JPS6397205A - Treatment of polysulfone resin semipermeable membrane - Google Patents
Treatment of polysulfone resin semipermeable membraneInfo
- Publication number
- JPS6397205A JPS6397205A JP61243176A JP24317686A JPS6397205A JP S6397205 A JPS6397205 A JP S6397205A JP 61243176 A JP61243176 A JP 61243176A JP 24317686 A JP24317686 A JP 24317686A JP S6397205 A JPS6397205 A JP S6397205A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- polysulfone resin
- resin
- semipermeable membrane
- polysulfone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 68
- 229920005989 resin Polymers 0.000 title claims abstract description 50
- 239000011347 resin Substances 0.000 title claims abstract description 50
- 229920002492 poly(sulfone) Polymers 0.000 title claims abstract description 49
- 239000000654 additive Substances 0.000 claims abstract description 21
- 230000000996 additive effect Effects 0.000 claims abstract description 21
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 20
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 20
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 20
- 239000002904 solvent Substances 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims abstract description 9
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 6
- 230000008961 swelling Effects 0.000 claims abstract description 6
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 25
- 239000011550 stock solution Substances 0.000 claims description 23
- 239000011259 mixed solution Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 40
- 230000035699 permeability Effects 0.000 abstract description 21
- 229920000642 polymer Polymers 0.000 abstract description 17
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract description 8
- 238000010828 elution Methods 0.000 abstract description 6
- 230000005251 gamma ray Effects 0.000 abstract description 2
- 238000005191 phase separation Methods 0.000 description 20
- 239000011148 porous material Substances 0.000 description 14
- 239000012510 hollow fiber Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 238000005345 coagulation Methods 0.000 description 8
- 230000015271 coagulation Effects 0.000 description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
- B01D67/00113—Pretreatment of the casting solutions, e.g. thermal treatment or ageing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/009—After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/081—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/34—Use of radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/36—Hydrophilic membranes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ポリスルホン系樹脂半透膜の処理方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for treating polysulfone resin semipermeable membranes.
従来、半透膜の素材としては、セルロースアセテート・
ポリアクリロニトリル・ポリメタクリル酸メチル・ポリ
アミド等多くの高分子化合物が用いられてきた。一方、
ポリスルホン系樹脂は、元来エンジニアリングプラスチ
ックスとして使用されてきたが、その耐熱安定性、耐酸
・耐アルカリ性、そして生体適合性、耐汚染性が良好で
あることから、半透膜素材として注目されている。Conventionally, the material for semipermeable membranes has been cellulose acetate.
Many polymeric compounds such as polyacrylonitrile, polymethyl methacrylate, and polyamide have been used. on the other hand,
Polysulfone resins were originally used as engineering plastics, but due to their heat resistance, acid and alkali resistance, biocompatibility, and stain resistance, they are attracting attention as semipermeable membrane materials. There is.
ポリスルホン系樹脂を用いた半透膜を得る方法として従
来より例えば、ジャーナル・オブ・アプライド・ポリマ
ー・サイエンス(20巻、2377〜2394頁、19
76年)及び、(同21巻、1883〜1900頁、1
977年)、特開昭58−194940号公報等が提案
されている。しかし該樹脂は、分子間凝集力が強すぎて
、表面の孔や貫通すべき内部の孔を閉塞してしまうため
孔形成の制御が困難となる。このため、分画分子量が1
0万以下と小さくかつ透水性も小さいものしか得られて
いない。Conventional methods for obtaining semipermeable membranes using polysulfone resins have been described, for example, in Journal of Applied Polymer Science (Vol. 20, pp. 2377-2394, 19
1976) and (Vol. 21, pp. 1883-1900, 1
1977), Japanese Patent Application Laid-open No. 194940/1983, etc. have been proposed. However, the intermolecular cohesive force of this resin is too strong and it closes the surface pores and the internal pores that should be penetrated, making it difficult to control pore formation. Therefore, the molecular weight cut-off is 1
Only those that are as small as 0,000 or less and have low water permeability have been obtained.
一方、近年、ポリスルホン系樹脂を用いた膜で、表面に
大きな孔をあける試みとして、次のような手段が提案さ
れている。On the other hand, in recent years, the following methods have been proposed in an attempt to create large pores on the surface of a membrane using polysulfone resin.
■ 異種ポリマー間のミクロ相分離を利用する方法。(
特公昭48−176号公報、特開昭54−1444.5
6号公報、同57−50506号公報、同57−505
07号公報、同57−50508号公報)
■ 製膜後、抽出・溶出操作を有する方法。(特開昭5
4−26283号公報、同57−35906号公報、同
58−91822号公報)■ 製膜原液の準安定液体分
散状態で製膜する方法。(特開昭56−’15405”
IN公報、同59−58041号公報、同59−183
761号公報、同59−189903@公報)
■ 紡糸時に工夫をこらす方法(特開昭59−2280
16号公報)
しかし、■の方法ではポリマー間の凝固速度の違いを利
用しているのみで、万両分子ffl ’l O万以上の
大きな孔を得るに至っていない。その上、大量にブレン
ドするため、ポリスルホン系樹脂の本来の良好な性能が
失われやすい。■ A method that utilizes microphase separation between different types of polymers. (
Japanese Patent Publication No. 48-176, Japanese Unexamined Patent Publication No. 1444.5/1973
Publication No. 6, Publication No. 57-50506, Publication No. 57-505
(No. 07, No. 57-50508) (2) A method that includes extraction and elution operations after film formation. (Unexamined Japanese Patent Publication No. 5
(No. 4-26283, No. 57-35906, No. 58-91822) (2) A method of forming a film in a metastable liquid dispersion state of a film forming stock solution. (Unexamined Japanese Patent Publication No. 56-'15405"
IN Publication, No. 59-58041, No. 59-183
No. 761, No. 59-189903 @ Publication) ■ A method of using ingenuity during spinning (Japanese Unexamined Patent Publication No. 59-2280)
(No. 16 Publication) However, the method (2) only utilizes the difference in solidification rate between polymers, and has not been able to obtain large pores larger than 10,000 molecules. Moreover, since a large amount is blended, the original good performance of the polysulfone resin is likely to be lost.
また、■の方法は、ブレンドポリマーの抽出と無機顆粒
を溶出する大きく2つの方法に分類される。前者におい
ては、ポリエチレングリコール、ポリビニルピロリドン
が主たるポリマーであるが、十分な孔径を得ることや抽
出操作が困難であった。Furthermore, method (2) is broadly classified into two methods: extraction of the blend polymer and elution of the inorganic granules. In the former, polyethylene glycol and polyvinylpyrrolidone are the main polymers, but it has been difficult to obtain a sufficient pore size and to perform extraction operations.
後者の例では、前記特開昭58−91822号公報で、
シリカパウダーを混入して製膜後、アルカリを用いて溶
出させ、0.05μm以上の大きな孔をあけるのに成功
しているが、この製造方法では同一製膜原液から伯の孔
径分布をとる膜を製造することはできない。In the latter example, in the above-mentioned Japanese Patent Application Laid-open No. 58-91822,
After forming a film by mixing silica powder, it was eluted using an alkali to create large pores of 0.05 μm or more, but this manufacturing method produces a film with a pore size distribution of cannot be manufactured.
■の方法は製膜原液にポリスルホン系樹脂の非溶媒もし
くは膨潤剤を大量に混合し、該製膜原液が相分離する直
前のところで製膜するものである。Method (2) involves mixing a large amount of a polysulfone resin non-solvent or swelling agent with a film-forming stock solution, and forming a film just before the film-forming stock solution undergoes phase separation.
かかる方法では、凝固浴の温度効果を有利に利用できな
い欠点がある。Such a method has the disadvantage that the temperature effect of the coagulation bath cannot be used advantageously.
■の方法は、製膜時に高湿度の風を吹きつけることで、
該表面での孔径拡大を実現しているが、該方法では片面
にしかその効果はなく、特に中空糸膜に至っては、分画
分子量は小さい範囲のものしか得られない。Method ① involves blowing high-humidity air during film formation.
Although the pore size is enlarged on the surface, this method is effective only on one side, and especially when it comes to hollow fiber membranes, only a small molecular weight fraction can be obtained.
特に、ポリビニルピロリドン、ポリエチレングリコール
、ポリビニルアルコール等の水溶性ポリマーをブレンド
した半透膜は、該水溶性ポリマーの溶出問題や、該水溶
性ポリマーの膨潤層のため。In particular, semipermeable membranes blended with water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol, and polyvinyl alcohol have problems with elution of the water-soluble polymers and swelling layers of the water-soluble polymers.
透水性能が低いものしかできない欠点を有していた。It had the disadvantage that only those with low water permeability could be used.
(発明が解決しようとする問題点)
本発明者らは、上記欠点を解析し、鋭意検討した結果本
発明に到達した。特に、ブレンドポリマーの溶出がなく
、透水性能の極めて高い半透膜を得るための、ポリスル
ホン系樹脂半透膜の処理方法を提供することを目的とす
る。(Problems to be Solved by the Invention) The present inventors analyzed the above-mentioned drawbacks, and as a result of intensive study, they arrived at the present invention. In particular, it is an object of the present invention to provide a method for treating a polysulfone-based resin semipermeable membrane in order to obtain a semipermeable membrane with extremely high water permeability without elution of blend polymers.
本発明は次の構成を有する。すなわち、(1)ポリスル
ホン系樹脂と親水性高分子を混和溶解した溶液に該ポリ
スルホン系樹脂に対して非溶媒もしくは膨測剤なる添加
剤を加えた系を製膜原液として製造したポリスルホン系
樹脂半透膜に。The present invention has the following configuration. That is, (1) a polysulfone resin half produced by adding an additive such as a non-solvent or a swelling agent to the polysulfone resin as a film forming stock solution to a solution in which a polysulfone resin and a hydrophilic polymer are mixed and dissolved; to the permeable membrane.
熱処理および/または、放射線処理を施すことを特徴と
するポリスルホン系樹脂半透膜の処理方法。A method for treating a polysulfone-based resin semipermeable membrane, characterized by subjecting it to heat treatment and/or radiation treatment.
(2)親水性高分子が、ポリビニルピロリドンで= 5
−
ある特許請求の範囲第1項に記載のポリスルホン系樹脂
半透膜の処理方法でおる特許請求の範囲第1項に記載の
ポリスルホン系樹脂半透膜の処理方法である。(2) Hydrophilic polymer is polyvinylpyrrolidone = 5
- A method for treating a polysulfone resin semipermeable membrane according to claim 1. - A method for treating a polysulfone resin semipermeable membrane according to claim 1.
本発明においてポリスルホン系樹脂半透膜を製造するた
めに用いる製膜原液は、基本的にはポリスルホン系樹脂
(■)、親水性高分子(■)、溶媒(III)および添
加剤(IV)からなる4成分系で構成される。ここで言
うポリスルホン系樹脂(I)は、通常式(1)、または
式(2)
含んでいたり、アルキル系のものであってもよく、特に
限定するものではない。The membrane-forming stock solution used in the present invention to produce a polysulfone resin semipermeable membrane basically consists of a polysulfone resin (■), a hydrophilic polymer (■), a solvent (III), and an additive (IV). It is composed of a four-component system. The polysulfone resin (I) mentioned here is not particularly limited, and may generally contain the formula (1) or (2), or may be an alkyl resin.
親水性高分子(II)は、ポリスルホン系樹脂(I)と
相溶性があり、かつ親水性を持つ高分子である。ポリビ
ニルピロリドンが一番良く、他に= 6−
変性ポリビニルピロリドン、共重合ポリビニルピロリド
ン、ポリ酢酸ビニル、ポリエチレングリコール等が挙げ
られるが、これらに限定されるものではない。The hydrophilic polymer (II) is a polymer that is compatible with the polysulfone resin (I) and has hydrophilic properties. Polyvinylpyrrolidone is best, and other examples include, but are not limited to, 6-modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, polyvinyl acetate, and polyethylene glycol.
溶媒(III)は、ポリスルホン系樹脂(I)及び親水
性高分子(II)を共に溶解する溶媒でおる。The solvent (III) is a solvent that dissolves both the polysulfone resin (I) and the hydrophilic polymer (II).
ジメチルスルホキシド、ジメチルアセトアミド、ジメチ
ルホルムアミド、N−メチル−2−ピロリドン、ジオキ
サン等多種の溶媒が用いられるが、特にジメチルアセト
アミド、ジメチルスルホキシド、ジメチルホルムアミド
、N−メチル−2−ピロリドンが望ましい。Various solvents such as dimethylsulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, and dioxane can be used, and dimethylacetamide, dimethylsulfoxide, dimethylformamide, and N-methyl-2-pyrrolidone are particularly preferred.
添加剤(l′V)は、溶媒(III)と相溶性を持ち、
親水性高分子(n)の良溶媒となり、かつ、ポリスルホ
ン系樹脂(I)の非溶媒又は膨潤剤となるものであれば
何でも良く、例えば、水、メタノール、エタノール、イ
ソプロパツール、ヘキサノール、1,4−ブタンジオー
ル等がある。生産コストを考えると水が最も望ましい。The additive (l'V) is compatible with the solvent (III),
Anything can be used as long as it serves as a good solvent for the hydrophilic polymer (n) and as a non-solvent or swelling agent for the polysulfone resin (I), such as water, methanol, ethanol, isopropanol, hexanol, , 4-butanediol, etc. Considering production costs, water is the most desirable.
添加剤(IV)は、ポリスルホン系樹脂(I)に対する
凝固性を考え合わせた上で選択すれば良い。The additive (IV) may be selected in consideration of the coagulability of the polysulfone resin (I).
これらのおのおのの組合せは任意であり、上記の性質を
もつ組合せを考えるのは、同業者にとって容易なことで
ある。また、溶媒(I)・添加剤(IV)は、2種類以
上の化合物の混合系でも良い。Combinations of each of these are arbitrary, and it is easy for those skilled in the art to consider combinations having the above properties. Further, the solvent (I) and the additive (IV) may be a mixture of two or more types of compounds.
かかる製膜原液は、通常の相分離挙動である低温側で相
分離するのと逆で、驚くべきことに高温側で相分離がお
こる。このことから、凝固浴温度の効果も効率的に利用
できるため、特に孔の大きな膜を作るのに非常に有利と
なる。Surprisingly, this membrane-forming stock solution undergoes phase separation on the high temperature side, contrary to the normal phase separation behavior in which phase separation occurs on the low temperature side. This makes it possible to efficiently utilize the effect of the coagulation bath temperature, which is particularly advantageous for producing membranes with large pores.
今、この製膜原液がおる温度Tで均−系であるとする。Now, it is assumed that this film-forming stock solution is in a homogeneous system at a temperature T.
この場合、添加剤(IV)は親水性高分子(I[)によ
ってポリスルホン系樹脂(I)に対して遮蔽される形と
なり、直接ポリスルホン系樹脂(I>と相互作用できな
くなる。それゆえ、ポリスルホン系樹脂(I)は、親水
性高分子(II)が混合されていない系においては当然
凝固し、相分離しているような濃度まで添加剤(IV)
を加えてもなお相分離することなく均−系を保っている
訳である。ここで、温度を上げると、分子の運動性が上
がることにより、特に親水性高分子(II)と添加剤(
IV)との結合が弱くなり、水素結合が切れ、親水性高
分子(II)と結合していない添加剤(IV〉の見かけ
上の濃度が、温度Tのときより上昇する。このためポリ
スルホン系樹脂(I>と添加剤(IV)とが相互作用す
ることにより、ひいては、ポリスルホン系樹脂(I)の
凝固・相分離が引きおこされることになる。即ち、該製
膜原液は、高温側で相分離をおこすことになる。さらに
、この系の添加剤(IV)の量を増加させると、前記温
度Tでもこの原液系においては、もはや親水性高分子(
II)の温度Tにおける添加剤(IV)のかかえ込み量
以上の添加剤(IV)が加えられたことで、製膜原液は
相分離する。しかし、さらに温度を下げると親水性高分
子(II)の分子運動性が下がり、添加剤(IV)との
結合量が増大し、見かけの添加剤(IV)1度が下がる
ことで、結果的に系は再び均−系となる。再び温度を上
げると、系は不均一になるが、こんどは親水性高分子(
n)を添加すると、親水性高分子(I[)が添加剤(I
V>と結合する量が増え、■び系は均一になる。以上の
ように、この製膜原液の相分離挙動は通常の逆でおり、
また相転移に可逆性を有する。In this case, the additive (IV) is shielded from the polysulfone resin (I) by the hydrophilic polymer (I[) and cannot directly interact with the polysulfone resin (I>. Therefore, the polysulfone In a system where the hydrophilic polymer (II) is not mixed, the system resin (I) naturally coagulates, and the additive (IV) is added to such a concentration that phase separation occurs.
This means that even after adding , the system remains homogeneous without phase separation. Here, when the temperature is raised, the mobility of molecules increases, especially the hydrophilic polymer (II) and the additive (
The bond with IV) becomes weaker, the hydrogen bond is broken, and the apparent concentration of the additive (IV) that is not bonded to the hydrophilic polymer (II) increases from that at temperature T.For this reason, polysulfone-based The interaction between the resin (I> and the additive (IV) ultimately causes coagulation and phase separation of the polysulfone resin (I). In other words, the membrane forming stock solution is Phase separation will occur.Furthermore, if the amount of additive (IV) in this system is increased, even at the temperature T, in this stock solution system, the hydrophilic polymer (
Since the additive (IV) is added in an amount equal to or greater than the amount of the additive (IV) held at the temperature T in II), the membrane forming stock solution undergoes phase separation. However, when the temperature is further lowered, the molecular mobility of the hydrophilic polymer (II) decreases, the amount of binding with the additive (IV) increases, and the apparent additive (IV) decreases by 1 degree, resulting in The system becomes a homogeneous system again. When the temperature is raised again, the system becomes non-uniform, but this time the hydrophilic polymer (
When adding n), the hydrophilic polymer (I[) changes to the additive (I
The amount of bonding with V> increases, and the system becomes uniform. As mentioned above, the phase separation behavior of this membrane-forming stock solution is the opposite of normal;
It also has reversibility in phase transition.
該製膜原液の組成として、ポリスルホン系樹脂(1)は
、製膜可能でかつ膜としての特性を有する濃度範囲であ
れば良く、5〜50重量%である。As for the composition of the membrane-forming stock solution, the polysulfone resin (1) may be in a concentration range of 5 to 50% by weight as long as it can be formed into a membrane and has properties as a membrane.
高い透水性、大きな分画分子量を得るためにはポリマー
濃度は下げるべきで、この場合望ましくは5〜20重量
%である。5重量%未満では、製膜原液の十分な粘度を
得ることができず、膜を形成できなくなる。また、50
重量%を越えると貫通孔を形成しにくくなる。親水性高
分子(II)は、特にポリビニルピロリドンの場合、分
子量36万、16万、4万、1万のものが市販されてお
り、これを使うのが便利であるが、もちろんそれ以外の
分子量のものを使用してもかまわない。ただし、親水性
高分子(II)の添加の理由の1つとして増粘効果もあ
るため、添加量は高分子量のものを用いるほど少量で良
く、かつまた相分離現象の温度依存性の逆転も顕著にな
るため透水性の高い膜を得るためには有利である。ポリ
ビニルピロリドンの添加量は、1〜20重量%、特に3
〜10重量%が望ましいが、用いるポリビニルピロリド
ンの分子量に左右される。一般に添加量が少なすぎる場
合、分子量が低すぎると相分離の逆転現象は得難く、ま
たポリマー濃度が高く、ポリマー分子量が大きすぎると
、製膜後の洗浄が困難となる。それ故、分子量の異なる
ものを混合して役割分担して用いるのも一つの方法とな
る。In order to obtain high water permeability and a large molecular weight cut-off, the polymer concentration should be lowered, preferably 5 to 20% by weight. If it is less than 5% by weight, it will not be possible to obtain a sufficient viscosity of the film-forming stock solution, making it impossible to form a film. Also, 50
If it exceeds % by weight, it becomes difficult to form through holes. Hydrophilic polymer (II), especially in the case of polyvinylpyrrolidone, is commercially available with molecular weights of 360,000, 160,000, 40,000, and 10,000, and it is convenient to use this, but of course, other molecular weights are also available. You may use the one. However, one of the reasons for adding the hydrophilic polymer (II) is its thickening effect, so the higher the molecular weight, the smaller the amount added, and the reversal of the temperature dependence of the phase separation phenomenon. This is advantageous for obtaining a membrane with high water permeability. The amount of polyvinylpyrrolidone added is 1 to 20% by weight, especially 3% by weight.
~10% by weight is desirable, but depends on the molecular weight of the polyvinylpyrrolidone used. In general, if the amount added is too small or the molecular weight is too low, it is difficult to achieve a phase separation reversal phenomenon, and if the polymer concentration is too high and the polymer molecular weight is too large, cleaning after film formation becomes difficult. Therefore, one method is to mix substances with different molecular weights and use them in different roles.
以上2つの高分子を溶媒(III>に混合溶解する。The above two polymers are mixed and dissolved in the solvent (III>).
ここへ、添加剤(IV)を添加するが、特に水の場合、
ポリスルホン系樹脂にとって凝固性が高いため、15重
量%以下、好ましくは1〜12重量%、特に1〜5重量
%が望ましい。凝固性が小さな添加剤を用いるときは添
加量が多くなることは容易に推測される。本発明では、
この第4成分が、添加されるため、親水性高分子の量を
少なくすることができる。添加剤(IV)の濃度が高く
なるにつれ、製膜原液の相分離温度は低下してくる。相
分離温度の設定は、求める膜の透水性や分画分子量によ
り随意にすればよく、例えば、高い透水性・分画分子量
を得るには製膜時に相分離を強力に促進するため低い相
分離温度を設定ずれば良い。また、凝固浴の温度を高く
しても同様の効果は得られる。本発明で用いる製膜原液
は、低温で均−系となるため、原液安定性も良い。Additive (IV) is added here, especially in the case of water.
Since the polysulfone resin has high coagulability, it is preferably 15% by weight or less, preferably 1 to 12% by weight, particularly 1 to 5% by weight. It is easily assumed that when an additive with low coagulability is used, the amount added will be large. In the present invention,
Since this fourth component is added, the amount of hydrophilic polymer can be reduced. As the concentration of additive (IV) increases, the phase separation temperature of the membrane forming stock solution decreases. The phase separation temperature can be set arbitrarily depending on the desired water permeability and molecular weight cutoff of the membrane. For example, to obtain high water permeability and molecular weight cutoff, it is necessary to set a low phase separation temperature to strongly promote phase separation during membrane formation. Just change the temperature setting. Further, the same effect can be obtained even if the temperature of the coagulation bath is increased. The film-forming stock solution used in the present invention becomes homogeneous at low temperatures, and therefore has good stock solution stability.
以上の条件のもとてポリスルホン系樹脂半透膜が得られ
る。製膜操作は、公知技術を用いれば良い。平膜につい
ては、該製膜原液を平坦な基板上に流展し、その後凝固
浴中に浸漬する。中空糸膜については、中空形態を保つ
ため、注入液を用いる。注入液は、製膜原液に対して凝
固性の高いものより、低いものを用いた方が紡糸安定性
は良いが、凝固浴温度・相分離温度・口金温度との相関
で中空糸膜内壁の平滑性が変化するので、適宜最良組成
を決めれば良い。ポリスルホン系樹脂に不活性なデカン
・オクタン・ウンデカン等の炭化水素を用いても良い。Under the above conditions, a polysulfone resin semipermeable membrane is obtained. A known technique may be used for the film forming operation. For flat membranes, the membrane-forming stock solution is spread on a flat substrate and then immersed in a coagulation bath. For hollow fiber membranes, an injection solution is used to maintain their hollow form. As for the injection liquid, it is better to use one with low coagulability compared to one with high coagulability compared to the membrane forming stock solution for better spinning stability, but due to the correlation with coagulation bath temperature, phase separation temperature, and die temperature, Since the smoothness changes, the best composition may be determined appropriately. Hydrocarbons such as decane, octane, and undecane, which are inert to the polysulfone resin, may also be used.
また気体を注入して中空形態を保持させてもよい。乾式
長は0.1〜20cmであり、特に0.5〜5cmが紡
糸安定性も良く、さらに望ましい。同一組成、同一条件
で製膜した場合、中空糸膜より平膜の方が表面に開孔す
る孔の直径は大きくなる傾向がある。Alternatively, the hollow shape may be maintained by injecting gas. The dry length is 0.1 to 20 cm, and 0.5 to 5 cm is particularly desirable as it provides good spinning stability. When membranes are formed with the same composition and under the same conditions, the diameter of the pores formed on the surface of a flat membrane tends to be larger than that of a hollow fiber membrane.
かかる方法で得たポリスルホン系樹脂半透膜は、膜中に
親水性高分子を残存させることによって、水濡れ性を改
善することができる。しかし残存親水性高分子が水溶性
の場合、該親水性高分子の溶出が避けられず、かつ、ま
た、孔径の割りに高い透水性を得難いという欠点を有し
ている。本発明は、この欠点を十二分に補うもので、ま
ず得られた該ポリスルホン系半透膜をポリスルホン系樹
脂が、変型、変質、または実用不能にならない程度の熱
および/または放射線を照射することで、熱および/ま
たは放射線による親水性高分子の水不溶化処理をするも
のでおる。該ポリスルホン系樹脂半透膜は、平膜、中空
糸膜を問わずかかる処理を行なえる形態であれば、いか
なる形態を有していてもかまわない。また、ここでいう
放射線処理とは、α線、β線、γ線、X線、電子線があ
げられるが、物質浸透性の観点から、γ線が最も望まし
い。The polysulfone-based resin semipermeable membrane obtained by this method can have improved water wettability by allowing the hydrophilic polymer to remain in the membrane. However, when the remaining hydrophilic polymer is water-soluble, it is unavoidable to elute the hydrophilic polymer, and it also has the drawback that it is difficult to obtain high water permeability relative to the pore size. The present invention fully compensates for this drawback by first irradiating the obtained polysulfone-based semipermeable membrane with heat and/or radiation to an extent that does not cause the polysulfone-based resin to be deformed, altered, or rendered unpractical. In this way, the hydrophilic polymer is treated to become water insolubilized by heat and/or radiation. The polysulfone resin semipermeable membrane may have any form, whether flat membrane or hollow fiber membrane, as long as it can undergo such treatment. Furthermore, the radiation treatment referred to here includes α rays, β rays, γ rays, X rays, and electron beams, but γ rays are most desirable from the viewpoint of material penetration.
熱処理は、ポリビニルピロリドンが親水性高分子である
場合は、170’Cで1時間以上10時間程度行なう必
要がある。1時間未満では、不溶化が不十分であり、1
0時間をこえるとプロセス的に不利になる。好ましくは
、3〜8時間である。When polyvinylpyrrolidone is a hydrophilic polymer, the heat treatment needs to be carried out at 170'C for 1 hour or more and about 10 hours. If it is less than 1 hour, insolubilization is insufficient, and 1
If the time exceeds 0 hours, the process will be disadvantageous. Preferably it is 3 to 8 hours.
温度を180℃にすると処理時間は短縮され、20分〜
8時間程度で良い。さらに好ましくは3〜5時間である
。さらに温度を上げるとさらに処理時間は短縮されるが
、ポリスルホン系樹脂自体が変形する恐れがおるので注
意を要する。逆に、温度を下げると親水性高分子の不溶
化が進まないことがあるし2時間がかかりすぎ実用的で
ない。Setting the temperature to 180℃ will shorten the processing time, starting from 20 minutes.
About 8 hours is fine. More preferably, it is 3 to 5 hours. If the temperature is further increased, the processing time will be further shortened, but care must be taken since the polysulfone resin itself may be deformed. On the other hand, if the temperature is lowered, the insolubilization of the hydrophilic polymer may not progress and it takes too long for 2 hours, which is not practical.
放射線処理で特にγ線処理については、該半透膜が水に
濡れた状態でγ線照射するのが最も好ましいが、乾燥状
態でも空気中の水分があるためがまわない。線量として
は、0.5Mradから5QMradが好ましく、特に
該半透膜の機械的特性保持の観点から、Q、5Mrad
から10Mradが好ましい。Regarding radiation treatment, particularly gamma ray treatment, it is most preferable to irradiate gamma rays while the semipermeable membrane is wet with water, but even in a dry state there is moisture in the air, so this is not possible. The dose is preferably from 0.5 Mrad to 5Q Mrad, and especially from the viewpoint of maintaining the mechanical properties of the semipermeable membrane, Q, 5 Mrad
to 10 Mrad is preferred.
なお、本発明のポリスルホン系樹脂半透膜について、人
工臓器基準溶出物試験法に基づき、以下の評価を行なっ
た。The polysulfone resin semipermeable membrane of the present invention was evaluated as follows based on the artificial organ standard eluate test method.
膜0.5C]を70’C温水50CCで1時間加熱した
溶液は、波長350〜220μmにおけるUV吸収が0
.1以下、0.01 N K)ln04水溶液の消費量
1,0m1以下を示し、該試験に合格することができる
。A solution obtained by heating a 0.5C membrane with 50CC of 70'C hot water for 1 hour has 0 UV absorption at a wavelength of 350 to 220 μm.
.. 1 or less, 0.01 N K) Indicates a consumption of ln04 aqueous solution of 1.0 ml or less, and can pass the test.
さらにここで驚くべきことに、該処理をした半透膜は溶
出物の問題を解決するのみならず、透水性が、飛躍的に
向上し、かつ、平均孔径の割りにたとえば血液を流した
際の赤血球、各種タンパク質の詰まりが少ないという優
れた特徴を併せて発現した。熱処理においては、わざと
該ポリスルホン系樹脂の熱変形温度以上の熱をかけて孔
径を若干小さくして分画分子歯を調節することも可能で
ある。Furthermore, what is surprising here is that the treated semipermeable membrane not only solves the problem of eluates, but also has dramatically improved water permeability, and, considering its average pore size, when blood is passed through it, for example. It also has the excellent feature of less clogging of red blood cells and various proteins. In the heat treatment, it is also possible to intentionally apply heat higher than the heat deformation temperature of the polysulfone resin to slightly reduce the pore diameter to adjust the fractionated molecular teeth.
以下の実施例によって本発明をざらに詳細に説明する。 The invention will be explained in greater detail by the following examples.
以下、用いた測定法は次のとありである。The measurement method used is as follows.
(1) 透水性
中空糸膜の場合は、両端に還流液用の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のボッティング
剤を用いて小型モジュールを作製し、37℃に保って中
空糸内側に水圧をかけ膜を通して外側へ透過する一定時
間の水の量と有効膜面積および膜間圧力差から算出する
方法で透水性能を測定した。(1) In the case of a water-permeable hollow fiber membrane, the hollow fiber membrane is inserted into a glass case with holes for reflux liquid at both ends, and a small module is made using a commercially available botting agent. Water permeability was measured using a method in which water pressure was applied to the inside of the hollow fiber while maintaining the temperature at °C, and the water permeability was calculated from the amount of water that permeated to the outside through the membrane over a certain period of time, the effective membrane area, and the pressure difference between the membranes.
平膜の場合は、撹拌円筒セルを用いて同様にして測定し
た。単位は、ml/ m2@ hr 6 mmHoに統
一した。In the case of a flat membrane, measurements were made in the same manner using a stirred cylindrical cell. The unit was unified to ml/m2@hr 6 mmHo.
実施例1
ポリスルホン(ニーデルP−3500>15部、ポリビ
ニルピロリドン(K2O)8部、1,4−ブタンジオー
ル8部をジメチルアセトアミド69部に加え、80’C
で加熱溶解した。この製膜原液は、60’Cで相分離す
る低温溶解型原液となった。Example 1 Polysulfone (Needel P-3500>15 parts, polyvinylpyrrolidone (K2O) 8 parts, 1,4-butanediol 8 parts were added to 69 parts of dimethylacetamide, and 80'C
It was heated and dissolved. This membrane-forming stock solution became a low-temperature solution that undergoes phase separation at 60'C.
べ一力一式アプリケーターを用い、60’C保温でガラ
ス板上に流展後、50℃の水凝固浴で凝固させた。これ
を170℃、5時間熱処理をし、ポリビニルピロリドン
を水不溶化した。透水性48000 ml/ Tr12
e hr I mmH(]、溶出物も吸光度0.08
5であった。The mixture was spread on a glass plate at 60'C using a Beichiro one-set applicator, and then coagulated in a water coagulation bath at 50°C. This was heat-treated at 170°C for 5 hours to make polyvinylpyrrolidone insoluble in water. Water permeability 48000ml/Tr12
e hr I mmH (], the eluate also has an absorbance of 0.08
It was 5.
実施例2〜6
ポリスルホン15部、ポリビニルピロリドン(K2O)
8部、水2部4部をジメチルアセトアミド75部に80
°Cで加熱溶解した。この製膜原液は、65°Cで相分
離する低温溶解型原液となった。注入液にジメチルスル
ホキシド/グリセリン/ポリビニルピロリドン(K2O
)=63/7/30を用いて、外径1.0mm、内径0
.7mmの環状オリフィスからなる口金孔内から吐出さ
せ、口金面から1.Qcm下方に設置した80℃に保温
した水を有する凝固浴に通過させ、通常の方法で水洗後
カセにまき取り、中空糸状膜を得た。口金は49°Cに
保温した。以下、後処理法・透水性・溶出物の吸光度を
第1表に示す。Examples 2-6 15 parts of polysulfone, polyvinylpyrrolidone (K2O)
8 parts, 2 parts of water and 4 parts of dimethylacetamide to 75 parts of dimethylacetamide.
The mixture was heated and dissolved at °C. This membrane-forming stock solution became a low-temperature solution that undergoes phase separation at 65°C. Dimethyl sulfoxide/glycerin/polyvinylpyrrolidone (K2O
) = 63/7/30, outer diameter 1.0 mm, inner diameter 0
.. It is discharged from the mouth hole consisting of a 7 mm annular orifice, and 1. The mixture was passed through a coagulation bath with water maintained at 80° C. placed below the Qcm, washed with water in the usual manner, and then wound into a skein to obtain a hollow fiber membrane. The cap was kept warm at 49°C. Table 1 below shows the post-treatment method, water permeability, and absorbance of the eluate.
17 一
実施例7
ポリエーテルスルホン(ピクトレックス300P)15
部、ポリビニルピロリドン(K2O)8部、水9部をジ
メチルアセトアミド75部に1゜O′Cで加熱溶解した
。この製膜原液は、55℃で相分離する低温溶解型原液
となった。これを実施例2と同様に紡糸し、中空糸膜を
得た。これを190 ’C3時間熱処理し、透水性を測
ると9500、溶出物の吸光度も0.054であった。17 Example 7 Polyether sulfone (Pictrex 300P) 15
8 parts of polyvinylpyrrolidone (K2O) and 9 parts of water were dissolved in 75 parts of dimethylacetamide by heating at 1°O'C. This membrane-forming stock solution became a low-temperature solution that undergoes phase separation at 55°C. This was spun in the same manner as in Example 2 to obtain a hollow fiber membrane. This was heat treated at 190'C for 3 hours, and the water permeability was measured to be 9500, and the absorbance of the eluate was also 0.054.
比較例1
実施例1の平膜を熱処理しないで透水性を測定すると8
30であった。また、溶出物の吸光度は、1.03であ
った。Comparative Example 1 When the water permeability of the flat membrane of Example 1 was measured without heat treatment, it was 8.
It was 30. Moreover, the absorbance of the eluate was 1.03.
比較例2
実施例2〜6の中空糸膜を熱処理しないで透水性を測定
すると730であった。また、溶出物の吸光度は、1.
58であった。Comparative Example 2 The water permeability of the hollow fiber membranes of Examples 2 to 6 without heat treatment was measured and found to be 730. In addition, the absorbance of the eluate is 1.
It was 58.
比較例3
ポリスルホン12部、ポリビニルピロリドン6部をN−
メチルピロリドン82部に加え、加熱溶解した。この原
液を50’Cに保温し、実施例1と同様にして製膜した
。これを170’C15時間熱処理をし、ポリビニルピ
ロリドンを水不溶化した。Comparative Example 3 12 parts of polysulfone and 6 parts of polyvinylpyrrolidone were mixed with N-
The mixture was added to 82 parts of methylpyrrolidone and dissolved by heating. This stock solution was kept warm at 50'C, and a film was formed in the same manner as in Example 1. This was heat-treated at 170'C for 15 hours to make polyvinylpyrrolidone insoluble in water.
透水性は実質上Oとなった。The water permeability was substantially O.
比較例4
実施例7の中空糸膜を熱処理しないで透水性を測定する
と640であった。また、溶出物の吸光度は、2.08
であった。Comparative Example 4 The water permeability of the hollow fiber membrane of Example 7 without heat treatment was measured and found to be 640. In addition, the absorbance of the eluate was 2.08
Met.
本発明の処理を行なえば、ブレンドした親水性高分子の
溶出がなく、透水性の極めて高い半透膜を得ることがで
きる。さらに、常圧で水に浸漬するだけで透水性能を回
復するその水濡れ性の良さから完全ドライ膜としての用
途に容易に展開できる。また、この効果はほぼ永久的に
持続される。By carrying out the treatment of the present invention, a semipermeable membrane with extremely high water permeability can be obtained without elution of the blended hydrophilic polymer. Furthermore, due to its good water wettability, which allows it to recover water permeability simply by immersing it in water at normal pressure, it can easily be used as a completely dry membrane. Moreover, this effect lasts almost permanently.
この処理により得られたポリスルホン系樹脂半透膜は、
目づまり、汚れに対して強いため、逆浸透膜から、高性
能限外濾過膜(あるいは精密濾過膜)まで、一般産業用
途及びメディカル分野の血液成分分離膜として使用する
ことができる。The polysulfone resin semipermeable membrane obtained by this treatment is
Because it is resistant to clogging and dirt, it can be used as blood component separation membranes in general industrial applications and in the medical field, from reverse osmosis membranes to high-performance ultrafiltration membranes (or microfiltration membranes).
Claims (2)
た溶液に該ポリスルホン系樹脂に対して非溶媒もしくは
膨潤剤なる添加剤を加えた系を製膜原液として製造した
ポリスルホン系樹脂半透膜に、熱処理および/または、
放射線処理を施すことを特徴とするポリスルホン系樹脂
半透膜の処理方法。(1) A polysulfone resin semipermeable membrane prepared by adding a non-solvent or a swelling agent additive to the polysulfone resin to a mixed solution of a polysulfone resin and a hydrophilic polymer as a membrane forming stock solution. , heat treatment and/or
A method for treating a polysulfone-based resin semipermeable membrane, characterized by subjecting it to radiation treatment.
許請求の範囲第1項に記載のポリスルホン系樹脂半透膜
の処理方法。(2) The method for treating a polysulfone resin semipermeable membrane according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61243176A JPS6397205A (en) | 1986-10-15 | 1986-10-15 | Treatment of polysulfone resin semipermeable membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61243176A JPS6397205A (en) | 1986-10-15 | 1986-10-15 | Treatment of polysulfone resin semipermeable membrane |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29807593A Division JPH06339620A (en) | 1993-11-29 | 1993-11-29 | Method for treating polysulfone resin semipermeable membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6397205A true JPS6397205A (en) | 1988-04-27 |
JPH053331B2 JPH053331B2 (en) | 1993-01-14 |
Family
ID=17099948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61243176A Granted JPS6397205A (en) | 1986-10-15 | 1986-10-15 | Treatment of polysulfone resin semipermeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6397205A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100902A (en) * | 1986-10-17 | 1988-05-06 | Kanegafuchi Chem Ind Co Ltd | Aromatic polysulfone hollow yarn membrane and its manufacture |
EP0408462A2 (en) * | 1989-07-14 | 1991-01-16 | Terumo Kabushiki Kaisha | Filter material for seizure of leukocytes and method for production thereof |
EP0571871A2 (en) * | 1992-05-26 | 1993-12-01 | SEITZ-FILTER-WERKE Gmbh und Co. | Method for preparing a hydrophilic membrane |
EP0779381A2 (en) | 1991-11-19 | 1997-06-18 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Polysulfone porous hollow fiber |
US5641450A (en) * | 1991-03-28 | 1997-06-24 | Toray Industries, Inc. | Process of making a module including a polysulphonic hollow fiber membrane |
US5938929A (en) * | 1995-06-30 | 1999-08-17 | Toray Industries, Inc. | Polysulfone hollow fiber semipermeable membrane |
JP2001205057A (en) * | 2000-01-27 | 2001-07-31 | Toyobo Co Ltd | Hollow fiber membrane |
US6432309B1 (en) | 1997-05-19 | 2002-08-13 | Asahi Medical Co, Ltd | Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof |
EP1410839A1 (en) * | 2001-07-24 | 2004-04-21 | ASAHI MEDICAL Co., Ltd. | Hollow fiber membrane for purifying blood |
JP2005131482A (en) * | 2003-10-29 | 2005-05-26 | Toray Ind Inc | Separation membrane |
US6960297B2 (en) * | 1999-12-21 | 2005-11-01 | Toray Industries, Inc. | Dialyzers for blood treatment and processes for production thereof |
EP0750936B2 (en) † | 1995-06-30 | 2019-09-11 | Toray Industries, Inc. | Permselective membranes and methods for their production |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022508A (en) * | 1973-06-26 | 1975-03-11 | ||
JPS53134876A (en) * | 1977-04-30 | 1978-11-24 | Sumitomo Electric Ind Ltd | Production of hydrophilic composite construction |
JPS5417978A (en) * | 1977-07-11 | 1979-02-09 | Sumitomo Electric Ind Ltd | Hydrophilic and porous composite structure and its production |
JPS55106243A (en) * | 1979-02-07 | 1980-08-14 | Nitto Electric Ind Co Ltd | Preparation of microporous polymer membrane |
JPS5634352A (en) * | 1979-08-31 | 1981-04-06 | Sumitomo Bakelite Co | Separating membrane for blood separation and its manufacture |
JPS5654164A (en) * | 1979-10-09 | 1981-05-14 | Ricoh Co Ltd | Generator for video signal |
JPS57147488A (en) * | 1981-03-04 | 1982-09-11 | Kuraray Co Ltd | Preparation of purified water |
JPS5892423A (en) * | 1981-11-30 | 1983-06-01 | Asahi Medical Kk | Hydrophobic semi-permeable membrane and module using same |
JPS58104940A (en) * | 1981-12-17 | 1983-06-22 | ヘキスト・アクチエンゲゼルシヤフト | Asymmetric macroporous film based on synthetic polymer and manufacture |
JPS60190204A (en) * | 1984-03-09 | 1985-09-27 | Sumitomo Bakelite Co Ltd | Modification of polysulfone resin membrane |
JPS6193801A (en) * | 1984-07-17 | 1986-05-12 | フレゼニウス アクチエンゲゼルシヤフト | Asymmetric microporous hollow fiber and its production |
JPS6238205A (en) * | 1985-08-12 | 1987-02-19 | Daicel Chem Ind Ltd | Semi-permeable membrane for separation |
-
1986
- 1986-10-15 JP JP61243176A patent/JPS6397205A/en active Granted
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5022508A (en) * | 1973-06-26 | 1975-03-11 | ||
JPS53134876A (en) * | 1977-04-30 | 1978-11-24 | Sumitomo Electric Ind Ltd | Production of hydrophilic composite construction |
JPS5417978A (en) * | 1977-07-11 | 1979-02-09 | Sumitomo Electric Ind Ltd | Hydrophilic and porous composite structure and its production |
JPS55106243A (en) * | 1979-02-07 | 1980-08-14 | Nitto Electric Ind Co Ltd | Preparation of microporous polymer membrane |
JPS5634352A (en) * | 1979-08-31 | 1981-04-06 | Sumitomo Bakelite Co | Separating membrane for blood separation and its manufacture |
JPS5654164A (en) * | 1979-10-09 | 1981-05-14 | Ricoh Co Ltd | Generator for video signal |
JPS57147488A (en) * | 1981-03-04 | 1982-09-11 | Kuraray Co Ltd | Preparation of purified water |
JPS5892423A (en) * | 1981-11-30 | 1983-06-01 | Asahi Medical Kk | Hydrophobic semi-permeable membrane and module using same |
JPS58104940A (en) * | 1981-12-17 | 1983-06-22 | ヘキスト・アクチエンゲゼルシヤフト | Asymmetric macroporous film based on synthetic polymer and manufacture |
JPS60190204A (en) * | 1984-03-09 | 1985-09-27 | Sumitomo Bakelite Co Ltd | Modification of polysulfone resin membrane |
JPS6193801A (en) * | 1984-07-17 | 1986-05-12 | フレゼニウス アクチエンゲゼルシヤフト | Asymmetric microporous hollow fiber and its production |
JPS6238205A (en) * | 1985-08-12 | 1987-02-19 | Daicel Chem Ind Ltd | Semi-permeable membrane for separation |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63100902A (en) * | 1986-10-17 | 1988-05-06 | Kanegafuchi Chem Ind Co Ltd | Aromatic polysulfone hollow yarn membrane and its manufacture |
EP0408462A2 (en) * | 1989-07-14 | 1991-01-16 | Terumo Kabushiki Kaisha | Filter material for seizure of leukocytes and method for production thereof |
US5641450A (en) * | 1991-03-28 | 1997-06-24 | Toray Industries, Inc. | Process of making a module including a polysulphonic hollow fiber membrane |
EP0779381A2 (en) | 1991-11-19 | 1997-06-18 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Polysulfone porous hollow fiber |
EP0571871A2 (en) * | 1992-05-26 | 1993-12-01 | SEITZ-FILTER-WERKE Gmbh und Co. | Method for preparing a hydrophilic membrane |
EP0571871A3 (en) * | 1992-05-26 | 1994-01-12 | Seitz Filter Werke | |
US5376274A (en) * | 1992-05-26 | 1994-12-27 | Seitz-Filter-Werke Gmbh & Co. | Hydrophilic membrane and method for its production |
US6103117A (en) * | 1995-06-30 | 2000-08-15 | Toray Industries, Inc. | Polysulfone hollow fiber semipermeable membrane |
US5938929A (en) * | 1995-06-30 | 1999-08-17 | Toray Industries, Inc. | Polysulfone hollow fiber semipermeable membrane |
EP0750936B2 (en) † | 1995-06-30 | 2019-09-11 | Toray Industries, Inc. | Permselective membranes and methods for their production |
US6432309B1 (en) | 1997-05-19 | 2002-08-13 | Asahi Medical Co, Ltd | Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof |
EP2255866A1 (en) | 1997-05-19 | 2010-12-01 | Asahi Kasei Kuraray Medical Co., Ltd. | Polysulfone type hollow fiber membrane for purifying blood and process for producing the same |
US6960297B2 (en) * | 1999-12-21 | 2005-11-01 | Toray Industries, Inc. | Dialyzers for blood treatment and processes for production thereof |
JP2001205057A (en) * | 2000-01-27 | 2001-07-31 | Toyobo Co Ltd | Hollow fiber membrane |
EP1410839A1 (en) * | 2001-07-24 | 2004-04-21 | ASAHI MEDICAL Co., Ltd. | Hollow fiber membrane for purifying blood |
EP1410839A4 (en) * | 2001-07-24 | 2006-03-15 | Asahi Medical Co | Hollow fiber membrane for purifying blood |
US7087168B2 (en) | 2001-07-24 | 2006-08-08 | Asahi Kasei Medical Co., Ltd. | Hollow fiber membrane for purifying blood |
KR100829692B1 (en) * | 2001-07-24 | 2008-05-16 | 아사히 카세이 쿠라레 메디칼 가부시키가이샤 | Hollow Fiber Membrane for Purifying Blood |
JP2005131482A (en) * | 2003-10-29 | 2005-05-26 | Toray Ind Inc | Separation membrane |
Also Published As
Publication number | Publication date |
---|---|
JPH053331B2 (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100432463B1 (en) | Polysulfone Hollow Fiber Membrane | |
US4220543A (en) | Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same | |
JPS61161103A (en) | Hydrophilic porous membrane and its preparation | |
JPS6397634A (en) | Hydrophilic membrane and its production | |
JPS6397205A (en) | Treatment of polysulfone resin semipermeable membrane | |
US4134837A (en) | Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same | |
JPH04310223A (en) | Polyfluorovinylidene resin membrane and method for production thereof | |
JPS61238834A (en) | Porous polysulfone resin membrane | |
CA1073822A (en) | Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same | |
JPS61238306A (en) | Preparation of semipermeable membrane made of polysulfone resin | |
JPS6238205A (en) | Semi-permeable membrane for separation | |
JPS6397202A (en) | Polyether sulfone resin semipermeable membrane and its production | |
JP2519831B2 (en) | Method for producing charged separation membrane | |
JPH0278425A (en) | Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride | |
JPS6022901A (en) | Selective permeable hollow fiber | |
EP1099468A2 (en) | Microporous hydrophilic membrane | |
JP4352709B2 (en) | Polysulfone-based semipermeable membrane and artificial kidney using the same | |
JP2713294B2 (en) | Method for producing polysulfone-based resin semipermeable membrane | |
JPH06339620A (en) | Method for treating polysulfone resin semipermeable membrane | |
JPS63130103A (en) | Polyacrylonitrile-base semipermeable membrane and manufacturing thereof | |
JPH1066846A (en) | Hydrophilic membrane and its production | |
JP2855233B2 (en) | Method for producing aromatic polysulfone semipermeable membrane having excellent water permeability | |
JPH04338224A (en) | Production of permselective membrane consisting of polysulfone resin | |
JP4003982B2 (en) | Polysulfone-based selectively permeable separation membrane | |
JPH07185278A (en) | Production of separation membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |