JPS6389142A - Electrolyte for carbon dioxide measuring electrode - Google Patents
Electrolyte for carbon dioxide measuring electrodeInfo
- Publication number
- JPS6389142A JPS6389142A JP61231127A JP23112786A JPS6389142A JP S6389142 A JPS6389142 A JP S6389142A JP 61231127 A JP61231127 A JP 61231127A JP 23112786 A JP23112786 A JP 23112786A JP S6389142 A JPS6389142 A JP S6389142A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- electrolyte
- electrolytic solution
- measuring electrode
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 60
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 30
- 239000001569 carbon dioxide Substances 0.000 title claims description 29
- 239000003792 electrolyte Substances 0.000 title claims description 18
- 239000008151 electrolyte solution Substances 0.000 claims description 22
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 150000003841 chloride salts Chemical class 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 229920001451 polypropylene glycol Polymers 0.000 claims description 3
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 claims description 2
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 claims 1
- 239000008280 blood Substances 0.000 description 10
- 210000004369 blood Anatomy 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- VFHDWENBWYCAIB-UHFFFAOYSA-M hydrogen carbonate;tetramethylazanium Chemical compound OC([O-])=O.C[N+](C)(C)C VFHDWENBWYCAIB-UHFFFAOYSA-M 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007102 metabolic function Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、寿命が大幅に延長された炭酸ガス測定電極用
電解液に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electrolytic solution for a carbon dioxide gas measuring electrode that has a significantly extended life.
〈従来の技術〉
血液中の炭酸ガス濃度を知ることは、生体の呼吸及び代
謝機能の良否並びに血液中のpHf4度の近似値を知る
ための臨床検査において極めて重要である。従来、血液
中の炭酸ガスの濃度(又は分圧)を測定する方法として
は、血液、特に動脈中の血液を抜き取って直接測定する
方法が主として用いられているが、この方法では経時的
連続測定が不可能であることと患者に苦痛を与えること
が問題であった。特に、未熟児・新生児の場合には採血
による侵襲が大きいため実施に著しい困難を伴なった。<Prior Art> Knowing the carbon dioxide concentration in the blood is extremely important in clinical tests for determining the quality of the respiratory and metabolic functions of a living body and the approximate value of pH f 4 degrees in the blood. Conventionally, the main method used to measure the concentration (or partial pressure) of carbon dioxide in blood is to draw blood, especially blood from the arteries, and directly measure it, but this method requires continuous measurement over time. The problem was that it was impossible and caused pain to the patient. Particularly in the case of premature infants and newborns, blood sampling is highly invasive, making implementation extremely difficult.
経皮的電極方式は、上記の直接方法とは異なり血液から
組織を通じて拡散された炭酸ガスを皮膚面で捕捉し、患
者に苦痛を与えることなく、経時的に連続測定が出来る
ものである。Unlike the above-mentioned direct method, the transcutaneous electrode method captures carbon dioxide gas diffused from blood through tissues on the skin surface, and can continuously measure it over time without causing pain to the patient.
従来、経皮血中炭酸ガス??f極は、皮膚から拡散して
くる炭酸ガスを炭酸ガス透過性の薄膜を通して炭酸ガス
分圧に応じてpHの変化する電解液中に平衡溶解させ、
該pHの変化をガラス電極と外部比較電極の電位差とし
て検出し測定している。さらに評言すると、その断面構
造を表す第2図に示すように、経皮血中炭酸ガス電極は
、pH応答性ガラス薄膜1を底部に接合した絶縁性ガラ
ス支持管2の内部に緩衝液3及び内部電極4を封入した
ガラス電8i5及び銀・塩化銀電極等よりなる外部比較
電極6の電位差をリード線7で読み取る構造となってい
る。ここで、ガラス電極5及び外部比較型Vi6が浸っ
ている電解液Eは、水とエチレングリコールの混合物を
溶媒とし、塩化物塩及び重炭酸塩を電解質とするもので
あった。Traditionally, transcutaneous blood carbon dioxide? ? The f-pole allows carbon dioxide that diffuses from the skin to be dissolved in an electrolytic solution whose pH changes depending on the partial pressure of carbon dioxide through a carbon dioxide permeable thin film.
The change in pH is detected and measured as a potential difference between a glass electrode and an external comparison electrode. To further comment, as shown in FIG. 2 showing its cross-sectional structure, the transcutaneous blood carbon dioxide electrode has a buffer solution 3 and It has a structure in which the potential difference between a glass electrode 8i5 enclosing an internal electrode 4 and an external comparison electrode 6 made of a silver/silver chloride electrode or the like is read by a lead wire 7. Here, the electrolytic solution E in which the glass electrode 5 and the external comparison type Vi6 were immersed contained a mixture of water and ethylene glycol as a solvent, and a chloride salt and a bicarbonate as an electrolyte.
〈発明が解決しようとする問題点〉
上述の経皮直中炭酸ガス′ポ極は、人体に使用するとき
は勿論、待機状態にあるときも、専用の測定装置コネク
タに差し込まれて42〜45℃に加温されている。<Problems to be Solved by the Invention> The above-mentioned transdermal direct carbon dioxide gas pole is inserted into a dedicated measuring device connector not only when used on the human body but also when in standby mode. It is heated to ℃.
よって、従来の組成の電解液を用いた経皮血中炭酸ガス
測定電極は、2〜3週間使用すると電解液中の溶媒(水
、エチレングリコール)が蒸発してしまい測定不能にな
り、その都度電解液を交換しなければならないという欠
点を有していた。Therefore, if a transdermal blood carbon dioxide measurement electrode using an electrolyte with a conventional composition is used for 2 to 3 weeks, the solvent (water, ethylene glycol) in the electrolyte will evaporate, making measurement impossible. This had the disadvantage that the electrolyte solution had to be replaced.
以上経皮血中炭酸ガス電極を例にとって述べたが、一般
の電気化学的炭酸ガス測定電極においても、同様の電解
液を使用しているため電解液中の溶媒が蒸発し易く、電
解液を頻繁に交換しなければならなかった。The above description uses a transcutaneous blood carbon dioxide electrode as an example, but general electrochemical carbon dioxide measuring electrodes also use the same electrolyte, so the solvent in the electrolyte tends to evaporate, and the electrolyte is It had to be replaced frequently.
よフて、本発明は上記問題点に鑑み炭酸ガス測定電極に
使用でき、寿命が大幅に延長された炭酸ガス測定電極用
電解液を提供することを目的とする。Therefore, in view of the above-mentioned problems, it is an object of the present invention to provide an electrolytic solution for a carbon dioxide gas measuring electrode that can be used in a carbon dioxide gas measuring electrode and has a significantly extended life span.
〈問題点を解決するための手段〉
本発明者は、面記目的を達成するために種々検討を重ね
た結果、はとんど蒸発することのない液体高分子に電解
質を溶解してなる電解液が、従来用いられている電解液
と同等の性能を長期に亘って維持できることを知見した
。かかる知見に基づく本発明の構成は、塩化物および重
炭酸塩からなる電解質を常圧、45℃の蒸発速度が40
nl/ cm−day未満の液体重合物に溶解してな
ることを特徴とする。<Means for Solving the Problems> As a result of various studies to achieve the stated purpose, the present inventor has developed an electrolytic solution in which an electrolyte is dissolved in a liquid polymer that hardly evaporates. It was discovered that the electrolyte solution can maintain performance equivalent to conventionally used electrolyte solutions over a long period of time. The structure of the present invention based on this knowledge is such that an electrolyte consisting of chloride and bicarbonate has an evaporation rate of 40°C at normal pressure and 45°C.
It is characterized by being dissolved in a liquid polymer of less than nl/cm-day.
本発明に用いられる液体重合物は、塩化物塩および重炭
酸塩からなる電解質を必要rA溶解できる液体状のもの
であればよく、また、蒸発速度(常圧、45℃)が4O
nl/ cm −day未満としたのは、例えば電解液
室の表面積が0.126cm″位の場合の電解液は、5
4→44への変化の日数が200日以上となり、従来の
ものの10倍以上の寿命を有することになるからである
。The liquid polymer used in the present invention may be in a liquid state as long as it can dissolve the electrolyte consisting of chloride salt and bicarbonate at the required rA, and the evaporation rate (normal pressure, 45°C) is 4O
For example, when the surface area of the electrolyte chamber is about 0.126 cm, the electrolyte is less than 5 nl/cm-day.
This is because the number of days required for the change from 4 to 44 is 200 days or more, and the lifespan is 10 times longer than that of conventional products.
また、上記液体高分子の中では、ポリエチレングリコー
ル、ポリプロピレングリコールなどの水溶性多価アルコ
ールが好適である。Among the liquid polymers mentioned above, water-soluble polyhydric alcohols such as polyethylene glycol and polypropylene glycol are preferred.
ここで、ポリエチレングリコールでは分子量400位ま
で、ポリプロピレングリコールでは分子?4) 200
0位まで用いることができる。Here, for polyethylene glycol, the molecular weight is up to 400, and for polypropylene glycol, the molecular weight is about 400. 4) 200
It can be used up to the 0th place.
塩化物塩および重炭酸塩からなる面記電解質としては、
従来用いられているものが使用できる。ここで、テトラ
メチルアンモニウム、テトラエチルアンモニウムなどの
有機系の塩化物塩および重炭酸塩を用いた場合、5!!
機系のものを用いた場合に較べて高濃度の電解液が得ら
れる。As a surface electrolyte consisting of chloride salts and bicarbonates,
Conventionally used ones can be used. Here, when organic chloride salts and bicarbonates such as tetramethylammonium and tetraethylammonium are used, 5! !
A highly concentrated electrolyte can be obtained compared to when a mechanical type is used.
〈実 施 例〉
実施例 1
20mMの塩化ナトリウム、20mMの炭酸水素ナトリ
ウムを含イfする水溶液Aを50mZ調製する。次にこ
の水溶液50rrLlとポリエチレングリコール(分子
1200)50mとを混ぜ合せた後、80℃の恒温乾燥
量中に1週間放置して水分を蒸発させる。このポリエチ
レングリコール溶液を濾過して沈澱物を除去し、本発明
にかかる炭酸ガス測定電極用電解液を得た。<Examples> Example 1 50mZ of aqueous solution A containing 20mM sodium chloride and 20mM sodium bicarbonate is prepared. Next, 50 rrLl of this aqueous solution and 50 m of polyethylene glycol (molecular 1200) are mixed, and then left in a constant temperature drying room at 80° C. for one week to evaporate water. This polyethylene glycol solution was filtered to remove precipitates, thereby obtaining an electrolytic solution for a carbon dioxide measuring electrode according to the present invention.
このようにして得た電解液を第2図に示した経皮炭酸ガ
ス電極に適用して5%CO2ガスに対するpH電極と銀
/塩化銀間の電位差をモニタした。この結果を第1図(
a)に示す。比較のため従来技術にかかる電解液を用い
た場合も同様に測定し、結果を第1図(b)に示す。The electrolytic solution thus obtained was applied to the transdermal carbon dioxide electrode shown in FIG. 2, and the potential difference between the pH electrode and silver/silver chloride with respect to 5% CO2 gas was monitored. This result is shown in Figure 1 (
Shown in a). For comparison, measurements were conducted in the same manner using an electrolytic solution according to the prior art, and the results are shown in FIG. 1(b).
両図に示すように、従来技術にかかる電解液を用いた場
合(第1図(b)参照)には20日位が使用限度だった
が本発明にかかる電解液を用いた場合(第1図(a)参
照)には、50日たっても溶媒の蒸発がなく、安定した
電位差が得られた。As shown in both figures, when using the electrolytic solution according to the prior art (see Fig. 1 (b)), the usage limit was about 20 days, but when using the electrolytic solution according to the present invention (see Fig. 1 (b)), the usage limit was about 20 days. In Figure (a)), there was no evaporation of the solvent even after 50 days, and a stable potential difference was obtained.
実施例 2
次に電解質として塩化テトラメチルアンモニウムおよび
重炭酸テトラメチルアンモニウムを用いた例を示す。Example 2 Next, an example using tetramethylammonium chloride and tetramethylammonium bicarbonate as electrolytes will be shown.
20mMの塩化テトラメチルアンモニウム。20mM tetramethylammonium chloride.
20II+Mの水酸化テトラメチルアンモニウムを含有
する水溶液Bを50rnl調製する。この水溶液850
−に炭酸ガスを1晩吹き込んで平衡化させた後、ポリエ
チレングリコール(分子1400 )を50WLl混合
する。この混合液を80℃の恒温乾燥量中に1週間放置
して水分を蒸発させて本実施例の電解液を得た。Prepare 50rnl of aqueous solution B containing 20II+M tetramethylammonium hydroxide. This aqueous solution 850
After equilibration by blowing carbon dioxide gas into the solution overnight, 50WL of polyethylene glycol (1400 molecules) was mixed. This mixed solution was allowed to stand for one week in a constant temperature dryer at 80° C. to evaporate water to obtain the electrolytic solution of this example.
このようにして得られた電解液も実施例1のものと同様
の性能を有していた。The electrolytic solution thus obtained also had the same performance as that of Example 1.
〈発明の効果〉
以上実施例とともに具体的に説明したように、本発明に
かかる炭酸ガス測定電極用電解液を用いると、溶媒の蒸
発がないため電解液の交換頻度が大幅に少なくなる。ま
た本発明にかかる電解液は、一般の炭酸ガス測定電極、
経皮炭酸ガス測定電極、経皮酸素炭酸ガス測定複合電極
等に用いて有用である。<Effects of the Invention> As specifically explained above in conjunction with the examples, when the electrolytic solution for a carbon dioxide measuring electrode according to the present invention is used, the frequency of replacing the electrolytic solution is significantly reduced because there is no evaporation of the solvent. Further, the electrolyte according to the present invention can be used with a general carbon dioxide measuring electrode,
It is useful for use in transcutaneous carbon dioxide measurement electrodes, transcutaneous oxygen and carbon dioxide measurement composite electrodes, etc.
第1図(a)は本発明の一実施例にかかる電解液を用い
た経皮炭酸ガス電極での測定データを表すグラフ、第1
図(b)は、従来技術にかかる電解液を用いた経皮炭酸
ガス測定電極での測定データを表すグラフ、第2図は経
皮炭酸ガス電極の断面図である。FIG. 1(a) is a graph showing measurement data with a transdermal carbon dioxide electrode using an electrolytic solution according to an embodiment of the present invention.
Figure (b) is a graph showing measurement data with a transcutaneous carbon dioxide measuring electrode using an electrolytic solution according to the prior art, and Fig. 2 is a cross-sectional view of the transcutaneous carbon dioxide gas electrode.
Claims (1)
45℃の蒸発速度が40nl/cm・day未満の液体
重合物に溶解してなることを特徴とする炭酸ガス測定電
極用電解液。 2)前記液体重合物がポリエチレングリコール、ポリプ
ロピレングリコールなどの水溶性多価アルコールである
特許請求の範囲第1項記載の炭酸ガス測定電極用電解液
。 3)前記電解質がテトラメチルアンモニウム、テトラエ
チルアンモニウムの塩化物塩および重炭酸塩である特許
請求の範囲第1項あるいは第2項記載の電気化学炭酸ガ
ス電極用電解液。[Claims] 1) An electrolyte consisting of a chloride salt and a bicarbonate is heated at normal pressure,
An electrolytic solution for a carbon dioxide measuring electrode, characterized in that it is dissolved in a liquid polymer having an evaporation rate of less than 40 nl/cm·day at 45°C. 2) The electrolytic solution for a carbon dioxide measuring electrode according to claim 1, wherein the liquid polymer is a water-soluble polyhydric alcohol such as polyethylene glycol or polypropylene glycol. 3) The electrolytic solution for an electrochemical carbon dioxide electrode according to claim 1 or 2, wherein the electrolyte is a chloride salt or bicarbonate of tetramethylammonium, tetraethylammonium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61231127A JPS6389142A (en) | 1986-10-01 | 1986-10-01 | Electrolyte for carbon dioxide measuring electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61231127A JPS6389142A (en) | 1986-10-01 | 1986-10-01 | Electrolyte for carbon dioxide measuring electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6389142A true JPS6389142A (en) | 1988-04-20 |
Family
ID=16918706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61231127A Pending JPS6389142A (en) | 1986-10-01 | 1986-10-01 | Electrolyte for carbon dioxide measuring electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6389142A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506942A (en) * | 2004-07-16 | 2008-03-06 | アラーティス メディカル エイエス | Electrochemical sensor for measuring the partial pressure of carbon dioxide in living tissues in vivo or in vitro |
-
1986
- 1986-10-01 JP JP61231127A patent/JPS6389142A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008506942A (en) * | 2004-07-16 | 2008-03-06 | アラーティス メディカル エイエス | Electrochemical sensor for measuring the partial pressure of carbon dioxide in living tissues in vivo or in vitro |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5749832A (en) | Monitoring systems | |
US5271815A (en) | Method for measuring glucose | |
JPS6114561A (en) | Ph sensor | |
Meruva et al. | Catheter-type sensor for potentiometric monitoring of oxygen, pH and carbon dioxide | |
NO338473B1 (en) | Electrochemical sensor for in-vivo or ex-vivo measurements of the partial pressure of carbon dioxide in living tissue | |
Oreskes et al. | Measurement of ionized calcium in human plasma with a calcium selective electrode | |
Rhodes et al. | Sources of error in oxygen tension measurement. | |
US3498289A (en) | Method for in vivo potentiometric measurements | |
JPS61155949A (en) | Ph sensor | |
JPS6389142A (en) | Electrolyte for carbon dioxide measuring electrode | |
Treasure et al. | A catheter-tip potassium-selective electrode | |
Eberhard et al. | Interference of anesthetic gases at skin surface sensors for oxygen and carbon dioxide | |
US3580239A (en) | Method and apparatus for in vivo potentiometeric measurements | |
JP2015519161A (en) | apparatus | |
Beran et al. | An improved sensor and a method for transcutaneous CO2 monitoring | |
JPH06119B2 (en) | Transdermal sensor for detecting organic matter and electrolytes in sweat | |
Oesch et al. | Solvent polymeric membrane pH catheter electrode for intraluminal measurements in the upper gastrointestinal tract | |
JP7488828B2 (en) | Sensors | |
ES2614755T3 (en) | Cumulative measurement of an analyte | |
JPS6389143A (en) | Electrolyte for oxygen measuring electrode | |
Liss et al. | Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode | |
Holmes et al. | Evaluation of methods for calibration of O2 and CO2 electrodes | |
JPS6131123A (en) | Sticky disc for subcateneous blood gas concentration measuring sensor | |
Hawker et al. | Study of ion transport across biopsies of ileostomy in vitro: search for evidence of intestinal'adaptation'after colectomy. | |
Dittmar et al. | In vivo and in vitro evaluation of specially designed gold and carbon fiber oxygen microelectrodes for living tissues |