein at least one aliphatic diol as the third component is contained in an amount of 5 to 30 mol% based on 100 mol% of the total aliphatic diols.

이상의 제조방법에 의해 얻어지는 열가소성 지방족 폴리에스테르 수지는 하기 일반식 (Ⅰ)의 구조를 갖는, 수평균분자량(Mn)이 20,000~200,000이고, 융점이 70~120℃인 생분해성 수지이다.The thermoplastic aliphatic polyester resin obtained by the above manufacturing method is a biodegradable resin whose number average molecular weight (Mn) which has a structure of following General formula (I) is 20,000-200,000, and melting | fusing point is 70-120 degreeC.

일반식 (Ⅰ)General formula (Ⅰ)

(식중에서,(In the meal,

R1및 R4는 지방족 디올에서 유래된 알킬기 또는 시클로알킬기이고,R 1 and R 4 are alkyl groups or cycloalkyl groups derived from aliphatic diols,

R2는 지방족 디카르복실산에서 유래된 알킬기 또는 알케닐기이며,R 2 is an alkyl group or alkenyl group derived from aliphatic dicarboxylic acid,

p는 열가소성 지방족 폴리에스테르 수지의 수평균분자량이 20,000~200,000이 되는데 필요한 중합도를 의미하며,p means the degree of polymerization required for the number average molecular weight of the thermoplastic aliphatic polyester resin is 20,000 to 200,000,

a', c는 에스테르결합단위의 중합도를 의미한다)a 'and c refer to the degree of polymerization of the ester bonding units)

본 발명의 폴리에스테르 수지는, 중량평균분자량(Mw)과 수평균분자량(Mn)과의 비(Mw/Mn)가 1.5 이상, 통상 1.8~3.5로 분자량 분포가 좁은 편이며, 열분해온도는 300℃ 이상으로 높다.In the polyester resin of the present invention, the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 1.5 or more, usually 1.8 to 3.5, and the molecular weight distribution is narrow, and the thermal decomposition temperature is 300 ° C. It is higher than

보다 구체적으로 설명하면, 본 발명에서 사용되는 지방족 디올은 에틸렌글리콜, 프로필렌글리콜, 트리메틸렌글리콜, 1,4-부탄디올, 네오펜틸글리콜, 1,6-헥산디올, 1,10-데칸디올, 디에틸렌글리콜 및 1,4-시클로헥산디메탄올로 이루어진 군에서 선택된 1종이다. 이들 중에서 1,4-부탄디올이 특히 바람직하며, 1,4-부탄디올에 제 3성분으로서 부가되는 지방족 디올은 1,6-헥산디올이나 에틸렌글리콜이 바람직하다. 또한, 제 3성분으로서 부가되는 지방족 디올은 전체 지방족 디올 100몰%에 대하여 5~30몰%의 범위로 공중합시키는 것이 바람직하다. 30몰%를 초과하는 경우 융점이 현저하게 저하되어 바람직하지 않다.More specifically, the aliphatic diols used in the present invention are ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1,10-decanediol, diethylene 1 type selected from the group consisting of glycol and 1,4-cyclohexanedimethanol. Among these, 1,4-butanediol is especially preferable, and the aliphatic diol added as the third component to 1,4-butanediol is preferably 1,6-hexanediol or ethylene glycol. Moreover, it is preferable to copolymerize the aliphatic diol added as a 3rd component in the range of 5-30 mol% with respect to 100 mol% of all aliphatic diols. If it exceeds 30 mol%, the melting point is markedly lowered, which is not preferable.

또, 본 발명에서 사용되는 지방족 디카르복실산은 말론산(malonic acid), 숙신산(succinic acid), 무수숙신산, 말레산(maleic acid), 이소프탈산(isophthalic acid), 글루타르산(glutaric acid), 아디프산(adipic acid), 피멜산(pimelic acid), 수베린산(suberic acid), 아젤라인산(azelaic acid), 세바신산(sebacic acid) 및 도데칸디오익산(dodecanedioic acid)으로 이루어진 군에서 선택된 것이다. 바람직하게는 2종 이상을 혼용하여 얻어지는 폴리에스테르 수지의 생분해성을 증가시킬 수 있다. 2종 이상을 혼용하는 것은 부가되는 디카르복실산은 전체 디카르복실산 100몰%에 대하여 20~30몰%의 범위로 공중합시키는 것이 바람직하다. 이 경우에도, 제 3성분으로서 부가되는 지방족 디올은 1,6-헥산디올이나 에틸렌글리콜이 바람직하며, 전체 지방족 디올 100몰%에 대하여 5~15몰%의 범위로 공중합시키는 것이 바람직하다.In addition, the aliphatic dicarboxylic acid used in the present invention is malonic acid (sonic acid), succinic acid (succinic acid), succinic anhydride (maleic acid), isophthalic acid (isophthalic acid), glutaric acid (glutaric acid), Selected from the group consisting of adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid will be. Preferably, the biodegradability of the polyester resin obtained by mixing 2 or more types can be increased. It is preferable to mix | blend 2 or more types and to copolymerize the dicarboxylic acid added in 20-30 mol% with respect to 100 mol% of all the dicarboxylic acids. Also in this case, the aliphatic diol added as the third component is preferably 1,6-hexanediol or ethylene glycol, and is preferably copolymerized in a range of 5 to 15 mol% with respect to 100 mol% of all aliphatic diols.

2종의 디카르복실산을 혼용하는 경우 얻어지는 열가소성 지방족 폴리에스테르 수지는 하기 일반식 (Ⅱ)의 구조를 갖는다 :The thermoplastic aliphatic polyester resin obtained when mixing two kinds of dicarboxylic acids has the structure of the following general formula (II):

일반식 (Ⅱ)General formula (Ⅱ)

식중에서,In the food,

R1, R2, R4는 일반식 (Ⅰ)에서 정의한 바와 동일한 의미를 가지며,R 1 , R 2 , and R 4 have the same meanings as defined in general formula (I),

R3는 지방족 디카르복실산에서 유래된 알킬기 또는 알케닐기이고,R 3 is an alkyl group or alkenyl group derived from aliphatic dicarboxylic acid,

q는 열가소성 지방족 폴리에스테르 수지의 수평균분자량이 20,000~200,000이 되는데 필요한 중합도를 의미하며,q means the degree of polymerization required for the number average molecular weight of the thermoplastic aliphatic polyester resin is 20,000 to 200,000,

a", b', c' 및 d는 각 에스테르결합단위의 중합도를 의미한다)a ", b ', c' and d mean the degree of polymerization of each ester bonding unit)

상기 식중에서, p, q는 열가소성 지방족 폴리에스테르 수지의 수평균분자량(Mn)이 20,000 이상이 되는데 필요한 중합도를 의미하며, a', c, 또는 a", c'는 1분자중에 적어도 2개 이상의 다른 디올이 존재하는 폴리에스테르 고분자 화합물을 의미한다.In the above formula, p, q means a degree of polymerization necessary for the number average molecular weight (Mn) of the thermoplastic aliphatic polyester resin to be 20,000 or more, a ', c, or a ", c' is at least two or more in one molecule It means a polyester polymer compound in which other diols are present.

본 발명은 (2)단계 탈글리콜반응에 촉매로서 티탄계 촉매를 사용하며, 구체적인 예로서 테트라이소프로필티타네이트, 테트라 n-부틸티타네이트, 테트라에틸렌티타네이트, 테트라스테아릴티타네이트, 티타늄아세토아세테이트 등을 열거할 수 있다. 티탄계 촉매 외에, 지르코늄아세토아세테이트, 아연아세토아세테이트 등을 사용해도 좋다.The present invention uses a titanium-based catalyst as a catalyst in step (2) deglycol reaction, and specific examples are tetraisopropyl titanate, tetra n-butyl titanate, tetraethylene titanate, tetrastearyl titanate, titanium acetoacetate And the like. In addition to the titanium catalyst, zirconium acetoacetate, zinc acetoacetate, or the like may be used.

본 발명에 의해 제공되는 고분자량의 열가소성 폴리에스테르 수지는 생분해성이 우수하여 토양중의 미생물에 의해 쉽게 분해되며, 뿐만 아니라 착색이 적으며, 반응시간이 개선되고, 융점이 70℃ 이상으로 상용 분야가 넓고, 기계적 강도가 우수하여 성형체로서 이용할 수 있고, 특히 디카르복실산과 디올과의 반응에 의한 종래의 호모 폴리머에 비하여, 사출, 압출 등의 성형성이 뛰어나 쓰레기 봉투 등의 산업용 필름이나, 시트, 플라스틱 용기 등에 유용하고, 특히 연신율이 우수하여 실, 부직포, 복합섬유, 망사체 등의 가공품에 적합하게 사용할 수 있다. 또, 무기물 충진재를 첨가하여 물성을 더욱 개량할 수 있고, 안료 등을 혼합하여 색을 내어 사용할 수도 있다.The high molecular weight thermoplastic polyester resin provided by the present invention has excellent biodegradability and is easily decomposed by microorganisms in soil, as well as less coloring, improved reaction time, and a melting point of 70 ° C. or higher. It is widely used and can be used as a molded product because of its excellent mechanical strength. In particular, compared to the conventional homopolymer by the reaction of dicarboxylic acid and diol, the moldability such as injection and extrusion is excellent, and thus an industrial film or sheet such as a garbage bag It is useful for plastic containers and the like, and in particular, it has excellent elongation and can be suitably used for processed products such as yarns, nonwoven fabrics, composite fibers, and mesh bodies. In addition, it is possible to further improve the physical properties by adding an inorganic filler, it is also possible to mix and use a pigment and the like.

이하, 실시예 및 시험예를 들어 본 발명의 구성 및 작용효과를 보다 구체적으로 설명한다. 그러나 실시예들은 본 발명의 구성을 설명하기 위한 예시에 불과하며, 본 발명의 범위가 이들 실시예에 제한되는 것은 아니다.Hereinafter, the configuration and effect of the present invention will be described in more detail with reference to Examples and Test Examples. However, the embodiments are only examples for explaining the configuration of the present invention, and the scope of the present invention is not limited to these embodiments.

<실시예 1><Example 1>

교반기, 가스도입관, 수분 등의 저비점 화합물 유출관 및 온도계를 부착한 분류콘덴서가 설치된 내용량 250㎖의 경질 유리제 4구 분리플라스크에, 숙신산 35.4g, 에틸렌글리콜 3.9g 및 1,4-부탄디올 22.7g을 투입한 후, 온도를 180~200℃로 조절하고, 질소기류 중에서 탈수반응에 의한 에스테르화 반응을 시켰다.In a 250 mL hard glass four-necked separating flask equipped with a low boiling point compound outlet tube such as a stirrer, a gas inlet tube, a moisture, and a thermometer equipped with a thermometer, 35.4 g of succinic acid, 3.9 g of ethylene glycol, and 22.7 g of 1,4-butanediol After the addition, the temperature was adjusted to 180 to 200 ° C., and esterification reaction by dehydration reaction was carried out in a nitrogen stream.

물 유출이 종료된 후에, 생성된 올리고머에 탈글리콜 촉매로서 테트라이소프로필티타네이트 1.76×10-4몰을 질소분위기 하에서 투입하고, 반응기의 온도를 215~240℃로 상승, 감압하여 미반응의 1,4-부탄디올을 유출시켰다.After the outflow of water was completed, 1.76 × 10 −4 mol of tetraisopropyl titanate was added to the resulting oligomer as a deglycol catalyst under a nitrogen atmosphere, and the temperature of the reactor was raised to 215 to 240 ° C. under reduced pressure to give unreacted 1 , 4-butanediol was distilled out.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 78,000, 중량평균분자량(Mw)은 164,000이었고, 융점은 100℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 78,000, the weight average molecular weight (Mw) was 164,000, and melting | fusing point was 100 degreeC.

<실시예 2><Example 2>

숙신산 35.4g, 1,6-헥산디올 7.5g 및 1,4-부탄디올 22.7g을 투입한 후, 실시예 1에서와 동일한 방법으로 실시하여 폴리에스테르 수지를 제조하였다.35.4 g of succinic acid, 7.5 g of 1,6-hexanediol and 22.7 g of 1,4-butanediol were added thereto, followed by the same method as in Example 1, to prepare a polyester resin.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 74,000, 중량평균분자량(Mw)은 147,000이었고, 융점은 92℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 74,000, the weight average molecular weight (Mw) was 147,000, and melting | fusing point was 92 degreeC.

<실시예 3><Example 3>

숙신산 31.9g, 아디프산 4.4g, 에틸렌글리콜 2.0g 및 1,4-부탄디올 25.6g을 투입한 후, 실시예 1에서와 동일한 방법으로 실시하여 폴리에스테르 수지를 제조하였다.31.9 g of succinic acid, 4.4 g of adipic acid, 2.0 g of ethylene glycol and 25.6 g of 1,4-butanediol were added thereto, followed by the same method as in Example 1, to prepare a polyester resin.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 77,000, 중량평균분자량(Mw)은 160,000이었고, 융점은 96℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 77,000, the weight average molecular weight (Mw) was 160,000, and melting | fusing point was 96 degreeC.

<실시예 4><Example 4>

숙신산 31.9g, 아디프산 4.4g, 1,6-헥산디올 3.7g 및 1,4-부탄디올 25.6g을 투입한 후, 실시예 1에서와 동일한 방법으로 실시하여 폴리에스테르 수지를 제조하였다.31.9 g of succinic acid, 4.4 g of adipic acid, 3.7 g of 1,6-hexanediol, and 25.6 g of 1,4-butanediol were added thereto, followed by the same method as in Example 1, to prepare a polyester resin.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 77,000, 중량평균분자량(Mw)은 160,000이었고, 융점은 92℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 77,000, the weight average molecular weight (Mw) was 160,000, and melting | fusing point was 92 degreeC.

<비교예 1>Comparative Example 1

교반기, 가스도입관, 수분 등의 저비점 화합물 유출관 및 온도계를 부착한 분류콘덴서가 설치된 내용량 250㎖의 경질 유리제 4구 분리플라스크에, 숙신산 35.4g과 1,4-부탄디올 28.4g을 투입한 후, 온도를 180~200℃로 조절하고, 질소기류 중에서 탈수반응에 의한 에스테르화 반응을 시켰다.35.4 g of succinic acid and 28.4 g of 1,4-butanediol were added to a 250 mL hard glass four-necked separating flask equipped with a low boiling point compound outlet tube such as a stirrer, a gas introduction tube, a moisture, and a sorting capacitor equipped with a thermometer. The temperature was adjusted to 180-200 degreeC, and the esterification reaction by dehydration reaction was carried out in nitrogen stream.

물 유출이 종료된 후에, 생성된 올리고머에 탈글리콜 촉매로서 테트라이소프로필티타네이트 1.83×10-4몰을 질소분위기 하에서 투입하고, 반응기의 온도를 215~240℃로 상승, 감압하여 미반응의 1,4-부탄디올을 유출시켰다.After the outflow of water was completed, 1.83 × 10 −4 mol of tetraisopropyl titanate was added to the resulting oligomer as a deglycol catalyst under a nitrogen atmosphere, and the temperature of the reactor was raised to 215 to 240 ° C. under reduced pressure to give unreacted 1 , 4-butanediol was distilled out.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 74,000, 중량평균분자량(Mw)은 168,900이었고, 융점은 115℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 74,000, the weight average molecular weight (Mw) was 168,900, and melting | fusing point was 115 degreeC.

<비교예 2>Comparative Example 2

숙신산 28.3g, 아디프산 8.77g 및 1,4-부탄디올 28.4g을 투입한 후, 비교예 1에서와 동일한 방법으로 실시하여 폴리에스테르 수지를 제조하였다.After 28.3 g of succinic acid, 8.77 g of adipic acid and 28.4 g of 1,4-butanediol were added thereto, the same procedure as in Comparative Example 1 was conducted to prepare a polyester resin.

얻은 폴리에스테르 수지의 수평균분자량(Mn)은 70,000, 중량평균분자량(Mw)은 141,000이었고, 융점은 91℃이었다.The number average molecular weight (Mn) of the obtained polyester resin was 70,000, the weight average molecular weight (Mw) was 141,000, and melting | fusing point was 91 degreeC.

<시험예 1>생분해성 평가 Test Example 1 Biodegradability Evaluation

실시예 1~4에서 얻은 폴리에스테르 수지를 열프레스기로 각각의 융점보다 20℃ 높은 온도에서 용해시킨 후 200㎏/㎠의 압력으로 10분간 눌러 30㎛ 두께의 필름을 제작한 후, 2㎝×2㎝의 크기로 절단하여 부엽토 중에 매립하여 온도 30℃, 수분 90%의 조건에서 6주간 생분해성 평가를 실시하였다. 그 결과를 도 3에 나타내었다.After melt | dissolving the polyester resin obtained in Examples 1-4 at 20 degreeC higher than each melting | fusing point with the heat press, it pressed for 10 minutes by the pressure of 200 kg / cm <2>, and produced the 30-micrometer-thick film, 2cm * 2 The biodegradability was evaluated for 6 weeks under conditions of 30 ° C. and 90% moisture by cutting into a size of cm and embedding in the subleaf soil. The results are shown in FIG.

6주후 필름의 외관변화를 관찰한 결과, 실시예 1~4의 경우 원형필름에 비하여 6주후 필름의 표면은 변색 및 울퉁불퉁한 반점이 발생하였고, 필름원형을 상실한 것으로 관찰되었다.As a result of observing the appearance change of the film after 6 weeks, in the case of Examples 1 to 4, the surface of the film discolored and uneven spots occurred after 6 weeks compared to the circular film, and it was observed that the film circle was lost.

<시험예 2>각종 물성 평가 <Test Example 2> Evaluation of various physical properties

실시예 1~4 및 비교예 1~2에서 얻은 폴리에스테르 수지의 물성을 측정하여 그 결과를 표 1에 나타내었다.Physical properties of the polyester resins obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured, and the results are shown in Table 1.

예\항목Example 인장강도(MPa)Tensile Strength (MPa) 신장율(%)Elongation (%) 인장탄성율(MPa)Tensile Modulus (MPa) 실시예 1Example 1 3535 570570 556556 실시예 2Example 2 2525 560560 435435 실시예 3Example 3 3030 570570 549549 실시예 4Example 4 2727 570570 550550 비교예 1Comparative Example 1 5050 490490 641641 비교예 2Comparative Example 2 2626 560560 412412 저밀도 폴리에틸렌Low density polyethylene 1616 570570 237237

본 발명에 의해 제공되는 고분자량의 열가소성 폴리에스테르 수지는 생분해성이 우수하여 토양중의 미생물에 의해 쉽게 분해되며, 뿐만 아니라 착색이 적으며, 반응시간이 개선되고, 융점이 70℃ 이상으로 상용 분야가 넓고, 기계적 강도가 우수하여 성형체로서 이용할 수 있고, 특히 디카르복실산과 디올과의 반응에 의한 종래의 호모 폴리머에 비하여, 사출, 압출 등의 성형성이 뛰어나 쓰레기 봉투 등의 산업용 필름이나, 시트, 플라스틱 용기 등에 유용하고, 특히 연신율이 우수하여 실, 부직포, 복합섬유, 망사체 등의 가공품에 적합하게 사용할 수 있다.The high molecular weight thermoplastic polyester resin provided by the present invention has excellent biodegradability and is easily decomposed by microorganisms in soil, as well as less coloring, improved reaction time, and a melting point of 70 ° C. or higher. It is widely used and can be used as a molded product because of its excellent mechanical strength. In particular, compared to the conventional homopolymer by the reaction of dicarboxylic acid and diol, the moldability such as injection and extrusion is excellent, and thus an industrial film or sheet such as a garbage bag It is useful for plastic containers and the like, and in particular, it has excellent elongation and can be suitably used for processed products such as yarns, nonwoven fabrics, composite fibers, and mesh bodies.

Claims (7)

생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지의 제조방법에 있어서,In the production method of high molecular weight thermoplastic aliphatic polyester resin having biodegradability, (1) 지방족 디카르복실산과, 지방족 디올, 및 제 3성분으로서 전술한 지방족 디올과는 다른 1종 이상의 지방족 디올을 160~200℃에서 질소기류중에서 탈수반응에 의한 에스테르화반응시키는 단계; 및(1) esterifying an aliphatic dicarboxylic acid with an aliphatic diol and at least one aliphatic diol other than the aliphatic diols described above as a third component by dehydration in a nitrogen stream at 160 to 200 ° C; And (2) 탈수반응이 완료된 후에, 티탄 촉매를 (1)에서 얻은 올리고머 100중량부에 대해 0.05~0.5중량부의 양으로 투입하고, 215~240℃에서 감압하여 탈글리콜반응시키는 단계를 포함하며,(2) after the dehydration reaction is completed, a titanium catalyst is added in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the oligomer obtained in (1), and deglycol reaction is carried out at 215 to 240 ° C. under reduced pressure. 상기한 제 3성분으로서의 1종 이상의 지방족 디올은, 전체 지방족 디올 100몰%에 대하여 5~30몰% 함유되어 있음을 특징으로 하는 생분해성을 갖는 고분자량의 열가소성 지방족 폴리에스테르 수지의 제조방법.The method for producing a high molecular weight thermoplastic aliphatic polyester resin having biodegradability, wherein at least one aliphatic diol as the third component is contained in an amount of 5 to 30 mol% based on 100 mol% of the total aliphatic diols. 제 1항에 있어서, 상기한 지방족 디올, 및 제 3성분으로서 부가되는 지방족 디올은 에틸렌글리콜, 프로필렌글리콜, 트리메틸렌글리콜, 1,4-부탄디올, 네오펜틸글리콜, 1,6-헥산디올, 1,10-데칸디올, 디에틸렌글리콜 및 1,4-시클로헥산디메탄올로 이루어진 군에서 선택된 것임을 특징으로 하는 방법.The aliphatic diol and the aliphatic diol added as the third component are ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, 1, 10-decanediol, diethylene glycol and 1,4-cyclohexanedimethanol. 제 2항에 있어서, 상기한 지방족 디올은 1,4-부탄디올이고, 제 3성분으로서 부가되는 지방족 디올은 1,6-헥산디올 또는 에틸렌글리콜임을 특징으로 하는 방법.The method of claim 2, wherein the aliphatic diol is 1,4-butanediol, and the aliphatic diol added as the third component is 1,6-hexanediol or ethylene glycol. 제 1항에 있어서, 지방족 디카르복실산은 말론산(malonic acid), 숙신산(succinic acid), 무수숙신산, 말레산(maleic acid), 이소프탈산(isophthalic acid), 글루타르산(glutaric acid), 아디프산(adipic acid), 피멜산(pimelic acid), 수베린산(suberic acid), 아젤라인산(azelaic acid), 세바신산(sebacic acid) 및 도데칸디오익산(dodecanedioic acid)으로 이루어진 군에서 선택된 것임을 특징으로 하는 방법.The method of claim 1, wherein the aliphatic dicarboxylic acid is malonic acid, succinic acid, succinic anhydride, maleic acid, isophthalic acid, glutaric acid, Selected from the group consisting of adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid. How to feature. 제 1항의 방법에 따라 제조되는 고분자량의 열가소성 지방족 폴리에스테르 수지로서, 하기 일반식 (Ⅰ)의 구조를 갖는, 수평균분자량(Mn)이 20,000~200,000이고, 융점이 70~120℃인 생분해성 수지임을 특징으로 하는 열가소성 지방족 폴리에스테르 수지 :A high molecular weight thermoplastic aliphatic polyester resin produced according to the method of claim 1, wherein the number average molecular weight (Mn) having a structure of the following general formula (I) is 20,000 to 200,000, and has a melting point of 70 to 120 ° C. Thermoplastic aliphatic polyester resin, characterized in that the resin: 일반식 (Ⅰ)General formula (Ⅰ) (식중에서,(In the meal, R1및 R4는 지방족 디올에서 유래된 알킬기 또는 시클로알킬기이고,R 1 and R 4 are alkyl groups or cycloalkyl groups derived from aliphatic diols, R2는 지방족 디카르복실산에서 유래된 알킬기 또는 알케닐기이며,R 2 is an alkyl group or alkenyl group derived from aliphatic dicarboxylic acid, p는 열가소성 지방족 폴리에스테르 수지의 수평균분자량이 20,000~200,000이 되는데 필요한 중합도를 의미하며,p means the degree of polymerization required for the number average molecular weight of the thermoplastic aliphatic polyester resin is 20,000 to 200,000, a', c는 에스테르결합단위의 중합도를 의미한다)a 'and c refer to the degree of polymerization of the ester bonding units) 제 5항에 있어서, 2종의 지방족 디카르복실산을 혼용하여 제조되며, 하기 일반식 (Ⅱ)의 구조를 갖는 열가소성 지방족 폴리에스테르 수지 :The thermoplastic aliphatic polyester resin according to claim 5, which is prepared by mixing two aliphatic dicarboxylic acids and has a structure of the following general formula (II): 일반식 (Ⅱ)General formula (Ⅱ) 식중에서,In the food, R1, R2, R4는 일반식 (Ⅰ)에서 정의한 바와 동일한 의미를 가지며,R 1 , R 2 , and R 4 have the same meanings as defined in general formula (I), R3는 지방족 디카르복실산에서 유래된 알킬기 또는 알케닐기이고,R 3 is an alkyl group or alkenyl group derived from aliphatic dicarboxylic acid, q는 열가소성 지방족 폴리에스테르 수지의 수평균분자량이 20,000~200,000이 되는데 필요한 중합도를 의미하며,q means the degree of polymerization required for the number average molecular weight of the thermoplastic aliphatic polyester resin is 20,000 to 200,000, a", b', c' 및 d는 각 에스테르결합단위의 중합도를 의미한다).a ", b ', c' and d mean the degree of polymerization of each ester bonding unit). 제 6항에 있어서, 지방족 디카르복실산으로서 숙신산과 아디프산을 혼용하여 제조됨을 특징으로 하는 열가소성 지방족 폴리에스테르 수지.The thermoplastic aliphatic polyester resin according to claim 6, which is prepared by mixing succinic acid and adipic acid as aliphatic dicarboxylic acid.
KR1019980019528A 1998-05-28 1998-05-28 Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof Expired - Fee Related KR100267193B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980019528A KR100267193B1 (en) 1998-05-28 1998-05-28 Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980019528A KR100267193B1 (en) 1998-05-28 1998-05-28 Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof

Publications (2)

Publication Number Publication Date
KR19990086518A KR19990086518A (en) 1999-12-15
KR100267193B1 true KR100267193B1 (en) 2000-10-16

Family

ID=19537854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980019528A Expired - Fee Related KR100267193B1 (en) 1998-05-28 1998-05-28 Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof

Country Status (1)

Country Link
KR (1) KR100267193B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725150B1 (en) * 2000-12-01 2007-06-04 주식회사 새 한 Method for producing aliphatic polyester copolymer
KR101110628B1 (en) * 2004-08-23 2012-02-15 에스케이케미칼주식회사 Method for producing polyester resin and polyester resin produced thereby
KR20130090640A (en) * 2012-02-06 2013-08-14 삼성정밀화학 주식회사 Catalyst for polyester resin synthesis and manufacturing method for polyester resin using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192374A (en) * 1992-12-24 1994-07-12 Showa Highpolymer Co Ltd Production of biodegradable polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192374A (en) * 1992-12-24 1994-07-12 Showa Highpolymer Co Ltd Production of biodegradable polyester

Also Published As

Publication number Publication date
KR19990086518A (en) 1999-12-15

Similar Documents

Publication Publication Date Title
US5470941A (en) Thermoplastic biodegradable resins and a process of preparation thereof
EP2202267B1 (en) Plasticizer for biodegradable aliphatic polyester resins, and biodegradable resin composition
US20010007899A1 (en) Copolyester resin composition and a process of preparation thereof
AU752603B2 (en) Condensation copolymers having surpressed crystallinity
KR20130118221A (en) Aliphatic-aromatic copolyesters and their mixtures
KR102421034B1 (en) Method for preparing biodegradable polyester resin and bioderadable polyester resin therefrom
JPH08239461A (en) Aliphatic polyester copolymer and method for producing the same
US4254001A (en) Random elastomeric copolyesters
EP0792901B1 (en) Production of aliphatic copolyesters
KR100267193B1 (en) Thermoplastic aliphatic polyester having high molecular weight and biodegradability, and a method for preparation thereof
KR101644962B1 (en) Biodegradable polylactide-based aliphatic/aromatic copolyester resin composition and method for preparing the same
KR0163495B1 (en) Method for preparing flat yarn of aliphatic copolyester
KR20130004761A (en) Biodegradable polyester and manufacturing method thereof
JPH0959356A (en) Polylactic acid copolymer
JP3726401B2 (en) Method for producing polylactic acid copolymer and polylactic acid copolymer
USRE31270E (en) Random elastomeric copolyesters
JP3584579B2 (en) Plasticized aliphatic polyester composition and molded article thereof
KR20040005194A (en) The method of forming the biodegradable aliphatic polyester composite resin which has superior processability
KR100200415B1 (en) Biodegradable aliphatic polyester manufacturing method
JP3756677B2 (en) Resin composition and molded body
KR0181673B1 (en) Manufacturing method of polyester resin with excellent biodegradability
KR0138173B1 (en) Method for preparing microbial degradable aliphatic polyester multifilament
JP4171891B2 (en) Polyester carbonate copolymer and process for producing the same
JPH11323115A (en) Biodegradable polylactic acid composition
JP4288456B2 (en) Resin composition and molded body

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19980528

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19980528

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20000131

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20000615

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20000703

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20000704

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20030619

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20040630

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20050706

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20060704

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20070629

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20080703

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20090702

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20110104

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20110624

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20120704

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20130704

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20130704

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20140704

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20140704

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20150701

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20160614

Start annual number: 17

End annual number: 17

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20180414