Nothing Special   »   [go: up one dir, main page]

JPS63305917A - Production of ultrapure water and equipment thereof and method for using ultrapure water - Google Patents

Production of ultrapure water and equipment thereof and method for using ultrapure water

Info

Publication number
JPS63305917A
JPS63305917A JP62139782A JP13978287A JPS63305917A JP S63305917 A JPS63305917 A JP S63305917A JP 62139782 A JP62139782 A JP 62139782A JP 13978287 A JP13978287 A JP 13978287A JP S63305917 A JPS63305917 A JP S63305917A
Authority
JP
Japan
Prior art keywords
water
raw water
volatile components
water vapor
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62139782A
Other languages
Japanese (ja)
Other versions
JPH0515486B2 (en
Inventor
Hideaki Kurokawa
秀昭 黒川
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Harumi Matsuzaki
松崎 晴美
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Hiroaki Yoda
裕明 依田
Nobuatsu Hayashi
林 伸厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139782A priority Critical patent/JPS63305917A/en
Priority to DE88104672T priority patent/DE3884435T2/en
Priority to EP88104672A priority patent/EP0284052B1/en
Priority to US07/172,583 priority patent/US4879041A/en
Priority to KR1019880003177A priority patent/KR960003543B1/en
Publication of JPS63305917A publication Critical patent/JPS63305917A/en
Publication of JPH0515486B2 publication Critical patent/JPH0515486B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To obtain high-purity ultrapure water by boiling raw water to gasify and remove volatile components and thereafter generating steam from this raw water and allowing this steam to permeate through a hydrophobic porous membrane and thereafter condensing it. CONSTITUTION:Raw water 111 is introduced into a removal tower 2 of volatile components and boiled by heating it with a heater 110 thereof to gasify carbon dioxide and volatile organic substance contained in raw water and these are discharged together with steam to the outside of the system through an outlet 112 of steam. The raw water wherein carbon dioxide and the volatile organic substance dissolved therein are removed is sent to a film distillation tower 1 with a conveying pump 106 and reheated with a heater 108 for raw water and evaporated. The steam 105 produced by evaporation is filtered with a hydrophobic porous membrane 101 and condensed on the condensation surface 113 of the surface of a pipeline in which cooling water 103 is allowed to flow and taken out as produced water (extra ultrapure water) 104.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超純水の製造方法と製造装置及び製造した超
純水の使用方法に関する。本発明は、炭酸成分や揮発性
の有機物などの揮発性物質及び微粒子や微生物などの非
揮発性物質を含む原水から超純水を製造する技術に係る
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for producing ultrapure water, and a method for using the produced ultrapure water. The present invention relates to a technology for producing ultrapure water from raw water containing volatile substances such as carbonic acid components and volatile organic substances, and non-volatile substances such as fine particles and microorganisms.

〔従来の技術〕[Conventional technology]

半導体の製造工程や医薬品の製造には、含まれる不純物
の量ができる限り少ない高純度の水すなわち超純水が必
要とされている。特に半導体集積回路(LSI)の洗浄
工程では大量の超純水を用いている。この超純水の純度
が製品の歩留りに大きな影響を与え、昨今の高レベルの
LSI(1メガビツト、4メガビツト等)の洗浄にはさ
らに高純度の水が要求されている。
Semiconductor manufacturing processes and pharmaceutical manufacturing require highly purified water containing as few impurities as possible, that is, ultrapure water. In particular, a large amount of ultrapure water is used in the cleaning process of semiconductor integrated circuits (LSI). The purity of this ultrapure water has a great effect on the product yield, and even higher purity water is required for cleaning modern high-level LSIs (1 megabit, 4 megabit, etc.).

従来の超純水製造装置は、「環境技術Jvo、Q14゜
Na4.(1985’)第353〜358頁に記載され
ているように、各種濾過膜、イオン交換樹脂、殺菌灯、
脱気装置等を含み、これらを組み合わせて装置全体が構
成されている。
Conventional ultrapure water production equipment uses various filtration membranes, ion exchange resins, germicidal lamps,
It includes a deaeration device and the like, and the entire device is constructed by combining these devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、各種濾過膜、イオン交換樹脂殺菌灯、
などの多くの要素機器から成るので、生成超純水の水質
向上には、各機器のレベルアップが必要である。また、
要素機器の間を接続する配管からの溶出の問題、要素機
器自身からの溶出の問題などがある。
The above conventional technologies include various filtration membranes, ion exchange resin germicidal lamps,
Since it consists of many elemental equipment such as, it is necessary to upgrade each equipment in order to improve the quality of the produced ultrapure water. Also,
There are problems such as elution from piping connecting between elemental devices and elution from the elemental devices themselves.

このようなことから、従来技術では微生物及び微粒子を
含まない超高純度の純水を製造することは難しい。
For this reason, it is difficult to produce ultra-high purity water that is free of microorganisms and particulates using conventional techniques.

前記刊行物「環境技術」の第354頁の表1には、超純
水の水質の推移が示されているが、微生物を含まない超
純水は得られていない。
Table 1 on page 354 of the aforementioned publication "Environmental Technology" shows the changes in the quality of ultrapure water, but ultrapure water that does not contain microorganisms has not been obtained.

本発明の目的は、前記従来技術にくらべて高純度の水を
得ることができる超純水製造方法及び製造装置を提供す
るにある。
An object of the present invention is to provide a method and apparatus for producing ultrapure water that can obtain water with a higher purity than that of the prior art.

本発明の他の目的は、かかる超純水の使用方法を提供す
るにある。
Another object of the present invention is to provide a method for using such ultrapure water.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、揮発性成分及び非揮発性成分を含む原水を沸
騰させて揮発性成分を気化させて除去し、揮発性成分を
除去した原水から水蒸気を発生させ該水蒸気を疎水性多
孔質膜を透過させたのち凝縮して超純水を製造すること
にある。
The present invention boils raw water containing volatile and non-volatile components to vaporize and remove the volatile components, generates water vapor from the raw water from which the volatile components have been removed, and transfers the water vapor to a hydrophobic porous membrane. The purpose is to produce ultrapure water by permeating it and condensing it.

疎水性多孔質膜としては、気体は透過させるが、液体は
透過させないものを用いる。詳しくは、原水をまず、加
熱もしくは減圧等の操作により沸騰させ、原水中に含ま
れる揮発性不純物例えば、炭酸ガス成分(H2C○s 
+ HCOs−r CO82−) 、有機物を気化して
除去させ、揮発性不純物の無くなった原水を再度加熱し
蒸発させる。発生した蒸気は、疎水性多孔質膜を通過す
る際、同伴するミストと分離され、純度の高い水蒸気だ
けが凝縮され、生成水として取り出される。
The hydrophobic porous membrane used is one that allows gas to pass through but not liquid. Specifically, raw water is first boiled by heating or depressurizing operations, and volatile impurities contained in the raw water, such as carbon dioxide components (H2C○s), are removed from the raw water.
+ HCOs-r CO82-), the organic matter is vaporized and removed, and the raw water free of volatile impurities is heated again and evaporated. When the generated steam passes through a hydrophobic porous membrane, it is separated from the accompanying mist, and only highly pure steam is condensed and taken out as produced water.

なお水蒸気を凝縮する雰囲気を飽和水蒸気もしくは不活
性ガスの雰囲気に保持し、外気からの汚染を防止するこ
とにより、より一層高い純度の超純水を得ることができ
る。
Note that ultrapure water of even higher purity can be obtained by maintaining the atmosphere in which water vapor is condensed to be saturated water vapor or an inert gas atmosphere to prevent contamination from the outside air.

本発明によれば、微生物を全く含まない超純水を製造す
ることが可能である。このようなことがら、本発明は、
今までに例のないきわめて高純度の超純水製造方法と云
える。従って、以下では本発明によって得られる超純水
を超々純水を呼ぶことにする。
According to the present invention, it is possible to produce ultrapure water that does not contain any microorganisms. In view of the above, the present invention
It can be said that this is an unprecedented method for producing ultrapure water of extremely high purity. Therefore, hereinafter, the ultrapure water obtained by the present invention will be referred to as ultra-superpure water.

本発明の超純水製造方法は、揮発性成分および非揮発性
成分を含む原水を加熱する手段と該加熱によって気化し
た揮発性成分の排気手段を具備した揮発性成分除去塔、
揮発性成分除去後の水を蒸発させる加熱手段と該加熱に
よって発生した水蒸気を透過させる疎水性多孔質膜及び
該膜を透過した水蒸気を凝縮させる冷却手段を具備した
腹黒留塔を備える。更に好ましくは、疎水性多孔質膜を
透過した水蒸気を凝縮させる雰囲気を飽和水蒸気又は不
活性ガス雰囲気に保持するために該雰囲気に水蒸気又は
不活性ガスを供給する手段を有する。
The method for producing ultrapure water of the present invention includes a volatile component removal column equipped with a means for heating raw water containing volatile components and non-volatile components, and a means for exhausting volatile components vaporized by the heating;
The method is equipped with a heating means for evaporating water after removal of volatile components, a hydrophobic porous membrane for transmitting water vapor generated by the heating, and a cooling means for condensing the water vapor that has passed through the membrane. More preferably, it has means for supplying water vapor or an inert gas to the atmosphere in order to maintain the atmosphere in which the water vapor that has permeated through the hydrophobic porous membrane is condensed to be a saturated water vapor or inert gas atmosphere.

本発明によれば、常温よりも高い温度に熱せられた超々
純水が得られる。このため、LSIの洗浄に有利である
According to the present invention, ultra-ultra pure water heated to a temperature higher than room temperature can be obtained. Therefore, it is advantageous for cleaning LSI.

水の性質として、高温になるほど、表面張力が小さくな
り基盤との親和性が向上する、静電気による影響が少な
くなる、などの利点がある。このことから常温で得られ
た超純水を加熱して使用したりしているが、本発明によ
れば特に加熱することなく前述の利点を得ることができ
る。しかも本発明によって得られる水は、不純物がきわ
めて少ないので、LSIの洗浄における諸問題たとえば
所望のLSIパターンが形成されない、pn接合のリー
ク電流が増加する、ゲート酸化膜の耐圧が劣化する等の
問題を緩和でき、LSIの歩留及び特性を向上すること
ができる。
As for the properties of water, there are advantages such as the higher the temperature, the lower the surface tension, the better the affinity with the substrate, and the less affected by static electricity. For this reason, ultrapure water obtained at room temperature is heated before use, but according to the present invention, the above-mentioned advantages can be obtained without particular heating. Moreover, since the water obtained by the present invention has very few impurities, there are various problems in cleaning LSIs, such as not forming a desired LSI pattern, increasing leakage current of the pn junction, and deteriorating the withstand voltage of the gate oxide film. It is possible to alleviate the problem and improve the yield and characteristics of LSI.

更に本発明によれば微生物を全く含まないか或は殆ど含
まない高温超々純水が得られ、しかも微生物が含まれて
いたとしても高温に保持されることによって増殖が著し
く抑制できるので、医療器具の洗浄や医薬品の製造に用
いるのにきわめて有効である。
Furthermore, according to the present invention, high-temperature ultra-ultra-pure water that does not contain any or almost no microorganisms can be obtained, and even if microorganisms are contained, their proliferation can be significantly suppressed by keeping them at a high temperature, so that they can be used in medical instruments. It is extremely effective for use in cleaning and manufacturing pharmaceutical products.

〔作用〕[Effect]

通常、水道水や逆浸透処理をした水中には、各種無機物
、イオン、有機物、微生物が多量に含まれている。これ
らの不純物を徐々に除去することで超純水を生成してい
る。本発明では、蒸留法では除去できない揮発性の物質
、炭酸ガス成分、揮発性の有機物成分、無機成分、アン
モニア、S○3ガス等)だけを前段で、加熱、減圧、オ
ゾン酸化等の手法を用いて除去する。揮発性成分を除去
された原水はさらに加熱され、水蒸気が発生する。この
水蒸気は、揮発性成分がすでに除去されているため、か
なりの高純度の水蒸気となっている。水蒸気はさらに疎
水性多孔質膜を透過する際、同伴する水滴(ミスト)が
除去され、水以外の不純物を含まない高純度の水蒸気と
なる。その後、凝縮し、超々純水となる。
Normally, tap water and water that has been subjected to reverse osmosis treatment contain large amounts of various inorganic substances, ions, organic substances, and microorganisms. Ultrapure water is produced by gradually removing these impurities. In the present invention, only volatile substances that cannot be removed by distillation (carbon dioxide components, volatile organic components, inorganic components, ammonia, S○3 gas, etc.) are removed in the first stage using methods such as heating, reduced pressure, and ozone oxidation. Remove using. The raw water from which volatile components have been removed is further heated to generate steam. Since volatile components have already been removed from this water vapor, it is highly pure water vapor. When the water vapor further passes through the hydrophobic porous membrane, accompanying water droplets (mist) are removed, resulting in highly pure water vapor containing no impurities other than water. After that, it condenses and becomes ultra-ultra pure water.

したがって、通常の蒸留装置において問題となる。同温
度で揮発する成分(例えば、炭酸ガス成分や低沸点有機
物)については、前段の揮発性成分除去段階で除去され
、蒸留の際生じる蒸気に同伴される微小な液滴(ミスト
)の混入に対しては疎水性多孔質膜による気(水蒸気)
−液(ミスト)分離により対処されるため、イオン性、
有機物、微粒子、生菌等の不純物を含まない、高純度の
超超純水の製造が可能となった。
Therefore, this poses a problem in ordinary distillation equipment. Components that volatilize at the same temperature (e.g. carbon dioxide components and low-boiling point organic substances) are removed in the previous volatile component removal step, and are prevented from mixing with minute droplets (mist) that are entrained in the steam generated during distillation. On the other hand, air (water vapor) is generated by a hydrophobic porous membrane.
- Because it is handled by liquid (mist) separation, ionic,
It has become possible to produce highly pure ultra-pure water that does not contain impurities such as organic matter, particulates, and viable bacteria.

又、疎水性多孔質を通過した水蒸気を凝縮させる雰囲気
を水蒸気飽和状態もしくは不活性ガス雰囲気とすること
により、空気からの汚染を防止し、より一層高い純度の
超々純水とすることが可能となった。
In addition, by making the atmosphere in which the water vapor that has passed through the hydrophobic porous material condenses into a water vapor-saturated state or an inert gas atmosphere, it is possible to prevent contamination from the air and obtain ultra-ultra pure water with even higher purity. became.

本発明者らは、膜蒸留法によって得た生成水が非揮発性
成分を全く含まないか或は殆ど含まないという事実を確
認した。この事実に基づいて、膜蒸留法では除去できな
い揮発性成分を別の工程で除去することを検討し、本発
明に到達した。
The present inventors have confirmed the fact that the produced water obtained by membrane distillation method contains no or almost no non-volatile components. Based on this fact, we considered removing volatile components that cannot be removed by membrane distillation in a separate process, and arrived at the present invention.

本発明は、原水中の揮発性成分除去工程を膜蒸留工程の
前段に設けることにあるが、こうすることにより後段に
設ける場合にくらべて生成水の純度を高めることができ
る。具体的に云うと、膜蒸留後の純水は物を溶かし易い
性質をもっており、この純水を加熱して揮発性成分を除
去するときに容器の成分が溶出し、純度が下がるおそれ
がある。
The purpose of the present invention is to provide the step for removing volatile components in raw water before the membrane distillation step, and by doing so, the purity of the produced water can be increased compared to when the step is provided after the membrane distillation step. Specifically, pure water after membrane distillation has the property of easily dissolving substances, and when this pure water is heated to remove volatile components, components in the container may be eluted and the purity may decrease.

又、膜蒸留工程後に加熱して揮発性成分を除去すること
は生成水の一部をも排出してしまうことになり不経済で
もある。
Further, heating to remove volatile components after the membrane distillation step also discharges a portion of the produced water, which is uneconomical.

膜蒸留工程の前段に揮発性成分除去工程を設けることに
より、上述の問題を解消することができる。
The above-mentioned problem can be solved by providing a volatile component removal step before the membrane distillation step.

膜蒸留工程時に原水を加熱し水蒸気を発生させたときに
、水蒸気にミストが同伴するが疎水性多孔質膜を透過さ
せることによりミストを分離することができる。
When raw water is heated to generate water vapor during the membrane distillation process, mist accompanies the water vapor, but the mist can be separated by passing through a hydrophobic porous membrane.

疎水性多孔質膜としては、たとえば特開昭60−118
284号に記載されているようにポリエチレン。
As a hydrophobic porous membrane, for example, JP-A-60-118
Polyethylene as described in No. 284.

ポリプロピレン等のポリオレフィン、ポリスルホン、ホ
リエーテルスルホン、シリコーン樹脂、フッ素樹脂等を
用いることができる。疎水性多孔質膜の疎水性について
も特開昭60−118284号に記載されている条件を
満たすことが望ましい。
Polyolefins such as polypropylene, polysulfones, polyethersulfones, silicone resins, fluororesins, etc. can be used. It is desirable that the hydrophobicity of the hydrophobic porous membrane also satisfy the conditions described in JP-A-60-118284.

膜蒸留によって純水を製造することは公知であり、たと
えば特開昭61−230703号に示されている。
It is known to produce pure water by membrane distillation, for example as shown in JP-A-61-230703.

しかし、膜蒸留だけでは揮発性成分の除去効果が不十分
であり、超々純水を製造することができない。具体的に
云うと原水を蒸発させたときに揮発性成分も気化するが
、水蒸気を凝縮した際に気化した揮発性成分の一部をと
り込んで−しまい、生成された水は揮発性成分を含む純
度の低いものとなってしまう。
However, membrane distillation alone is insufficient to remove volatile components and cannot produce ultra-ultra pure water. Specifically, when raw water is evaporated, the volatile components are also vaporized, but when the water vapor is condensed, some of the volatile components are taken in, and the produced water contains no volatile components. This results in a product with low purity.

本発明における揮発性成分除去手段としては、原水を沸
騰させ揮発性成分を気化させて除去することが最も有効
である。原水を沸騰させる手段としては、原水を大気中
で沸点以上の温度に加熱すること戒は原水を減圧して沸
騰させることが可能である。
The most effective means for removing volatile components in the present invention is to boil the raw water to vaporize and remove volatile components. As a means of boiling raw water, it is possible to heat the raw water to a temperature above the boiling point in the atmosphere or to reduce the pressure of the raw water and boil it.

原水を加熱して揮発性成分を気化させる際、原水が沸騰
する温度よりも低い温度に加熱したのでは揮発性成分の
除去効果が乏しい。例えば80℃前後の温度に加熱した
のでは、本発明で得られるような超々純水は得られない
When raw water is heated to vaporize volatile components, heating to a temperature lower than the boiling temperature of the raw water will not be effective in removing volatile components. For example, if the water is heated to a temperature of around 80° C., ultra-ultra pure water as obtained in the present invention cannot be obtained.

又、膜蒸留する際には原水の水蒸気のみを疎水性多孔質
膜と接触させることが望ましい。膜蒸留技術における大
きな欠点の一つは、膜の汚染である。原水を疎水性多孔
質に直接接触させると、原水中の非揮発性成分による膜
の汚染が生じ生成水の純度が低下する。又、原水を膜に
接触させた場合、原水のもつ顕熱により水蒸気が発生し
膜を透過することになるが、この方法により水蒸気を多
量に発生させるには膜の面積を大にして原水との接触面
積を大きくすることが要求される。
Further, when carrying out membrane distillation, it is desirable that only the water vapor of the raw water is brought into contact with the hydrophobic porous membrane. One of the major drawbacks in membrane distillation technology is membrane fouling. When raw water is brought into direct contact with a hydrophobic porous material, the membrane is contaminated by non-volatile components in the raw water, reducing the purity of the produced water. Also, when raw water is brought into contact with the membrane, water vapor is generated due to the sensible heat of the raw water and passes through the membrane, but in order to generate a large amount of water vapor using this method, the area of the membrane must be large and the raw water must be It is required to increase the contact area of the

これに対し、揮発性成分を予め除去した原水から発生さ
せた水蒸気のみを疎水性多孔質膜と接触させることによ
り、膜の汚染を防止し生成水の純度を高めることが可能
となる。又、膜の大きさも原水を膜に接触させる方法に
くらべて小さくすることが可能である。
On the other hand, by contacting only the water vapor generated from raw water from which volatile components have been removed in advance with the hydrophobic porous membrane, it is possible to prevent membrane contamination and increase the purity of the produced water. Furthermore, the size of the membrane can be made smaller compared to a method in which raw water is brought into contact with the membrane.

〔実施例〕〔Example〕

以下、本発明の実施例を、第1図〜第7図を用いて説明
する。但し、本発明は、これらの実施例に限定されるも
のではない。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 7. However, the present invention is not limited to these examples.

実施例1 第1図に、本発明の基本的実施例を示す。本装置は、原
水加熱器110と蒸気排気口112を有する揮発性成分
除去塔2、原水加熱器108と疎水性多孔質膜101と
凝縮面113を有する腹黒留塔1、揮発性成分除去塔と
腹黒留塔との間を連結する原水配管114及び該配管の
途中に設けられた原水を送るポンプ106とから構成さ
れる。
Example 1 FIG. 1 shows a basic example of the present invention. This device includes a volatile component removal tower 2 having a raw water heater 110 and a steam exhaust port 112, a black-black distillation tower 1 having a raw water heater 108, a hydrophobic porous membrane 101, and a condensation surface 113, and a volatile component removal tower. It is composed of a raw water pipe 114 that connects to the Haraguro Retention Tower, and a pump 106 that is installed in the middle of the pipe to send the raw water.

処理される原水111は、揮発性成分除去塔2に導入さ
れ、原水加熱器110によって加温されて沸騰し、原水
中の炭酸ガスおよび揮発性有機物を気化させ、蒸気出口
112より、水蒸気とともに系外に放出させる。溶存す
る炭酸ガスおよび揮発性有機物が除去された原水は、送
水ポンプ106により、腹黒留塔1に送られる。腹黒留
塔1に入った原水は、原水加熱器108により再度加熱
され蒸発する。蒸発によって生じた水蒸気105は、疎
水性多孔質膜101によって濾過され、冷却水103の
流れる凝縮面113上すなわち冷却水配管表面で凝縮し
、生成水(超々純水)1o4として取り出される。本実
施例では符号103の冷却水と113の凝縮面により冷
却手段が構成されている。なお、疎水性多孔質膜101
を通った水蒸気の大部分は超々純水となるが、一部は系
内の非凝縮性ガス除去のために、弁102がらブローさ
れる。また、原水加熱器108,110へのスケール付
着防止のため、原水もそれぞれのドレンバルブ107,
109よりブローされることが望ましい。本装置によれ
ば、原水中に含まれる炭酸ガス成分や揮発性の有機物成
分が膜蒸留基の前段で除去できることから、高純度の超
々純水を製造できる。
The raw water 111 to be treated is introduced into the volatile component removal tower 2, heated by the raw water heater 110 to boil, vaporize carbon dioxide gas and volatile organic matter in the raw water, and exit the system together with water vapor from the steam outlet 112. Release it outside. The raw water from which dissolved carbon dioxide gas and volatile organic matter have been removed is sent to the Haraguro distillation tower 1 by the water pump 106. The raw water that has entered the Haraguro Retention Tower 1 is heated again by the raw water heater 108 and evaporated. Water vapor 105 generated by evaporation is filtered by the hydrophobic porous membrane 101, condensed on the condensation surface 113 through which the cooling water 103 flows, that is, on the surface of the cooling water piping, and taken out as produced water (ultra-ultra pure water) 1o4. In this embodiment, cooling water 103 and a condensing surface 113 constitute a cooling means. Note that the hydrophobic porous membrane 101
Most of the steam passing through becomes ultra-ultra pure water, but a portion is blown through the valve 102 to remove non-condensable gases within the system. In addition, in order to prevent scale adhesion to the raw water heaters 108 and 110, the raw water is also connected to each drain valve 107,
It is preferable that the blower be blown by 109. According to this device, since carbon dioxide components and volatile organic components contained in raw water can be removed before the membrane distillation group, highly pure ultra-superpure water can be produced.

次に、第2図、第3図を用いて本装置によって得られた
超々純水の性質について説明する。第2図は、本実施例
と比較するために膜蒸留基に直線原水(逆浸透圧処理水
使用)を送入した時の生成水の比抵抗とpHを示す。第
3図は、本実施例によるものである。第2図、第3図と
も、図中に示す■の部分が、膜蒸留基に水を供給し始め
た点、■が供給を停止した点を示す。揮発性成分除去塔
を通っていない第2図では、水の供給を開始すると同時
に生成水の比抵抗が下がり、数MΩ・印になってしまう
。この時、pHの値も同時に6.7から5.8程度まで
下がることから、生成水中に炭酸ガスが混入し、炭酸イ
オンおよび重炭酸イオンとなって比抵抗の値を下げるも
のと考えられる。
Next, the properties of ultra-ultra pure water obtained by this apparatus will be explained using FIGS. 2 and 3. FIG. 2 shows the specific resistance and pH of the produced water when straight raw water (reverse osmosis treated water was used) was fed into the membrane distillation group for comparison with this example. FIG. 3 is according to this embodiment. In both FIG. 2 and FIG. 3, the part ``■'' shown in the figure shows the point where water started to be supplied to the membrane distillation group, and the part ``■'' shows the point where the supply stopped. In FIG. 2, where the water does not pass through the volatile component removal column, the specific resistance of the produced water decreases as soon as the water supply starts, reaching several MΩ· mark. At this time, the pH value also decreases from about 6.7 to about 5.8, so it is thought that carbon dioxide gas mixes into the produced water and becomes carbonate ions and bicarbonate ions, lowering the specific resistance value.

しかし、揮発性成分除去塔を通った永を供給している第
3図では、水を供給しても生成水の比抵抗、pHの値に
変化は見られず、純度の高い生成水が連続的に得られて
いることがわかる。
However, in Figure 3, where water that has passed through a volatile component removal tower is supplied, there is no change in the specific resistance or pH of the produced water even when water is supplied, and highly pure produced water is continuously produced. It can be seen that the results are obtained.

本実施例によって得られた超々純水の水質を分析した一
例によれば、微生物は全く検出されなかった。又、生成
水中の粒径0.1μm以上の微粒子は1nyn8中に1
0個以下、全有機炭素量(TOC)は10ppbという
結果が得られた。
According to an example in which the quality of the ultra-ultra pure water obtained in this example was analyzed, no microorganisms were detected. In addition, fine particles with a particle size of 0.1 μm or more in the produced water are 1 in 1 nyn8.
The results were 0 or less, and the total organic carbon content (TOC) was 10 ppb.

本実施例による生成水と第6図に示す従来の超純水製造
装置による生成水を用いて、夫々シリコンウェハ上にウ
ォータ・マークを作成し、両者を比較した。ウォータ・
マークとは、シリコンウェハ上に一滴の水を滴下し、そ
れを乾燥させた際に生じるウェハ上の残留物のことであ
る。常温19.5℃で乾燥した際のウォータ・マークを
比べてみたところ、本発明に係る装置からの生成水を滴
下した方がかなり残留物量が少なく、高純度であること
が確認できた。また、103℃で乾燥させた場合には、
さらに顕著に本装置の特長が明らかとなった。すなわち
高温乾燥すると、常温で発生するウォータ・マークが全
て無くなり、シリコンウェハ上には何も観察されなくな
った。それに比較して、従来の装置かに生成した水の場
合は、多少少なくなってはいるものの、かなりの不純物
が観察された。これは、本装置から生成される水中には
1、 たとえ不純物が混入しても、それは全て揮発性の
ものであり、本実験にて行ったように、高温で乾燥すれ
ば、全て揮発し、ウェハ上には何の不純物ものこらない
ことを示している。このことがら本発明による生成水は
LSI製作に用いるうえできわめて有効である。
Water marks were created on silicon wafers using the water produced in this example and the water produced in the conventional ultrapure water production apparatus shown in FIG. 6, and the two were compared. Water
A mark is a residue on a silicon wafer that is created when a drop of water is placed on the wafer and allowed to dry. When we compared the water marks when dried at room temperature of 19.5°C, it was confirmed that the amount of residue was considerably smaller and the purity was higher when the produced water from the apparatus according to the present invention was dropped. In addition, when dried at 103℃,
The features of this device became even more obvious. In other words, when the silicon wafer was dried at high temperature, all water marks that would occur at room temperature disappeared, and nothing was observed on the silicon wafer. In comparison, a considerable amount of impurities were observed in the water produced using conventional equipment, although the amount was somewhat reduced. This is because the water produced by this device contains 1. Even if impurities are mixed in, they are all volatile, and if dried at high temperatures, as was done in this experiment, they will all evaporate. This shows that there are no impurities on the wafer. For this reason, the water produced according to the present invention is extremely effective for use in LSI manufacturing.

実施例2 第4図は本発明の他の実施例を示す。本装置は、原水加
熱器110を有する揮発性成分除去塔2と、原水加熱用
熱交換器202と、疎水性多孔質膜101と凝縮面11
3を有する膜蒸留基3及びその間の原水の送水ポンプ1
06とから構成される。
Embodiment 2 FIG. 4 shows another embodiment of the present invention. This device includes a volatile component removal tower 2 having a raw water heater 110, a heat exchanger 202 for heating raw water, a hydrophobic porous membrane 101, and a condensing surface 11.
a membrane distillation group 3 having a membrane distillation group 3 and a raw water pump 1 therebetween
06.

処理される原水111は、揮発性成分除去塔2に導入さ
れ、原水加熱器110によって加温されて沸騰し、原水
中の炭酸ガスおよび揮発性の有機物を気化させ、蒸気出
口203より糸外に放出される。溶存する炭酸ガス成分
および揮発性有機物が除去された原水は、送水ポンプ1
06により、膜蒸留基3に送られる。膜蒸留基3に入っ
た原水は、原水加熱用熱交換器202により再度加熱さ
れ蒸発する。この際、原水加熱用熱交換器202中の加
熱用媒体は、揮発性成分除去塔2より発生した水蒸気で
あり、潜熱を放出し液体となった水は、熱交換器出口2
01より糸外に放出される。原水加熱用熱交換器202
によって加熱され発生した水蒸気105は、疎水性多孔
質膜101を通過し、同伴するミストが除去された後、
凝縮面113上で凝縮し、生成水104すなわち超々純
水として系外に取り出される。本装置によれば、実施例
1同様に高純度の超々純水が得られるとともに、揮発性
成分除去塔2で用いた熱を回収しているため、エネルギ
ー量を低減することができる。なお、原水加熱用熱交換
器202のみでは膜蒸留基の原水加熱源として不足する
ときには、第1図に示す原水加熱器108を併設すると
よい。
The raw water 111 to be treated is introduced into the volatile component removal tower 2, heated by the raw water heater 110 to boil, vaporizes carbon dioxide gas and volatile organic matter in the raw water, and discharges it to the outside of the yarn from the steam outlet 203. be done. The raw water from which dissolved carbon dioxide components and volatile organic matter have been removed is sent to the water pump 1.
06 to the membrane distillation group 3. The raw water that has entered the membrane distillation group 3 is heated again by the raw water heating heat exchanger 202 and evaporated. At this time, the heating medium in the raw water heating heat exchanger 202 is water vapor generated from the volatile component removal tower 2, and the water that has released latent heat and has become a liquid is transferred to the heat exchanger outlet 2.
01 and released outside the thread. Heat exchanger 202 for heating raw water
The water vapor 105 generated by heating passes through the hydrophobic porous membrane 101, and the accompanying mist is removed.
It condenses on the condensation surface 113 and is taken out of the system as produced water 104, that is, ultra-ultra pure water. According to this apparatus, high purity ultra-ultra pure water can be obtained as in Example 1, and since the heat used in the volatile component removal column 2 is recovered, the amount of energy can be reduced. Note that when the raw water heating heat exchanger 202 alone is insufficient as a raw water heating source for the membrane distillation group, a raw water heater 108 shown in FIG. 1 may be additionally provided.

実施例3 原水中の揮発性成分除去手段としてフラッシュ蒸発を用
いた実施例を第5図によって説明する。
Example 3 An example using flash evaporation as a means for removing volatile components in raw water will be described with reference to FIG.

本装置は、スプレィ用ポンプ1、原水加熱器302、ス
プレィノズル303を有する揮発性成分除去塔4と膜蒸
留基3とから構成される。処理される原水111はスプ
レィ用ポンプ301の吸込み側に入り、ポンプで加圧さ
れた後、原水加熱器302により揮発性成分除去塔にお
ける飽和温度よりも数℃例えば5〜10℃高く過温され
、スプレィノズル303より系内に放出される。ここで
ポンプ301からスプレィノズル303の間は、原水加
熱器302によって昇温された温度の飽和圧力以上に加
圧しておくことが必要で、配管内では蒸発(沸騰)が起
こらない様にする。スプレィノズル303よりスプレィ
された原水は、揮発性成分除去塔4内の温度まで急激に
蒸発が起こり、水蒸気となる。この際、原水中に含まれ
る炭酸酸分や低沸点の有機物成分も同時にガス化され、
気中に放出される。蒸発せずに揮発性−成分除去塔4内
に溜まった液は、再びスプレィポンプ301に導かれ、
フラッシュ蒸発を行なう。ここで発生した水蒸気および
炭酸成分や低沸点の有機物成分は、水蒸気出口203よ
り糸外に取り出され、膜蒸留基3の原水加熱用熱交換器
202中に送られ、膜蒸留のための熱源として利用され
る。揮発性成分除去塔4で処理された原水は、送水ポン
プ106によって膜蒸留基3に送られる。これから先は
前記第4図における実施例と同様、高純度の生成水が得
られる。本実施例においては、原水の供給がスプレィ用
ポンプ301の吸込み側であり、揮発性成分除去塔4内
に送水される前に、原水加熱器302によって沸点以上
に過熱され、スプレィノズル303からフラッシュ蒸発
する。したがって、膜蒸留基3への送水ポンプ106に
導入される前に、少なくとも一度はフラッシュ蒸発過程
を通ることになり、未処理の原水が膜蒸留基3へ送入さ
れることはなくなった。
This apparatus is composed of a spray pump 1, a raw water heater 302, a volatile component removal column 4 having a spray nozzle 303, and a membrane distillation group 3. The raw water 111 to be treated enters the suction side of the spray pump 301, is pressurized by the pump, and is then superheated by the raw water heater 302 to a temperature several degrees Celsius higher, for example, 5 to 10 degrees Celsius, than the saturation temperature in the volatile component removal tower. , is discharged into the system from the spray nozzle 303. Here, it is necessary to pressurize the space between the pump 301 and the spray nozzle 303 above the saturation pressure of the temperature raised by the raw water heater 302 to prevent evaporation (boiling) from occurring within the pipe. The raw water sprayed from the spray nozzle 303 rapidly evaporates to the temperature inside the volatile component removal tower 4, and becomes water vapor. At this time, carbonic acid and low boiling point organic components contained in the raw water are also gasified,
released into the air. The liquid that did not evaporate and accumulated in the volatile component removal tower 4 is led to the spray pump 301 again.
Perform flash evaporation. The steam, carbonic acid components, and low-boiling point organic components generated here are taken out of the thread through the steam outlet 203, sent to the raw water heating heat exchanger 202 of the membrane distillation group 3, and used as a heat source for membrane distillation. be done. The raw water treated in the volatile component removal column 4 is sent to the membrane distillation group 3 by a water pump 106. From now on, high-purity produced water can be obtained as in the embodiment shown in FIG. 4 above. In this embodiment, the raw water is supplied to the suction side of the spray pump 301, and before being sent into the volatile component removal tower 4, it is heated to the boiling point or higher by the raw water heater 302, and is flashed from the spray nozzle 303. Evaporate. Therefore, before being introduced into the water pump 106 to the membrane distillation unit 3, it passes through a flash evaporation process at least once, and untreated raw water is no longer fed into the membrane distillation unit 3.

実施例4 第6図には、生成水のコストを考え、多段化した際の一
例を示す。フラッシュ蒸発により、揮発性成分除去塔4
で炭酸成分および揮発性T’OC成分が除去された原水
は、膜蒸留第一塔5に送られる。この際、膜蒸留第一塔
5は揮発性成分除去塔4よりも圧力・温度ともに低い飽
和状態を形成していることから、原水はバルブ414操
作だけで膜蒸留第一塔5に送られる。ここで、揮発性成
分除去塔4で発生した蒸気410の潜熱は、膜蒸留第一
塔5の原水の加熱に利用される。膜蒸留第一塔で発生し
た水蒸気411は、疎水性多孔質膜105を通る際にミ
ストと分離され、配管411を通って膜蒸留第二基6の
原水の加熱に用いられる。膜蒸留第二基の加熱に用いら
れ潜熱を放出して液体となった水は熱交換器出口413
より糸外に放出される。この多段の操作の最終段では、
単なる凝縮器7が設置されており、発生した高純度の蒸
気を超純水に凝縮させている。又、生成水の取り出しは
、最終段を大気圧に近い状態で運転することで、ポンプ
等の摺動部からの発塵が混入しない様なシステムとした
。但し、第7図に示すように、高性能な無発塵ポンプ4
01が開発されれば、小さな生成水タンク402を設置
し、系外に送り出すことも可能となる。この際、最終段
はかなりの減圧下でも問題は無く、油気位置としては生
成水タンク402より行なうことが可能である。
Embodiment 4 FIG. 6 shows an example of multi-stage production considering the cost of produced water. Volatile component removal column 4 is removed by flash evaporation.
The raw water from which carbonic acid components and volatile T'OC components have been removed is sent to the first membrane distillation column 5. At this time, since the first membrane distillation column 5 is in a saturated state with lower pressure and temperature than the volatile component removal column 4, the raw water is sent to the first membrane distillation column 5 only by operating the valve 414. Here, the latent heat of the steam 410 generated in the volatile component removal column 4 is used to heat the raw water in the first membrane distillation column 5. Steam 411 generated in the first membrane distillation column is separated from mist when passing through the hydrophobic porous membrane 105, and is used to heat raw water in the second membrane distillation column 6 through a pipe 411. The water that is used to heat the second membrane distillation unit and releases latent heat and becomes a liquid is transferred to the heat exchanger outlet 413.
Released outside the strands. In the final stage of this multi-stage operation,
A simple condenser 7 is installed, and the generated high-purity steam is condensed into ultrapure water. In addition, the system was designed to remove generated water by operating the final stage at near atmospheric pressure to avoid contamination by dust from sliding parts such as pumps. However, as shown in Figure 7, a high-performance dust-free pump 4
If 01 is developed, it will be possible to install a small generated water tank 402 and send it out of the system. At this time, there is no problem even if the final stage is under considerably reduced pressure, and the oil can be placed in the produced water tank 402.

従来例 第8図に従来型超純水製造装置の概要を示す。Conventional example Figure 8 shows an outline of a conventional ultrapure water production device.

原水は凝集沈殿−濾過−マイクロ濾過などの前処理工程
を経た後、逆浸透工程(R○)に送られ、原水中に含ま
れる大部分の溶解有機成分と90%程度の無機塩類が除
去される。さらにこの透過水は脱気塔を経て脱炭酸され
、イオン交換樹脂工程に送られる。
After the raw water passes through pretreatment processes such as coagulation-sedimentation, filtration, and microfiltration, it is sent to the reverse osmosis process (R○), where most of the dissolved organic components and about 90% of inorganic salts contained in the raw water are removed. Ru. Furthermore, this permeated water is decarboxylated through a degassing tower and sent to an ion exchange resin process.

通常二〇脱気装置には真空脱気塔が用いられているが、
疎水性多孔質膜を用いた脱気用のモジュール等も考案さ
れ始めている。例えば特開昭60−118284号公報
参照。
Usually, a vacuum deaerator is used for the deaerator, but
Deaeration modules using hydrophobic porous membranes are also beginning to be devised. For example, see JP-A-60-118284.

イオン交換塔は工法式および温床式の再生方式で、本工
程で完全に塩類が除去され、通常はここで比抵抗10M
Ω・■以上の一次純水が得られ、一旦純水タンクに貯蔵
される。−次純水はさらに、温床式イオン交換樹脂塔(
ポリシャ)で処理され、さらに完全に不純物を除去した
後、紫外線殺菌工程で生菌を無くした後、限外濾過工程
(UF)で残存する微粒子や死菌を除去され、超純水が
得られる。
The ion exchange tower is a regeneration method using a construction method or a hot bed method, and salts are completely removed in this process, and the specific resistance is usually 10M.
Primary pure water of Ω・■ or higher is obtained and temporarily stored in a pure water tank. -The next pure water is further processed into a hot bed type ion exchange resin column (
After completely removing impurities, ultraviolet sterilization process eliminates viable bacteria, and ultrafiltration process (UF) removes remaining particulates and dead bacteria to obtain ultrapure water. .

この従来方法では、常温25°C前後の温度を有する超
純水が得られる。
In this conventional method, ultrapure water having a temperature of around 25°C is obtained.

この従来装置を用いて得た超純水の水質は最高レベルで
も微生物0.05個/ rn f:A r 0 、1 
μrn以上の大きさの微粒子50−100個/ m 1
2 、 TOClooppbであり、電気抵抗は18メ
ガΩ・印であった。
Even at the highest level, the quality of ultrapure water obtained using this conventional device is 0.05 microorganisms/rn f: A r 0, 1
50-100 particles/m1 with a size of μrn or larger
2, TOCloopppb, and the electrical resistance was 18 megaΩ·mark.

〔発明の効果〕〔Effect of the invention〕

本発明は、水道水などのように揮発性成分及び非揮発性
成分を含む原水を沸騰させて揮発性成分を気化して除去
し、その後、原水から水蒸気を発生させて該水蒸気を疎
水性多孔質膜と接触させ透過させて凝縮し、超々純水を
製造することにある。
The present invention boils raw water containing volatile and non-volatile components such as tap water to vaporize and remove the volatile components, then generates water vapor from the raw water and transfers the water vapor to hydrophobic porous The purpose is to produce ultra-ultra pure water by bringing it into contact with a membrane, allowing it to permeate, and condensing it.

本発明によれば、従来の各種濾過膜、イオン交換樹脂、
殺菌灯などを組合せて超純水を製造する方法にくらべて
不純物の少ない超々純水を製造することができる。
According to the present invention, various conventional filtration membranes, ion exchange resins,
Compared to a method of producing ultrapure water using a combination of germicidal lamps, etc., it is possible to produce ultrapure water with fewer impurities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超々純水製造装置の一実施例を示す概
略構成図、第2図は比較例による超純水製造方法によっ
て得られた水質を示す特性図、第3図は本発明の実施例
によって得られた超々純水の水質を示す特性図、第4図
〜第7図は本発明の超々純水製造装置の別の実施例を示
す概略構成図、第8図は従来例を示す概略構成図である
。 1・・膜蒸留基、2・・揮発性成分除去塔、101  
・寓1図 10”l −−−トレンバルブ 時間鎚〕 時間(約 系4−因
Fig. 1 is a schematic configuration diagram showing an embodiment of the ultra-ultra pure water production apparatus of the present invention, Fig. 2 is a characteristic diagram showing water quality obtained by an ultra-pure water production method according to a comparative example, and Fig. 3 is a diagram of the present invention. 4 to 7 are schematic configuration diagrams showing another embodiment of the ultra-ultra pure water production apparatus of the present invention, and FIG. 8 is a conventional example. FIG. 1. Membrane distillation group, 2. Volatile component removal column, 101
・Fig. 1 10"l ---Trenvalve time hammer] Time (approx. system 4-factor

Claims (1)

【特許請求の範囲】 1、原水から水蒸気を発生させ、この水蒸気を気体は透
過させるが液体は透過させない疎水性多孔質膜を透過さ
せたのち凝縮して超純水を製造する方法において、前記
原水を沸騰させ該原水中の揮発性成分を気化して除去し
たのち水蒸気を発生させ、該水蒸気を前記疎水性多孔質
膜と接触させることを特徴とする超純水製造方法。 2、原水から水蒸気を発生させ、この水蒸気を気体は通
過させるが液体は通過させない疎水性多孔質膜を透過さ
せたのち凝縮して超純水を製造する方法において、前記
原水を沸騰させ該原水中の揮発性成分を気化して除去し
たのち水蒸気を発生させ、該水蒸気を前記疎水性多孔質
膜と接触させ飽和蒸気又は不活性ガスの雰囲気中へ透過
させて凝縮することを特徴とする超純水製造方法。 3、原水から水蒸気を発生させ、この水蒸気を気体は透
過させるが液体は透過させない疎水性多孔質膜を透過さ
せたのち凝縮して超純水を製造する方法において、前記
原水を加熱し沸騰させて揮発性成分を気化し除去する工
程、該工程を終えた原水から水蒸気を発生させ該水蒸気
を前記疎水性多孔質膜と接触させる工程を有することを
特徴とする超純水製造方法。 4、原水から水蒸気を発生させ、この水蒸気を気体は透
過させるが液体は透過させない疎水性多孔質膜を透過さ
せたのち凝縮して超純水を製造する方法において、前記
原水を減圧下に保持して沸騰させて揮発性成分を気化し
除去する工程、該工程を終えた原水から水蒸気を発生さ
せ該水蒸気を前記疎水性多孔質膜と接触させる工程を有
することを特徴とする超純水製造方法。 5、揮発性成分および非揮発性成分を含む原水を沸騰さ
せて揮発性成分を気化して除去し、次いで原水から水蒸
気を発生させ、該水蒸気のみを気体透過性且つ液体不透
過性の疎水性多孔質膜と接触させて透過させたのち凝縮
することを特徴とする超純水製造方法。 6、揮発性成分および非揮発性成分を含む原水を沸騰さ
せて揮発性成分を気化して除去し、次いで原水を加熱し
て水蒸気を発生させ、該水蒸気のみを気体透過性且つ液
体不透過性の疎水性多孔質膜と接触させ飽和蒸気又は不
活性ガスの雰囲気へ透過させて凝縮することを特徴とす
る超純水製造方法。 7、揮発性成分および非揮発性成分を含む原水を加熱し
沸騰させて揮発性成分を気化して除去し、次いで原水を
再加熱して水蒸気を発生させ、該水蒸気のみを気体透過
性且つ液体不透過性の疎水性多孔質膜と接触させて透過
させたのち凝縮することを特徴とする超純水製造方法。 8、揮発性成分および非揮発性成分を含む原水を加熱し
沸騰させて揮発性成分を気化して除去し、次いで原水を
再加熱して水蒸気を発生させ、該水蒸気のみを気体透過
性且つ液体不透過性の疎水性多孔質膜と接触させ飽和蒸
気又は不活性ガスの雰囲気へ透過させて凝縮することを
特徴とする超純水製造方法。 9、揮発性成分および非揮発性成分を含む原水を加熱し
沸騰させて揮発性成分を気化して除去する工程、次いで
前記気化した揮発性成分を含む蒸気を加熱源として原水
を再加熱し水蒸気を発生させ、該水蒸気のみを気体透過
性且つ液体不透過性の疎水性多孔質膜と接触させて透過
させたのち凝縮する工程を有することを特徴とする超純
水製造方法。 10、揮発性成分および非揮発性成分を含む原水を加熱
し沸騰させて揮発性成分を気化して除去する工程、次い
で前記気化した揮発性成分を含む蒸気を加熱源として原
水を再加熱して水蒸気を発生させ、該水蒸気のみを気体
透過性且つ液体不透過性の疎水性多孔質膜と接触させ飽
和蒸気又は不活性ガスの雰囲気へ透過させて凝縮する工
程を有することを特徴とする超純水製造方法。 11、揮発性成分および非揮発性成分を含む原水の蒸気
を透過させる疎水性多孔質膜と該膜を透過した水蒸気を
凝縮させる冷却手段を具備する膜蒸留塔を有する超純水
製造装置において、前記膜蒸留塔の前段に原水を沸騰さ
せる手段と原水の沸騰により気化した揮発性成分を排出
する手段を具備する揮発性成分除去塔を備えたことを特
徴とする超純水製造装置。 12、揮発性成分および非揮発性成分を含む原水を加熱
する手段と該加熱によつて気化した揮発性成分の排出手
段を具備した揮発性成分除去塔、前記塔で処理された原
水を蒸発させる加熱手段と該加熱によつて発生した水蒸
気を透過させる疎水性多孔質膜及び該膜を透過した水蒸
気を凝縮させる冷却手段を具備した膜蒸留塔を備えたこ
とを特徴とする超純水製造装置。 13、揮発性成分および非揮発性成分を含む原水の蒸気
を透過させる疎水性多孔質膜と該膜を透過した水蒸気を
凝縮させる冷却手段を具備する膜蒸留塔を有する超純水
製造装置において、前記膜蒸留塔の前段に原水を沸騰さ
せる手段と原水の沸騰により気化した揮発性成分を排出
する手段を具備する揮発性成分除去塔を備え且つ前記膜
蒸留塔内の水蒸気を凝縮させる雰囲気を飽和蒸気又は不
活性ガスとするガス供給手段を備えたことを特徴とする
超純水製造装置。 14、揮発性成分および非揮発性成分を含む原水を沸騰
させる減圧手段と原水の沸騰によつて気化した揮発性成
分の排出手段を具備した揮発性成分除去塔、前記塔で処
理された原水を蒸発させる加熱手段と該加熱によつて発
生した水蒸気を透過させる疎水性多孔質膜及び該膜を透
過した水蒸気を凝縮させる冷却手段を具備した膜蒸留塔
を備えたことを特徴とする超純水製造装置。 15、揮発性成分および非揮発性成分を含む原水の蒸気
を透過させる疎水性多孔質膜と該膜を透過した水蒸気を
凝縮させる冷却手段を具備する膜蒸留塔を有する超純水
製造装置において、前記膜蒸留塔の前段に原水を沸騰さ
せる加熱手段と原水の沸騰により気化した揮発性成分を
排出する手段を具備する揮発性成分除去塔を備え且つ該
揮発性成分除去塔で排出された揮発性成分を含む蒸気を
前記膜蒸留塔内の原水と熱交換する手段を備えたことを
特徴とする超純水製造装置。 16、揮発性成分および非揮発性成分を含む原水を沸騰
させて揮発性成分を気化し除去する工程、次いで原水を
加熱し水蒸気を発生させて該水蒸気を疎水性多孔質膜を
透過させて凝縮する工程により常温以上の温度に熱せら
れた超純水を製造し、該超純水を用いて半導体集積回路
を洗浄することを特徴とする半導体集積回路の洗浄方法
。 17、揮発性成分および非揮発性成分を含む原水を沸騰
させて揮発性成分を気化し除去する工程、次いで原水を
加熱し水蒸気を発生させて該水蒸気を疎水性多孔質膜を
透過させて凝縮する工程により超純水を製造し、該超純
水を用いて医療器具を洗浄することを特徴とする医療器
具の洗浄方法。
[Scope of Claims] 1. A method for producing ultrapure water by generating water vapor from raw water, passing the water vapor through a hydrophobic porous membrane that allows gas to pass through but not liquid, and then condensing it to produce ultrapure water, A method for producing ultrapure water, which comprises boiling raw water to vaporize and remove volatile components in the raw water, generating steam, and bringing the steam into contact with the hydrophobic porous membrane. 2. In a method of producing ultrapure water by generating water vapor from raw water, passing the water vapor through a hydrophobic porous membrane that allows gases to pass through but not liquids, and then condensing it, the raw water is boiled and the raw water is boiled. After vaporizing and removing volatile components in water, water vapor is generated, and the water vapor is brought into contact with the hydrophobic porous membrane and permeated into an atmosphere of saturated vapor or inert gas to be condensed. Pure water production method. 3. In a method of producing ultrapure water by generating water vapor from raw water, passing this water vapor through a hydrophobic porous membrane that allows gases to pass through but not liquids, and then condensing it, the raw water is heated and boiled. 1. A method for producing ultrapure water, comprising the steps of vaporizing and removing volatile components, and generating water vapor from the raw water after the step, and bringing the water vapor into contact with the hydrophobic porous membrane. 4. In a method of producing ultrapure water by generating water vapor from raw water, passing this water vapor through a hydrophobic porous membrane that allows gases to pass through but not liquids, and then condensing it, the raw water is maintained under reduced pressure. Ultrapure water production characterized by comprising the steps of boiling and vaporizing and removing volatile components, and generating water vapor from the raw water after the step and bringing the water vapor into contact with the hydrophobic porous membrane. Method. 5. Boil the raw water containing volatile and non-volatile components to vaporize and remove the volatile components, then generate water vapor from the raw water, and convert only the water vapor into a hydrophobic material that is gas permeable and liquid impermeable. A method for producing ultrapure water, which is characterized by contacting with a porous membrane, allowing it to permeate, and then condensing it. 6. Boil the raw water containing volatile and non-volatile components to vaporize and remove the volatile components, then heat the raw water to generate water vapor, and make only the water vapor permeable to gas and impermeable to liquid. A method for producing ultrapure water, which comprises bringing it into contact with a hydrophobic porous membrane, permeating it into an atmosphere of saturated steam or an inert gas, and condensing it. 7. The raw water containing volatile and non-volatile components is heated and boiled to vaporize and remove the volatile components, then the raw water is reheated to generate water vapor, and only the water vapor is converted into a gas-permeable and liquid form. A method for producing ultrapure water characterized by contacting with an impermeable hydrophobic porous membrane to permeate it and then condensing it. 8. The raw water containing volatile and non-volatile components is heated and boiled to vaporize and remove the volatile components, then the raw water is reheated to generate water vapor, and only the water vapor is converted into a gas-permeable and liquid form. A method for producing ultrapure water, which comprises bringing it into contact with an impermeable hydrophobic porous membrane, permeating it into an atmosphere of saturated steam or an inert gas, and condensing it. 9. A step of heating and boiling the raw water containing volatile components and non-volatile components to vaporize and remove the volatile components, then reheating the raw water using the vaporized steam containing the volatile components as a heating source to produce water vapor. 1. A method for producing ultrapure water, comprising the steps of: generating water vapor; contacting and permeating only the water vapor with a gas-permeable and liquid-impermeable hydrophobic porous membrane; and condensing the water vapor. 10. A step of heating and boiling the raw water containing volatile components and non-volatile components to vaporize and remove the volatile components, and then reheating the raw water using the vaporized steam containing the volatile components as a heating source. An ultrapure method comprising the step of generating water vapor, contacting only the water vapor with a gas-permeable and liquid-impermeable hydrophobic porous membrane, allowing it to permeate into a saturated vapor or inert gas atmosphere, and condensing it. Water production method. 11. An ultrapure water production apparatus having a membrane distillation column equipped with a hydrophobic porous membrane that allows vapor of raw water containing volatile components and non-volatile components to pass therethrough, and a cooling means that condenses the water vapor that has passed through the membrane, An apparatus for producing ultrapure water, comprising a volatile component removal column provided upstream of the membrane distillation column and equipped with means for boiling raw water and means for discharging volatile components vaporized by boiling the raw water. 12. A volatile component removal tower equipped with a means for heating raw water containing volatile components and non-volatile components and a means for discharging volatile components vaporized by the heating, for evaporating the raw water treated in the tower. An ultrapure water production apparatus comprising a membrane distillation column equipped with a heating means, a hydrophobic porous membrane that transmits water vapor generated by the heating, and a cooling means that condenses the water vapor that has passed through the membrane. . 13. An ultrapure water production apparatus having a membrane distillation column equipped with a hydrophobic porous membrane that allows vapor of raw water containing volatile components and non-volatile components to pass therethrough, and a cooling means that condenses the water vapor that has passed through the membrane, A volatile component removal column is provided upstream of the membrane distillation column and includes a means for boiling raw water and a means for discharging volatile components vaporized by boiling the raw water, and saturates the atmosphere in which water vapor in the membrane distillation column is condensed. An ultrapure water production device characterized by comprising a gas supply means for supplying steam or inert gas. 14. A volatile component removal column equipped with a depressurizing means for boiling raw water containing volatile components and non-volatile components and a means for discharging volatile components vaporized by boiling the raw water; Ultrapure water characterized by comprising a membrane distillation column equipped with a heating means for evaporating, a hydrophobic porous membrane that transmits water vapor generated by the heating, and a cooling means for condensing the water vapor that has passed through the membrane. Manufacturing equipment. 15. An ultrapure water production apparatus having a membrane distillation column equipped with a hydrophobic porous membrane that allows vapor of raw water containing volatile components and non-volatile components to pass therethrough, and a cooling means that condenses the water vapor that has passed through the membrane, A volatile component removal column is provided upstream of the membrane distillation column and includes a heating means for boiling the raw water and a means for discharging volatile components vaporized by boiling the raw water, and the volatile components removed by the volatile component removal column are provided. An apparatus for producing ultrapure water, comprising means for heat-exchanging steam containing components with raw water in the membrane distillation column. 16. A step of boiling the raw water containing volatile and non-volatile components to vaporize and remove the volatile components, then heating the raw water to generate water vapor, which is passed through a hydrophobic porous membrane and condensed. 1. A method for cleaning a semiconductor integrated circuit, comprising producing ultrapure water heated to a temperature higher than room temperature through a step of cleaning the semiconductor integrated circuit using the ultrapure water. 17. A step of boiling the raw water containing volatile and non-volatile components to vaporize and remove the volatile components, then heating the raw water to generate water vapor, which is passed through a hydrophobic porous membrane and condensed. 1. A method for cleaning medical instruments, which comprises producing ultrapure water through the steps of: and washing medical instruments using the ultrapure water.
JP62139782A 1987-03-25 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water Granted JPS63305917A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62139782A JPS63305917A (en) 1987-06-05 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water
DE88104672T DE3884435T2 (en) 1987-03-25 1988-03-23 Processes for producing high-purity water and process for using this water.
EP88104672A EP0284052B1 (en) 1987-03-25 1988-03-23 Process for producing ultra-pure water and process for using said ultra-pure water
US07/172,583 US4879041A (en) 1987-03-25 1988-03-24 Process for producing ultra-pure water and process for using said ultra-pure water
KR1019880003177A KR960003543B1 (en) 1987-03-25 1988-03-24 Ultrapure-water producing method and the usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139782A JPS63305917A (en) 1987-06-05 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4211238A Division JPH0757301B2 (en) 1992-08-07 1992-08-07 Semiconductor integrated circuit cleaning method and cleaning apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63305917A true JPS63305917A (en) 1988-12-13
JPH0515486B2 JPH0515486B2 (en) 1993-03-01

Family

ID=15253296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139782A Granted JPS63305917A (en) 1987-03-25 1987-06-05 Production of ultrapure water and equipment thereof and method for using ultrapure water

Country Status (1)

Country Link
JP (1) JPS63305917A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380982A (en) * 1989-08-25 1991-04-05 Hitachi Zosen Corp Impurity removing apparatus in multiple-effect distiller for preparing ultrapure water
WO1993008931A2 (en) * 1991-11-08 1993-05-13 Tadahiro Ohmi System for supplying ultrapure water and method of washing substrate, and system for producing ultrapure water and method of producing ultrapure water
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JP2009512549A (en) * 2005-10-19 2009-03-26 シルバン ソース、 インク. Water purification system
US7837877B2 (en) 2006-06-09 2010-11-23 Air Products And Chemicals, Inc. Process for separating components of a multi-component feed stream
WO2013094528A1 (en) * 2011-12-20 2013-06-27 オルガノ株式会社 Liquid management system and recovery and recycling device for cleaning liquid
JP2023164108A (en) * 2022-04-28 2023-11-10 株式会社Sosui Water, method for producing the same, and production system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855921U (en) * 1981-10-12 1983-04-15 日立化成工業株式会社 foam mold
JPS61293586A (en) * 1985-06-20 1986-12-24 オ−ワイ・サンタサロ・ゾ−ルベルグ・エイビ− Method and apparatus for removing volatile substance from water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855921U (en) * 1981-10-12 1983-04-15 日立化成工業株式会社 foam mold
JPS61293586A (en) * 1985-06-20 1986-12-24 オ−ワイ・サンタサロ・ゾ−ルベルグ・エイビ− Method and apparatus for removing volatile substance from water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380982A (en) * 1989-08-25 1991-04-05 Hitachi Zosen Corp Impurity removing apparatus in multiple-effect distiller for preparing ultrapure water
WO1993008931A2 (en) * 1991-11-08 1993-05-13 Tadahiro Ohmi System for supplying ultrapure water and method of washing substrate, and system for producing ultrapure water and method of producing ultrapure water
WO1993008931A3 (en) * 1991-11-08 1993-06-10 Tadahiro Ohmi System for supplying ultrapure water and method of washing substrate, and system for producing ultrapure water and method of producing ultrapure water
US5589005A (en) * 1991-11-08 1996-12-31 Ohmi; Tadahiro System for supplying ultrapure water and method of washing substrate, and system for producing ultrapure water and method of producing ultrapure water
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JP2009512549A (en) * 2005-10-19 2009-03-26 シルバン ソース、 インク. Water purification system
US7837877B2 (en) 2006-06-09 2010-11-23 Air Products And Chemicals, Inc. Process for separating components of a multi-component feed stream
WO2013094528A1 (en) * 2011-12-20 2013-06-27 オルガノ株式会社 Liquid management system and recovery and recycling device for cleaning liquid
JPWO2013094528A1 (en) * 2011-12-20 2015-12-10 オルガノ株式会社 Liquid management system and liquid management method
JP2023164108A (en) * 2022-04-28 2023-11-10 株式会社Sosui Water, method for producing the same, and production system

Also Published As

Publication number Publication date
JPH0515486B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
EP0284052B1 (en) Process for producing ultra-pure water and process for using said ultra-pure water
CN112933987B (en) Organic solvent purification system and method
JPH02293003A (en) Heated and deaerated ultrapure water generator
JP6636111B2 (en) Organic solvent purification system and method
JP2007275690A (en) Method for separating and recovering organic liquid from organic liquid aqueous solution
JPS63305917A (en) Production of ultrapure water and equipment thereof and method for using ultrapure water
JP3922935B2 (en) Water treatment system
JPH04155924A (en) Vapor drying device
JPH0757301B2 (en) Semiconductor integrated circuit cleaning method and cleaning apparatus therefor
JPH0510964B2 (en)
JPS63258601A (en) Concentration of aqueous organic solution
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
KR102038324B1 (en) A dehydration system for mixture of water and organic solvent
JP2013040868A (en) Radioactive contaminated water treatment system and radioactive contaminated water treatment method
JPH08224572A (en) Ultra pure water production and wastewater treatment in closed system
KR20190140270A (en) Vapor permeation membrane separation process for concentration of isopropyl alcohlol and treatment of wastewater from isopropyl alcohol-containing wastewater
WO2019193951A1 (en) Organic solvent purification system and method
JPH0263592A (en) Distillation device
KR100593600B1 (en) Separation and removal device of contaminants in wastewater evaporation condensate
JP2898080B2 (en) Operation method of degassing membrane device
JPS6193897A (en) Apparatus for making ultra-pure water
EP0254519A2 (en) Method for preparation of ultrapurified water
JPH07251157A (en) Ultrapure water heater
KR200362552Y1 (en) Apparatus for separating and removing pollutants in water with evaporated and condensed of wastewater
JPS62191092A (en) Production of super pure water and system therefor