Nothing Special   »   [go: up one dir, main page]

JPS6359143B2 - - Google Patents

Info

Publication number
JPS6359143B2
JPS6359143B2 JP53165835A JP16583578A JPS6359143B2 JP S6359143 B2 JPS6359143 B2 JP S6359143B2 JP 53165835 A JP53165835 A JP 53165835A JP 16583578 A JP16583578 A JP 16583578A JP S6359143 B2 JPS6359143 B2 JP S6359143B2
Authority
JP
Japan
Prior art keywords
potential
latent image
electrostatic latent
photoreceptor
bright
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53165835A
Other languages
Japanese (ja)
Other versions
JPS5589859A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16583578A priority Critical patent/JPS5589859A/en
Publication of JPS5589859A publication Critical patent/JPS5589859A/en
Publication of JPS6359143B2 publication Critical patent/JPS6359143B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は画像を形成する装置に関する。電子写
真法により形成される画像は、環境条件等に影響
され易く、その静電潜像を安定化する事は実用上
極めて重要である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for forming images. Images formed by electrophotography are easily affected by environmental conditions and the like, and stabilizing the electrostatic latent image is extremely important in practice.

先ず、一般の電子写真法に基き形成される画像
特性に寄与する主な要素を列挙すると、感光体特
性、感光化する為の帯電手段特性、露光源特性及
び露光量、現像特性、転写特性、転写材特性、残
留現像剤のクリーニング特性等がある。これら各
特性は、温度、湿度、粉塵等の汚染、経時変化等
により影響を受け変動するので、画像特性にも複
雑な影響変化を生ずる事となる。従来、この画像
変化を安定化する為に、上記各特性を各々独立に
安定化する方法が採られているが、いまだ十二分
に満足であると呼べる状態にはいたつていない。
First, the main factors that contribute to the characteristics of images formed based on general electrophotography are listed: photoreceptor characteristics, charging means characteristics for photosensitization, exposure source characteristics and exposure amount, development characteristics, transfer characteristics, These include transfer material characteristics, residual developer cleaning characteristics, etc. Since each of these characteristics is influenced and fluctuated by temperature, humidity, contamination such as dust, changes over time, etc., complex changes in the image characteristics occur. Conventionally, in order to stabilize this image change, a method has been adopted in which each of the above characteristics is stabilized independently, but this method has not yet reached a state that can be called fully satisfactory.

電子写真画像を安定化する方法として、所謂カ
ールソンプロセスに基き、ゼログラフイ感光体上
に帯電露光して静電潜像形成し、現像転写を成す
に際し、その露光すべきオリジナル像の光量、形
成された静電潜像の電位、若しくは現像された画
像濃度等を検知し、前記プロセスの帯電・露光等
の手段にフイード.バツクし安定化を図る事が例
えば、米国特許第2956487号に記載されている。
静電潜像を不安定とする要因としては、帯電々圧
変動、帯電々極への異物付着、帯電々極の酸化等
による経時変化、温湿度によるコロナ放電特性、
画像露光量変化、感光体の疲労、感光体の温湿度
特性変化等が挙げられる。これらの各不安定要因
が一定の範囲内にあるならば、静電潜像の露光
部、非露光部の電位を測定し、フイード・バツク
系により帯電々圧、露光量等を変化させて静電潜
像を安定化する事が可能である。
As a method for stabilizing electrophotographic images, the so-called Carlson process is used to form an electrostatic latent image on a xerographic photoreceptor by charging and exposing it to light. The potential of the electrostatic latent image or the density of the developed image is detected and fed to the charging/exposure means of the process. For example, U.S. Pat. No. 2,956,487 describes the method of back-up and stabilization.
Factors that make an electrostatic latent image unstable include fluctuations in charging voltage, foreign matter adhering to charged electrodes, changes over time due to oxidation of charged electrodes, corona discharge characteristics due to temperature and humidity,
Examples include changes in image exposure, fatigue of the photoreceptor, and changes in temperature and humidity characteristics of the photoreceptor. If each of these instability factors is within a certain range, measure the potential of the exposed and non-exposed areas of the electrostatic latent image, and change the charging voltage, exposure amount, etc. using the feedback system to stabilize the image. It is possible to stabilize the electrolatent image.

上記米国特許は、カールソンプロセスに基き形
成される静電潜像の電位を制御したものである
が、感光体等の劣化が生ずると、その残留電位が
増加し、露光部の電位が変化し、安定化が困難と
なる。これに対し、静電潜像形成の為に2種以上
の帯電工程を要する方式(例えば、本件出願人提
案の特公昭42−19748号、特公昭42−23910号、特
公昭43−24748号等)においては、各帯電工程を
実施する帯電手段を制御する事により、形成され
る静電潜像の露光部電位及び非露光部電位を変化
させる事ができるので、安定化した画像形成を実
現するのに好適なる事を見出した。しかし、潜像
電位測定手段から、各帯電手段にフイード・バツ
クをかけても、潜像電位を基準値に収束安定化す
るまでに長時間要する欠点がある。
The above US patent controls the potential of an electrostatic latent image formed based on the Carlson process, but when the photoreceptor etc. deteriorates, its residual potential increases and the potential of the exposed area changes. Stabilization becomes difficult. On the other hand, methods that require two or more types of charging processes to form an electrostatic latent image (for example, Japanese Patent Publication No. 19748, No. 42-23910, Japanese Patent Publication No. 24748, No. 43-1973 proposed by the applicant, etc.) ), by controlling the charging means that performs each charging step, it is possible to change the exposed and non-exposed part potentials of the electrostatic latent image formed, thereby realizing stable image formation. I found something suitable for this. However, even if feedback is applied from the latent image potential measuring means to each charging means, there is a drawback that it takes a long time to converge and stabilize the latent image potential to a reference value.

本発明は、画像を安定化するために要する時間
を短縮し、常に適正な画像を得ることが可能な画
像形成装置を提供するものである。
The present invention provides an image forming apparatus that can reduce the time required to stabilize an image and always obtain a proper image.

以下本発明の詳細を実施例に基づき図面を参照
しつつ説明する。
The details of the present invention will be explained below based on embodiments and with reference to the drawings.

第1図は静電潜像形成プロセスを実行する装置
の側面図である。その静電潜像形成プロセスは、
導電性支持体上に光導電層、絶縁層を積層して基
本構成とした感光体を用いた特公昭42−23910号
記載のプロセスを適用したものである。
FIG. 1 is a side view of an apparatus for carrying out an electrostatic latent image formation process. The electrostatic latent image formation process is
This is an application of the process described in Japanese Patent Publication No. 42-23910, which uses a photoreceptor whose basic structure is a photoconductive layer and an insulating layer laminated on a conductive support.

この感光体をドラム状に成形した感光ドラム1
は図示しない駆動手段により矢印の方向に回転駆
動される。感光体は1次帯電器2により、一様な
コロナ放電を受け、次にAC帯電器3により、AC
コロナ除電を与えられると同時に、露光光源4よ
りプラテン30上のオリジナル像の光像が露光さ
れ、次にランプ5により全面一様な露光を受け
る。この様にして、感光ドラム1の表面に、高コ
ントラストの静電潜像が得られる。露光はミラー
31とランプ4の往復動による走査(往動)によ
り行われる。この静電潜像を、着色荷電粒子(ト
ナー)と磁性キヤリアから成る現像剤により現像
装置7で現像する。該現像されたトナー像を、感
光ドラム1と転写帯電器8の間に転写紙を感光ド
ラムと同期して給送し、転写帯電器8よりコロナ
放電を与える事により、転写紙に転写する。
Photosensitive drum 1 made by molding this photosensitive member into a drum shape
is rotationally driven in the direction of the arrow by a driving means (not shown). The photoreceptor is subjected to uniform corona discharge by the primary charger 2, and then subjected to AC charger 3 by the AC charger 3.
At the same time as the corona static elimination is applied, the light image of the original image on the platen 30 is exposed by the exposure light source 4, and then the entire surface is uniformly exposed by the lamp 5. In this way, a high contrast electrostatic latent image is obtained on the surface of the photosensitive drum 1. Exposure is performed by scanning (forward movement) by the reciprocating movement of the mirror 31 and lamp 4. This electrostatic latent image is developed in a developing device 7 using a developer consisting of colored charged particles (toner) and a magnetic carrier. The developed toner image is transferred to the transfer paper by feeding a transfer paper between the photosensitive drum 1 and the transfer charger 8 in synchronization with the photoconductor drum, and applying corona discharge from the transfer charger 8.

トナー像を転写された転写紙は、加熱及び加圧
ローラから成る定着器10を通過し、トナー像は
定着される。又転写しきれなかつたトナーを表面
に有する感光ドラムは、クリーニング装置11に
より、残余トナーをクリーニングされ、次の静電
潜像形成プロセスに用意される。
The transfer paper onto which the toner image has been transferred passes through a fixing device 10 consisting of a heating and pressure roller, and the toner image is fixed. A cleaning device 11 cleans the photosensitive drum having residual toner on its surface and prepares it for the next electrostatic latent image forming process.

図示の装置においては、全面露光ランプ5に続
く位置に、感光体ドラム1の表面電位を測定する
為のプローブ6が配される。該プローブは、振動
容量型プローブの様に、従来用いられている各種
のプローブで良い。このプローブ6は表面電位測
定回路16に結合されプローブ信号を処理して、
そこから必要な信号を出力する。そして、この表
面電位測定回路16は、上記プローブで測定した
電位に比例する電圧を発生し、A―Dコンバータ
19を介して、制御部21に入力する。後に詳述
する様に、制御部では、ドラム回転パルス発生器
12bからの信号を入力し又プローブ6からの入
力信号を処理し、一方出力をD―Aコンバータ1
7,18,23等を介して各プロセス手段に接続
される。
In the illustrated apparatus, a probe 6 for measuring the surface potential of the photoreceptor drum 1 is disposed at a position following the full-surface exposure lamp 5. The probe may be any of various conventionally used probes, such as a vibratory capacitance probe. This probe 6 is coupled to a surface potential measuring circuit 16 to process the probe signal,
Output the necessary signals from there. The surface potential measuring circuit 16 generates a voltage proportional to the potential measured by the probe, and inputs it to the control section 21 via the AD converter 19. As will be described in detail later, the control section inputs the signal from the drum rotation pulse generator 12b and processes the input signal from the probe 6, while the output is sent to the D-A converter 1.
It is connected to each process means via 7, 18, 23, etc.

本願発明方法の理解を容易とする為、一般的に
考えられる種々の感光体上の表面電位を一定とす
る基本的手順を説明する。(電位収束法)先ず潜
像の非露光部の電位VD(以下暗部電位と称す)を
測定し、これを予め定めた標準暗部電位VDRと比
較し、それらの電位差x=VDR−VDを求め、その
電位差が一定値に入らなければ、そのxに比例し
た電圧△Epを例えば1次帯電器2に現に印加さ
れている電圧Epに重畳して印加する。この1次
帯電器2への印加電圧の変化の効果がプローブで
検出されるまでの時間待の後、再びVDを測定し、
このサイクルを電位差|x|が一定値aに入るま
で繰返す。
In order to facilitate understanding of the method of the present invention, basic procedures for making the surface potential on various commonly considered photoreceptors constant will be explained. (Potential convergence method) First, measure the potential V D (hereinafter referred to as dark potential) of the non-exposed area of the latent image, compare it with a predetermined standard dark potential V DR , and calculate the potential difference x = V DR − V D is determined, and if the potential difference does not fall within a constant value, a voltage ΔEp proportional to x is applied, for example, superimposed on the voltage Ep currently being applied to the primary charger 2. After waiting for a time until the effect of the change in the voltage applied to the primary charger 2 is detected by the probe, V D is measured again,
This cycle is repeated until the potential difference |x| reaches a constant value a.

次に、潜像の露光部電位VL(以下明部電位と称
す)を測定し、これを予め定めた標準明部電位
VLRと比較し、これらの電位差y=VLR−VLを求
める。この電位差|y|が一定値bに入らなけれ
ば、そのyに比例した電圧△EACを、例えば、AC
帯電器3に現に印加されている電圧EACに重畳し
て加える。その電圧EACの変化の効果がプローブ
で検知されるまでの時間待の後、再びVLを測定
し、|y|がある一定値bの範囲に入るまで繰返
す。次いで、|y|が一定値に収つても|x|が
又変化するので、上記手順を|x|<a、|y|
<bが同時に実現できるまで繰返す。
Next, the exposed part potential V L (hereinafter referred to as the light part potential) of the latent image is measured, and this is set to a predetermined standard bright part potential.
Compare with V LR to find the potential difference y=V LR −V L. If this potential difference |y| does not fall within the constant value b, the voltage △E AC proportional to y is changed to AC
It is added superimposed on the voltage E AC currently applied to the charger 3. After waiting for a period of time until the effect of the change in voltage E AC is detected by the probe, V L is measured again and repeated until |y| falls within a certain constant value b. Next, even if |y| stays at a constant value, |x| will change again, so the above procedure will be changed to |x|<a, |y|
Repeat until <b can be realized simultaneously.

この方法により静電像を安定化するためには、
比較的長時間のドラム回転(数〜十数回)を要す
ることとなり、一般的な電子写真装置に於いて、
最初の一枚目コピーに要する時間が長くなるとい
う致命的な欠点を有することとなる。(係数法) 先ず、暗状態に保つて感光ドラム1を回転さ
せ、続いて露光を施し明状態にする。プローブ1
2位置を感光ドラム暗状態部分が通過している間
に、暗部電位VDを測定し、次いで明状態部分が
通過する間に明部電位VLを測定する。これら測
定値VD,VLを各標準電位VDR,VLRと比較し、x
=VDR−VD、y=VLR−VLを求め、両者が各々一
定値a、bの範囲になければ予め、定められた各
印加電圧を決定するx、yを変数とする函数f
(x、y)、g(x、y)に代入され、△Ep=f
(x、y)、△EAC=g(x、y)を決定する。この
決定値に応じて一次電圧Ep、Ac電圧EACを変化
させる。この工程を|x|<a、|y|<bとな
る迄繰返すものである。詳述すると、露光を暗状
態に保ち、感光ドラムを回転させ、暗部電位VD
を測定する。プローブでの測定値を標準電位と比
較し、電位差|x|が一定値aに入らなければ、
△Ep=αx=α(VDR−VD)だけ一次電圧を変化さ
せる。一方、感光体は暗状態に続いて明状態に変
わつているので、プローブで暗部電位VD測定後
直ちに明部電位VLを測定する。この電位差|y
|が一定値bに入つていなければ、△EAC=βy=
β(VDR−VD)だけAC電圧を変化させる。次いで
感光体表面は暗状態に切換えられ、先に変化させ
た一次電圧、AC電圧の効果がプローブで検知さ
れる迄の時間を待ち、上記手続を繰返し|x|<
a|y|<bへ収束させる。この様にすると、前
記電位収束法に於ける所要時間を、1/3〜1/5に短
絡しうるので有効である。しかし、感光板により
上記関数f(x、y)・g(x、y)が異なり、又
同一感光板でも感光板の吸湿などの環境変動の条
件で変化するので正確な高圧設定条件を出せない
欠点がある。
In order to stabilize the electrostatic image using this method,
This requires relatively long drum rotations (several to dozens of times), and in general electrophotographic equipment,
This has the fatal disadvantage that it takes a long time to copy the first sheet. (Coefficient method) First, the photosensitive drum 1 is rotated while keeping it in a dark state, and then exposed to light to make it in a bright state. probe 1
While the dark state portion of the photosensitive drum passes through the second position, the dark potential V D is measured, and then the light potential V L is measured while the bright state portion passes through the second position. These measured values V D and V L are compared with each standard potential V DR and V LR , and x
= V DR - V D , y = V LR - V L , and if both are not within the range of constant values a and b, then use a function f with x and y as variables to determine each predetermined applied voltage.
(x, y), g(x, y), △Ep=f
(x, y), ΔE AC =g(x, y) is determined. The primary voltage Ep and Ac voltage E AC are changed according to this determined value. This process is repeated until |x|<a and |y|<b. In detail, the exposure is kept in the dark state, the photosensitive drum is rotated, and the dark area potential V D
Measure. Compare the measured value with the probe with the standard potential, and if the potential difference |x| does not fall within the constant value a,
The primary voltage is changed by △Ep=αx=α(V DR −V D ). On the other hand, since the photoreceptor is changing from a dark state to a bright state, the light potential V L is measured immediately after measuring the dark potential V D with the probe. This potential difference |y
If | is not within the constant value b, △E AC =βy=
Change the AC voltage by β(V DR − V D ). Next, the surface of the photoreceptor is switched to a dark state, and the probe waits until the effects of the previously changed primary voltage and AC voltage are detected, and the above procedure is repeated |x|<
Converge to a|y|<b. This is effective because the time required in the potential convergence method can be shortened to 1/3 to 1/5. However, the above functions f(x, y) and g(x, y) differ depending on the photosensitive plate, and even with the same photosensitive plate, they change depending on environmental changes such as moisture absorption of the photosensitive plate, so it is not possible to provide accurate high pressure setting conditions. There are drawbacks.

本発明は、前記電位収束法、係数法に於ける
種々の欠点を除去するものであり、像形成工程に
先立つ感光体の回動中に、静電潜像形成手段の動
作条件を順次n段階(n≧3)に変化させ、それ
ぞれの動作条件毎に前記感光体上に明部領域及び
暗部領域を形成し、前記明部領域及び暗部領域の
表面電位を検出し、その検出値に基づいて前記感
光体の特性曲線を求め、この特性曲線から所定の
コントラスト電位が得られる前記静電潜像形成手
段の動作条件を決定するものであり、これにより
安定な画像を得ることができるものである。
The present invention eliminates various drawbacks in the potential convergence method and the coefficient method, and the operating conditions of the electrostatic latent image forming means are sequentially changed in n stages during rotation of the photoreceptor prior to the image forming process. (n≧3), forming a bright area and a dark area on the photoreceptor under each operating condition, detecting the surface potential of the bright area and the dark area, and based on the detected value. A characteristic curve of the photoreceptor is determined, and operating conditions of the electrostatic latent image forming means that provide a predetermined contrast potential are determined from this characteristic curve, thereby making it possible to obtain a stable image. .

第1図により本発明例を詳述する。1次帯電器
2とAC帯電器3との間45゜、AC帯電器3と電位
検知用センサー6との間を30゜に配置がなされて
いる場合を示す。ドラム1を回転する際、AC帯
電時において、同時に同一画像露光にランプ13
によりバイアスされた一様光をドラムr゜回転する
毎にE1→E2→E3のように順次段階的に強めてい
く。
An example of the present invention will be explained in detail with reference to FIG. A case is shown in which the primary charger 2 and the AC charger 3 are arranged at an angle of 45 degrees, and the angle between the AC charger 3 and the potential detection sensor 6 is arranged at an angle of 30 degrees. When rotating the drum 1 and AC charging, the lamp 13 is simultaneously exposed to the same image.
The uniform light biased by is intensified step by step as E 1 → E 2 → E 3 every time the drum rotates r°.

各段階の一様光の強さにおいて、画像露光の
明・暗部を与える。たとえば、原稿台30の先端
部に原稿の明部・暗部に相当する白紙・黒紙を予
め設けておく。
Bright and dark areas of image exposure are given at each level of uniform light intensity. For example, white paper and black paper corresponding to bright and dark areas of the original are provided in advance at the leading end of the original platen 30.

AC帯電、あるいは画像露光と一様バイアス光
は1次帯電よりも45゜遅らし、電位検知はさらに
30゜遅らせて各工程を行なうようにする。
AC charging, image exposure and uniform bias light are delayed by 45° compared to primary charging, and potential detection is further delayed.
Perform each step with a 30° delay.

第2図に(一様光光量)を3段階に変化させて
r゜/2ずつ明・暗部電位を検知するタイミングチ
ヤートを示す。
Figure 2 shows (uniform light intensity) changing in three stages.
A timing chart for detecting bright and dark potentials in steps of r°/2 is shown.

各タイミングについては、第1図のパルス発生
器12bによりドラム回転に応じて発生するパル
スを制御部22で計数して、前述の各帯電器から
電位検知用センサ6位置まで感光ドラムが移動す
る時間に応じ、露光の明・暗を切り換えたり、表
面電位を測定するタイミングを得ている。一様光
光量の段階的変化時間は、その光量を変えた場合
に検知センサで明・暗電位が安定に測定できる時
間幅とする必要がある。
Regarding each timing, the pulses generated by the pulse generator 12b in FIG. Depending on the situation, the timing is determined by switching between bright and dark exposure and measuring the surface potential. The stepwise change time of the amount of uniform light needs to be a time width that allows the detection sensor to stably measure the bright and dark potentials when the amount of light is changed.

ここではr゜を0.2〜0.5sec相当分(30゜〜90゜)と
するが望ましい。段階的に変化させる一様光光量
は、環境変動及び感光体劣化などによつて潜像電
位が変化した際にも、あらかじめ定められたコン
トラスト電位を得ることができるように、所定の
一様光光量条件の範囲で変化させるとよい。
Here, it is desirable to set r° to 0.2 to 0.5 seconds (30° to 90°). The amount of uniform light that is changed in steps is such that even when the latent image potential changes due to environmental changes or deterioration of the photoconductor, a predetermined contrast potential can be obtained. It is preferable to change it within the range of light quantity conditions.

次に、上述の如く、表面電位検知が行われた場
合、明・暗部電位に応じた電位検知用センサ6の
出力電圧は19によりアナログからデジタル変換
され、演算部20に入力する。
Next, as described above, when surface potential detection is performed, the output voltage of the potential detection sensor 6 according to the bright/dark potential is converted from analog to digital by 19 and input to the calculation unit 20.

演算部では前記一様光光量を順次段階的に変化
したその光量値に対して(デジタル変換された)
明・暗電位の電位コントラストを計算し、電位コ
ントラスト曲線を制御部21に出力する。制御部
21では、あらかじめ定められた電位コントラス
トを得るように一様光を与えるランプ光源13の
印加電圧を演算部において決められた、電位コン
トラスト曲線から決定する。制御部21からの出
力値は17によりデジタル・アナログ変換されラ
ンプ光源4に入力する。
The arithmetic unit calculates the light intensity value (digitally converted) by changing the uniform light intensity in a stepwise manner.
The potential contrast between bright and dark potentials is calculated, and a potential contrast curve is output to the control unit 21. The control section 21 determines the voltage applied to the lamp light source 13 that provides uniform light so as to obtain a predetermined potential contrast from the potential contrast curve determined in the calculation section. The output value from the control section 21 is digital-to-analog converted by 17 and inputted to the lamp light source 4.

新らたに、設定された一様光光量下での、明部
電位は、予め順次一様光光量を変化させた場合求
められた、明電位曲線から求めることができ、あ
らかじめ定められた明部電位に対し、不足分のバ
イアスを現像器7のスリーブローラに印加する。
The bright area potential under a newly set uniform light intensity can be obtained from the bright potential curve obtained by sequentially changing the uniform light intensity in advance, and A bias corresponding to the shortage of the partial potential is applied to the sleeve roller of the developing device 7.

第3図は、一様光を照射変化した場合の表面電
位Vと光像光量Eの曲線である。
FIG. 3 is a curve of the surface potential V and the amount of light image E when uniform light is irradiated and varied.

第4図は、第1図のプロセスで、第2図のタイ
ミングチヤートに従つて、電位検知を行つた場合
において、一様光の変化光量をx1が0.2lux・sec、
x2が0.4lux・sec、x3が0.6lux・secの3段階に変
えた場合の明電位VL、暗電位VDの電位コントラ
ストVC(VD−VL)の各曲線を示したグラフであ
る。明部画像露光量は0.8lux・secとする。今、
標準暗電位VSDを+450、同明電位VSLを−50vと
すると、同電位コントラストVSCは500vとなる。
この値はx2、x3間に存在し、この間の電位コント
ラスト曲線に対して直線近似を行なうと、電位コ
ントラストに比例した値としてx2点の一様光光量
にさらにバイアスされた光量、即ちVSCを得るた
めの一様光光量0.428lux・secが決定される。
Figure 4 shows the changing light amount of uniform light when x 1 is 0.2 lux sec,
The curves of the potential contrast V C (V D −V L ) of the bright potential V L and the dark potential V D are shown when x 2 is changed to 0.4 lux・sec and x 3 is changed to 0.6 lux・sec. It is a graph. The bright image exposure amount is 0.8lux·sec. now,
If the standard dark potential V SD is +450 and the same bright potential V SL is -50 V, the same potential contrast V SC is 500 V.
This value exists between x 2 and x 3 , and when a linear approximation is made to the potential contrast curve between these points, the amount of light that is further biased to the uniform light amount at point x 2 as a value proportional to the potential contrast, i.e. A uniform light amount of 0.428 lux·sec to obtain V SC is determined.

一様光光量を順次段階的に変化させた回数が多
い程上述の直線近似で効果的にあらかじめ定めら
れたVSCになるように一様光光量を決定できる
が、回数が少ない場合、VSCに対して若干の誤差
が出るので、直線近似よりも、2次あるいは、3
次曲線近似の方が、より効果的に一様光光量を決
定することができる。
The more times the amount of uniform light is changed stepwise, the more effectively the amount of uniform light can be determined using the above-mentioned linear approximation to achieve the predetermined V SC . Since there will be some error in the linear approximation, it is better to use quadratic or cubic
The following curve approximation can determine the uniform light amount more effectively.

たとえば、一様光光量の順次段階的に変えた場
合の変数をxとすると、各段階で検知される明・
暗電位の電位コントラストVCは、 VC=ax2+bx+c と示すことができ、未知数a、b、cは一様光光
量を3段階変化することで求められ、2次曲線を
決定できる。3段階の変化をx1を0.2luxsec、x2
を0.4luxsec、x3を0.6luxsecとすると、求められ
た2次曲線にあらかじめ定められた電位コントラ
ストVSCは500Vを代入すれば、一様光光量を求め
ることができる。即ち、VCが500vのときxscは (−b+√2−4(−500))/2a の周知の式を解くことで求められる。同様に、3
次曲線近似を行なう場合、4段階光量を変化させ
れば求められる。
For example, if x is the variable when the amount of uniform light is changed in steps, then the brightness detected at each step is
The potential contrast V C of the dark potential can be expressed as V C =ax 2 +bx+c, and the unknowns a, b, and c are obtained by changing the amount of uniform light in three steps, and a quadratic curve can be determined. 3 step change x 1 to 0.2luxsec, x 2
Assuming that is 0.4luxsec and x 3 is 0.6luxsec, the uniform light amount can be determined by substituting 500V for the predetermined potential contrast V SC to the obtained quadratic curve. That is, when V C is 500V, xsc is obtained by solving the well-known formula (-b+√ 2 -4(-500))/2a. Similarly, 3
When performing the following curve approximation, it can be obtained by changing the light amount in four steps.

以上のようにし、一様光光量だけを連続して変
化させ、それに従つた一連の電位検知を一度行な
うだけで、あらかじめ定められた電位コントラス
トを得るように一様光光量を決めることができ
る。よつて、従来の収束法の如く、高圧電圧を一
度変化させてから電位検知という操作を数回〜数
十回繰り返して行なう必要がなく、帯電器と電位
検知用センサ間のプロセス時間の損失が少なく、
商業用コピー機に対して、電位検知に要する時間
を短縮できる。
As described above, by continuously changing only the amount of uniform light and performing a series of potential detections accordingly, it is possible to determine the amount of uniform light so as to obtain a predetermined potential contrast. Therefore, unlike the conventional convergence method, there is no need to repeat the operation of changing the high voltage once and then detecting the potential several to dozens of times, and the process time lost between the charger and the potential detection sensor is reduced. less,
Compared to commercial copy machines, the time required for potential detection can be reduced.

又、係数法では、感光板の特性が変わつた場
合、あらかじめ定められた係数が異なつてくるの
で、制御が正しく行なわれない欠点があるが、こ
の点に対しても十分対処できる。
Further, in the coefficient method, if the characteristics of the photosensitive plate change, the predetermined coefficients will change, so the control cannot be carried out correctly, but this problem can be adequately addressed.

又、明部・暗部電位測定時に、一様光にバイア
スして、明・暗を形成する光源は、画像露光用の
光源でも、測定用に別に設けた光源でもよい。
又、ランプの立ち上り特性、立ち下り特性が、測
定の誤差と損失時間とならないようにランプ光量
を、シヤツタを用いて機械的に与えてもよい。な
お、一様光の光量変化は、一様光を与えるランプ
電源電圧を変化させる方法だけでなく、数種類の
NDフイルタを用いたり、ランプ光の絞を変化さ
せることも可能である。
Furthermore, the light source that biases uniform light to form brightness and darkness when measuring the potential in bright and dark areas may be a light source for image exposure, or a light source provided separately for measurement.
Further, the amount of light from the lamp may be mechanically applied using a shutter so that the rise and fall characteristics of the lamp do not cause measurement errors and loss time. Note that the amount of uniform light can be changed not only by changing the lamp power supply voltage that provides uniform light, but also by several methods.
It is also possible to use an ND filter or change the aperture of the lamp light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による安定像形成装置の断面
図、第2図は第1図の動作を示すタイミングチヤ
ート図、第3図は一様光を照射した場合のV―E
特性図、第4図は一様光光量を段階的に変化した
場合の電位コントラスト特性図であり、図中14
は露光光源、15はバイアス光光源、16は表面
電位計、22は現像バイアス電源である。
Fig. 1 is a sectional view of the stable image forming device according to the present invention, Fig. 2 is a timing chart showing the operation of Fig. 1, and Fig. 3 is a V-E when uniform light is irradiated.
The characteristic diagram, Figure 4, is a potential contrast characteristic diagram when the amount of uniform light is changed stepwise.
15 is an exposure light source, 15 is a bias light source, 16 is a surface electrometer, and 22 is a developing bias power source.

Claims (1)

【特許請求の範囲】 1 感光体に静電潜像を形成する静電潜像形成手
段、 前記感光体上に形成される静電潜像を現像する
現像手段、 前記感光体上に形成される明部領域及び暗部領
域の表面電位を検出する検出手段、 前記検出手段の出力に応じて前記静電潜像形成
手段の動作条件を制御する制御手段、 を有し、 前記制御手段は像形成工程に先立つ前記感光体
の回動中に、前記静電潜像形成手段の動作条件を
順次n段階(n≧3)に変化させ、それぞれの動
作条件毎に前記感光体上に明部領域及び暗部領域
を形成し、前記明部領域及び暗部領域の表面電位
を前記検出手段により検出し、その検出値に基づ
いて前記感光体の特性曲線を求め、この特性曲線
から所定のコントラスト電位が得られる前記静電
潜像形成手段の動作条件を決定することを特徴と
する画像形成装置。
[Scope of Claims] 1. An electrostatic latent image forming means for forming an electrostatic latent image on a photoreceptor, a developing means for developing the electrostatic latent image formed on the photoreceptor, and an electrostatic latent image formed on the photoreceptor. a detection means for detecting surface potentials in bright and dark regions; and a control means for controlling operating conditions of the electrostatic latent image forming means in accordance with the output of the detection means, the control means being used in the image forming step. During the rotation of the photoreceptor prior to this, the operating conditions of the electrostatic latent image forming means are sequentially changed in n steps (n≧3), and a bright area and a dark area are formed on the photoreceptor for each operating condition. forming a region, detecting the surface potential of the bright region and the dark region by the detecting means, determining a characteristic curve of the photoreceptor based on the detected value, and obtaining a predetermined contrast potential from the characteristic curve. An image forming apparatus characterized in that operating conditions of an electrostatic latent image forming means are determined.
JP16583578A 1978-12-28 1978-12-28 Method and apparatus for forming stable image Granted JPS5589859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16583578A JPS5589859A (en) 1978-12-28 1978-12-28 Method and apparatus for forming stable image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16583578A JPS5589859A (en) 1978-12-28 1978-12-28 Method and apparatus for forming stable image

Publications (2)

Publication Number Publication Date
JPS5589859A JPS5589859A (en) 1980-07-07
JPS6359143B2 true JPS6359143B2 (en) 1988-11-17

Family

ID=15819897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16583578A Granted JPS5589859A (en) 1978-12-28 1978-12-28 Method and apparatus for forming stable image

Country Status (1)

Country Link
JP (1) JPS5589859A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143356A (en) * 1982-02-19 1983-08-25 Canon Inc Optical printer
JPS5993469A (en) * 1982-11-18 1984-05-29 Matsushita Electric Ind Co Ltd Electrophotographic device
JPS61213865A (en) * 1985-03-18 1986-09-22 ゼロツクス コーポレーシヨン Automatic setter for electrophotographic printing machine
US4821065A (en) * 1986-01-10 1989-04-11 Canon Kabushiki Kaisha Recording apparatus having controllable recording beam states
JP4900434B2 (en) * 2009-07-31 2012-03-21 ブラザー工業株式会社 Image forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105230A (en) * 1977-02-25 1978-09-13 Ricoh Co Ltd Optimum maintaining method of electrophotographical duplication images
JPS53136838A (en) * 1977-05-04 1978-11-29 Ricoh Co Ltd Automatic controlling method of image quality in transfer type electrostatic copier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105230A (en) * 1977-02-25 1978-09-13 Ricoh Co Ltd Optimum maintaining method of electrophotographical duplication images
JPS53136838A (en) * 1977-05-04 1978-11-29 Ricoh Co Ltd Automatic controlling method of image quality in transfer type electrostatic copier

Also Published As

Publication number Publication date
JPS5589859A (en) 1980-07-07

Similar Documents

Publication Publication Date Title
US9454109B2 (en) Image forming apparatus controlling transfer conditions based on resistance of transfer member
JPH0421868B2 (en)
CA2076765C (en) Esv readings of toner test patches for adjusting ird readings of developed test patches
JP2738749B2 (en) Image forming device
US6144024A (en) Digital densitometer using voltage-controlled oscillator, counter, and look-up table
JPH0314187B2 (en)
US5523831A (en) Accurate dynamic control of the potential on the photoconductor surface using an updatable look-up table
JPS6359143B2 (en)
US4619520A (en) Variable magnification electrophotographic copying apparatus
JPS60213964A (en) Method and apparatus for maintaining given potential ratio when electrostatically charged photosensitive layer is exposed to light
US4000944A (en) Photoreceptor for electrostatic reproduction machines with built-in electrode
JPH0670726B2 (en) Color image forming device
JPS645291B2 (en)
JP3481708B2 (en) Potential sensor calibration method
JP3214515B2 (en) Method of measuring surface voltage of photoreceptor
JP2698089B2 (en) Control method of image forming apparatus
JPH05107835A (en) Image forming device
JPH0561304A (en) Image forming device and potential detecting method
JPH0777853A (en) Process controller
KR940001006Y1 (en) Automatic developing bias voltage control system in electronic appliances
JP3227345B2 (en) Image forming device
JPS63136071A (en) Control method for light quantity of electrostatic discharging light
JPH0786709B2 (en) Copy density adjustment method
JPS60131574A (en) Control method of image density
JPH08110663A (en) Image forming device