JPS63265620A - Inorganic fiber reinforced plastic composite and its preparation - Google Patents
Inorganic fiber reinforced plastic composite and its preparationInfo
- Publication number
- JPS63265620A JPS63265620A JP62101277A JP10127787A JPS63265620A JP S63265620 A JPS63265620 A JP S63265620A JP 62101277 A JP62101277 A JP 62101277A JP 10127787 A JP10127787 A JP 10127787A JP S63265620 A JPS63265620 A JP S63265620A
- Authority
- JP
- Japan
- Prior art keywords
- reinforced plastic
- inorganic fiber
- plastic composite
- fibers
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 68
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims description 31
- 239000012784 inorganic fiber Substances 0.000 title claims description 12
- 239000000835 fiber Substances 0.000 claims abstract description 179
- 239000010419 fine particle Substances 0.000 claims abstract description 44
- 239000000919 ceramic Substances 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 229920003023 plastic Polymers 0.000 claims abstract description 17
- 239000004033 plastic Substances 0.000 claims abstract description 17
- 239000002759 woven fabric Substances 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000003822 epoxy resin Substances 0.000 claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 239000011882 ultra-fine particle Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- -1 fluororesin Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 3
- 229920006122 polyamide resin Polymers 0.000 claims description 3
- 229920005668 polycarbonate resin Polymers 0.000 claims description 3
- 239000004431 polycarbonate resin Substances 0.000 claims description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 3
- 229920005749 polyurethane resin Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229920002050 silicone resin Polymers 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 239000003779 heat-resistant material Substances 0.000 claims 3
- 229920001634 Copolyester Polymers 0.000 claims 2
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 claims 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 claims 2
- 229910052736 halogen Inorganic materials 0.000 claims 2
- 150000002367 halogens Chemical class 0.000 claims 2
- 239000011224 oxide ceramic Substances 0.000 claims 2
- 229910052574 oxide ceramic Inorganic materials 0.000 claims 2
- 229920000570 polyether Polymers 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 claims 1
- 150000002430 hydrocarbons Chemical class 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- UNPLRYRWJLTVAE-UHFFFAOYSA-N Cloperastine hydrochloride Chemical compound Cl.C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)OCCN1CCCCC1 UNPLRYRWJLTVAE-UHFFFAOYSA-N 0.000 description 1
- 241000665848 Isca Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000011074 autoclave method Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- QRYFGTULTGLGHU-NBERXCRTSA-N iturelix Chemical compound C([C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCNC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@H](C)C(N)=O)NC(=O)[C@H](CCCCNC(=O)C=1C=NC=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](CC=1C=NC=CC=1)NC(=O)[C@@H](CC=1C=CC(Cl)=CC=1)NC(=O)[C@@H](CC=1C=C2C=CC=CC2=CC=1)NC(C)=O)CCCNC(=O)C1=CC=CN=C1 QRYFGTULTGLGHU-NBERXCRTSA-N 0.000 description 1
- 108010083551 iturelix Proteins 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、無機繊維強化プラスチック複合体(FRP)
およびその製造方法に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is directed to inorganic fiber reinforced plastic composites (FRP).
and its manufacturing method.
(従来の技術)
従来、エポキシ樹脂、変性エポキシ樹脂、ポリエステル
樹脂、ポリイミド樹脂等のプラスチック類を強化する繊
維としては、表面処理された炭素繊維が広く使用さnて
いる。(Prior Art) Conventionally, surface-treated carbon fibers have been widely used as fibers for reinforcing plastics such as epoxy resins, modified epoxy resins, polyester resins, and polyimide resins.
さらに、特開昭52−141S87号公報に開示されて
いる炭化珪素繊維は、炭素繊維よ)優れた機械的強度を
有するとされ、プラスチック類の強化用繊維として採用
されている。Furthermore, silicon carbide fibers disclosed in Japanese Patent Application Laid-open No. 52-141S87 are said to have superior mechanical strength (compared to carbon fibers) and are used as fibers for reinforcing plastics.
これらの強化繊維を使用して注入法FRP @製造する
と、繊維がかtより繊維の分布が粗い部分と密な部分と
が生じやすい。このため、FRP中の繊維体積率(Vf
)の制御が困難であり、特にVfが小さい場合に強化繊
維が均一に分散し友FR,Pが得難く、1’RP本来の
特色である設計の自由度が損まわれてい友。ま几、無機
繊維のみで強化し7j FRPでは強度の異方性が大き
く、繊維の長さ方向の強度は大きいが、それと直角方向
の強度はきわめて小さくなる。短繊維のみを使用し友F
RPは等方性ではあるが、その強度は一般に低い。When FRP is manufactured using the injection method using these reinforcing fibers, the fiber distribution tends to be coarser in some areas and denser in others. For this reason, the fiber volume fraction (Vf
) is difficult to control, and especially when Vf is small, the reinforcing fibers are uniformly dispersed, making it difficult to obtain FR, P, and the degree of freedom in design, which is the original feature of 1'RP, is impaired. 7j FRP reinforced only with inorganic fibers has a large strength anisotropy, and the strength in the longitudinal direction of the fibers is high, but the strength in the direction perpendicular to it is extremely small. Tomo F using only short fibers
Although RP is isotropic, its strength is generally low.
ま九、FRP、の複合材料に関して、複合材料に使用す
る強化繊維として連続繊維teは長繊維と短繊維または
ウィスカとを組み合わせて使用する方法も提案されてい
る。九とえば、複合部材の内側には長繊維を使用し、外
側には短繊維を使用する方法がある。Regarding FRP composite materials, a method has also been proposed in which continuous fibers (te) are used in combination with long fibers and short fibers or whiskers as reinforcing fibers used in the composite material. For example, there is a method of using long fibers on the inside of the composite member and short fibers on the outside.
(発明が解決しようとする問題点)
しかしながら、上記方法においても、長繊維と短繊維と
を部材の内側で使い分ける方法は製造工程が煩雑となり
、さらに得られる複合材料の強度も充分ではない。さら
に、プリプレグ製造時に長繊維と短繊維とを混在させる
方法は、長繊維束中の表面に刷毛等によQ短繊維を付着
させることはできるものの、内部の長繊維の一本一本の
表面に均一に付着させることが困難であり、繊維体の品
質が不均一になる。(Problems to be Solved by the Invention) However, even in the above method, the method of separately using long fibers and short fibers inside the member complicates the manufacturing process, and furthermore, the strength of the resulting composite material is not sufficient. Furthermore, in the method of mixing long fibers and short fibers during prepreg production, although Q short fibers can be attached to the surface of a long fiber bundle using a brush, etc., the surface of each long fiber inside It is difficult to adhere the fibers uniformly to the fibers, resulting in uneven quality of the fibers.
上記問題点を解決するため、本発明者らは先に、短繊維
、ウィスカまたは粉末を懸濁しt溶液中に連続繊維束を
浸漬することにより繊維の一本一本の表面に短繊維、ウ
ィスカまたは粉末などを付着させる方法を提案した。こ
の方法は、F几Pの作製に関し優れたものであるが、更
に詳細に検討し友結果、短繊維、ウィスカま穴は粉末の
付着形態によっては、かならずしも充分でない場合があ
ることがわかつ几。In order to solve the above problems, the present inventors first suspended short fibers, whiskers, or powder and immersed a continuous fiber bundle in a t solution to coat the surface of each fiber with short fibers and whiskers. Alternatively, he proposed a method of attaching powder, etc. Although this method is excellent for producing F-P, it was found that the short fibers, whiskers, and holes may not always be sufficient depending on the adhesion form of the powder.
本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは、プラスチックマ
トリックスとの濡na金改善し、同時に複合材料中に連
続繊維を均一に分散させて繊維体積率を制御でき、ま几
互いに特性の異なる連続繊維を組み合せることにより、
例えば連続繊維とマトリックス間の応力集中上軽減させ
複合材の機械特性を向上させることができる複合材料用
繊維体で強化された優れた性能を有する無機繊維強化プ
ラスチック複合体およびその製造方法全提供することに
ある。The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to improve the wettability with the plastic matrix, and at the same time uniformly disperse continuous fibers in the composite material to increase the fiber volume. By combining continuous fibers with different properties, the ratio can be controlled.
To provide an inorganic fiber-reinforced plastic composite with excellent performance reinforced with fibers for composite materials, which can reduce stress concentration between continuous fibers and matrix and improve the mechanical properties of the composite material, and a method for producing the same. There is a particular thing.
(問題点を解決する念めの手段)
すなわち本発明の無機繊維強化プラスチック復合体は、
セラミックス、炭素および金属よりなる群から選択さn
た少なくとも一1種を構成成分、とする連続繊維からな
る連続繊維束または該連続繊維束から作製され交織布と
、
該連続繊維の近傍に存在するセラミック、炭素、金属等
の耐熱物質より選択さf’L7’c少なくとも1棟から
なる微粒子と、
該連続繊維の繊維間隙に均一に分散して介在するセフミ
ック、炭素、金属等の耐熱物質↓シ選択さtした少なく
とも1種からなる短繊維および/またはウィスカと、
マトリックスであるプラスチックとからなることを特徴
とする。(A precautionary measure to solve the problem) In other words, the inorganic fiber reinforced plastic composite of the present invention has the following features:
selected from the group consisting of ceramics, carbon and metals
A continuous fiber bundle consisting of continuous fibers containing at least one of the following as a constituent component, a woven fabric made from the continuous fiber bundle, and a heat-resistant substance such as ceramic, carbon, metal, etc., present in the vicinity of the continuous fiber. f'L7'c fine particles consisting of at least one ridge, and short fibers consisting of at least one heat-resistant substance such as cefmic, carbon, metal, etc., uniformly dispersed and interposed in the fiber gaps of the continuous fibers; and/or whiskers and a matrix of plastic.
本発明の複合体の好ましい実施態様としては例えば以下
のものが挙げられる。Preferred embodiments of the composite of the present invention include, for example, the following.
(7)微粒子の平均粒径が短繊維および/またはウィス
カの平均長さの1/30以下である複合体。(7) A composite in which the average particle diameter of fine particles is 1/30 or less of the average length of short fibers and/or whiskers.
(イ)セラミックが炭化物、窒化物、酸化物、硼化物系
セラミックから選択された少なくとも1種である複合体
。(a) A composite in which the ceramic is at least one selected from carbide, nitride, oxide, and boride ceramics.
(り)炭化物系セラミックが炭化珪素であり、窒化物系
セラミックが窒化珪素であり、蟻化物系セラミックがア
ルミナである上記(イ)の複合体。(i) The composite of (a) above, wherein the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the antide ceramic is alumina.
に) セラミックが
(+) 実質的に珪素、M、炭素および酸素からなる
非晶質物質または、
(11)実質的にβ−SiC,MO,β−SiCとMC
の固溶体および/またはMC(1−x)の粒径が500
A以下の各結晶質超微粒子および非晶質の5iO1とM
O,かもなる集合体、まtは(lli) 上記(1)
の非晶質物質と上記・(ii)の結晶質超微粒子および
非晶質からなる集合体との混合物、
(但し、上記式中のMはTi1次はZrを示し、XはO
より大きく1未満の数である)である複合体。(1) Ceramic is (+) an amorphous material consisting essentially of silicon, M, carbon and oxygen, or (11) substantially consisting of β-SiC, MO, β-SiC and MC.
solid solution and/or particle size of MC(1-x) is 500
Each crystalline ultrafine particle and amorphous 5iO1 and M below A
O, also the aggregate, is (lli) above (1)
A mixture of the amorphous substance and the aggregate consisting of crystalline ultrafine particles and amorphous as described in (ii) above (However, in the above formula, M represents Ti primary and Zr, and X represents O
a number greater than and less than 1).
(3)連続繊維に対する微粒子、および短繊維および/
またはウィスカの体積率が15〜500チである複合体
。(3) Fine particles for continuous fibers and short fibers and/or
Or a composite in which the volume fraction of whiskers is 15 to 500 cm.
(イ)連続繊維の配合割合が、複合体に対して10〜7
0体積チである複合体。(a) The blending ratio of continuous fibers to the composite is 10 to 7.
A complex with zero volume.
(至)複合体のマトリックスであるプラスチックがエポ
キシ樹脂、変性エポキシ樹脂、ポリエステル樹脂、ポリ
イミド樹脂、フェノール樹脂、ポリウレタン樹脂、ポリ
アミド樹脂、ポリカーボネート樹脂、シリコン樹脂、フ
ェノキシ型樹脂、ポリフェニレンサルファイド、フッ素
樹脂、炭化水素系樹脂、貧ハロゲン系樹脂、アクリル酸
系樹脂、ABS樹脂共箪合ポリエステル、ポリニーデル
からなる群から選択さnLものである複合体。(To) The plastic that is the matrix of the composite is epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin, polyamide resin, polycarbonate resin, silicone resin, phenoxy type resin, polyphenylene sulfide, fluororesin, carbonized A composite material selected from the group consisting of hydrogen-based resin, halogen-poor resin, acrylic acid-based resin, ABS resin co-contained polyester, and polyneedle.
また本発明の無機繊維強化プラスチック複合体の製造方
法は、セラミック、炭素および金属よジなる群から選択
さf’L7c少なくとも1種を構成成分とする連続繊維
からなる連続繊維束または該連続繊維束からなる織布を
、セラミック、炭素、金属等の耐熱物質から選択された
少なくとも1種からなる微粒子、および短繊維お、よび
/またはウィスカを懸濁しt処理液中に浸漬し、該連続
繊維1本1本の表面に、該微粒子、および試短繊゛維お
よび/またはウィスカ金付着させることにより生成した
繊維体にプラスチックを含浸させ次後、固化させること
’に%徴とする。The method for producing an inorganic fiber-reinforced plastic composite of the present invention also includes a continuous fiber bundle made of continuous fibers containing at least one type of f'L7c selected from the group consisting of ceramic, carbon, and metal fibers, or the continuous fiber bundle. A woven fabric made of 1 is immersed in a treatment solution in which fine particles made of at least one selected from heat-resistant substances such as ceramics, carbon, and metals, and short fibers and/or whiskers are suspended. The fine particles, short fibers and/or whiskers are attached to the surface of a single book, and the resulting fibrous body is impregnated with plastic and then solidified.
本発明の複合体の製造方法の好ましい実施態様としては
例えば以下のものが挙げられる。Preferred embodiments of the method for producing a composite of the present invention include, for example, the following.
(功 各構成成分が前記(7)〜(4)のものである製
造方法。(Improvement) A manufacturing method in which each component is one of the above (7) to (4).
(勺 微粒子が連続繊維の表面近傍に多く付着されてな
り、短繊維および/またはウィスカがその外側に多く付
着されてなる製造方法。(A manufacturing method in which many fine particles are attached near the surface of continuous fibers, and many short fibers and/or whiskers are attached to the outside of the continuous fibers.)
((ロ)処理液に超音波振動を与える製造方法。((b) A manufacturing method that applies ultrasonic vibration to the processing liquid.
関 処理液を入れ九処理槽を1つ用いる製造方法。Seki: A manufacturing method that uses one nine processing tank containing processing liquid.
(財)処理液を入れ九処理槽を2つ以上用いる製造方法
。Manufacturing method using two or more treatment tanks containing treatment liquid.
に)連続繊維束あるいは織布を、微粒子を懸濁した処理
液中に浸漬し、その後短繊維および/またはウィスカを
懸濁した処理液中に浸漬し、連続繊維の表面近傍に微粒
子を多く付着させ、短繊維および/またはウィスカをそ
の外側に多く付着させる上記(財)の製造方法。2) A continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, and then immersed in a treatment liquid in which short fibers and/or whiskers are suspended, so that many fine particles are attached near the surface of the continuous fibers. The manufacturing method of the above-mentioned (goods), in which a large amount of short fibers and/or whiskers are attached to the outside of the fiber.
連続繊維としてはセラミック例えば炭化珪素、窒化珪素
、窒化硼素、窒化アルミニウム、アルミナ、シリカ、ポ
リメタロカルボシランの焼成物′!九は耐熱性非金属元
素例えば炭素、硼素、耐熱性金属若しくは合金例えば鋼
、ステンレス鋼、タングステン等の材料よりなる無機繊
維を単独または組み合せて用いる◆ができる。繊維の太
さや断面形状等の性状は用途に応じて選択する。Continuous fibers include ceramics such as silicon carbide, silicon nitride, boron nitride, aluminum nitride, alumina, silica, and fired products of polymetallocarbosilane! (9) Inorganic fibers made of heat-resistant nonmetallic elements such as carbon, boron, heat-resistant metals or alloys, such as steel, stainless steel, and tungsten can be used alone or in combination. Properties such as fiber thickness and cross-sectional shape are selected depending on the application.
微粒子としては、前記連続無機繊維に使用したものと同
一の材料を用いて製造したものを用いることができる。As the fine particles, particles manufactured using the same material as that used for the continuous inorganic fiber can be used.
これらは1種を用いてもよいし、2稽以上を組み合せて
もよい。These may be used alone or in combination of two or more.
短繊維やウィスカとしては前記連続無機繊維あるいは微
粒子に使用したものと同一の材料を用いて、製造しtも
のを用いることができる。The short fibers and whiskers can be manufactured using the same materials as those used for the continuous inorganic fibers or fine particles.
ま几、いずれか1橿を用いてもよいし、2種以上を組み
合せて用いてもよい。Either one or a combination of two or more types may be used.
短繊維やウィスカの長さ、太さ及び断面形状は微粒子の
平均粒径等の性状、連続繊維との組み合せや要求特性を
考慮して選択するとよいが、短繊維またはウィスカは連
続繊維の平均直径の1/3000〜115の平均直径、
アスペクト比50〜1000であるものが、ま几、微粒
子は連続繊維の平均直径の1/3000〜1/2の平均
直径を有するものが望ましい。The length, thickness, and cross-sectional shape of short fibers and whiskers should be selected by taking into consideration the properties such as the average particle diameter of the fine particles, the combination with continuous fibers, and the required characteristics. The average diameter of 1/3000 to 115 of
It is preferable that the aspect ratio is 50 to 1000, and the fine particles have an average diameter of 1/3000 to 1/2 of the average diameter of the continuous fibers.
連続繊維の内側に多く付着させる微粒子、あるいはその
外側に多く付着させる短繊維、および/またはウィスカ
の量は両者の性状や製造し友繊維体の性状やそれによっ
て補強しyt FR,Pの用途等によっても異なるが、
短繊維、ウィスカおよび微粒子の合計の連続繊維に対す
る体積率はCL1チ〜500%程度とするのが好ましい
。ま几、微粒子と短繊維および/またはウィスカとの比
率は重量比で0.l:5〜40:1の範囲が好ましい。The amount of fine particles to be attached to the inside of the continuous fibers, short fibers to be attached to the outside of the continuous fibers, and/or the amount of whiskers depends on the properties of both, the properties of the fibers being manufactured, the reinforcement thereof, etc. Although it varies depending on
The total volume ratio of the short fibers, whiskers and fine particles to the continuous fibers is preferably about 1 to 500% CL. The weight ratio of fine particles to short fibers and/or whiskers is 0. The range of 1:5 to 40:1 is preferred.
本発明におけるプラスチックマトリックスとしては、前
記の実施態様(刈に記載のものが単げられる。これらは
単独まtは組み合せて用いてもよい。Examples of the plastic matrix in the present invention include those described in the above-mentioned embodiments (Kari).These may be used alone or in combination.
本発明の無機繊維強化プラスチック複合体に用いる繊維
体の製造方法は懸濁液浸漬法であり、これは簡便さ及び
適用範囲の広さ等の点で好ましい。この懸濁液浸漬法の
一例としては、例えばボビン等に巻き付は几連続繊維を
束ね次連続繊維束またはこの連続繊維束からなる織布を
巻き戻して、微粒子と短繊維および/またはウィスカを
同時に懸濁し友液体中に浸漬して再びボビンに巻き取る
方法が挙げられる。この様にして得られ次繊維束taは
織布は連続繊維一本一本の表面に微粒子と短繊維および
/またはウィスカとが付着した状態となる。この場合、
処理液を入れ九処理槽は、1つでもよいが、種々の変法
の友め異なる組成の処理液を入れた処理槽上2つ以上用
いてもよい。The method for manufacturing the fibers used in the inorganic fiber-reinforced plastic composite of the present invention is a suspension dipping method, which is preferred from the viewpoint of simplicity and wide applicability. As an example of this suspension dipping method, for example, continuous fibers are wound around a bobbin, etc., and then the continuous fiber bundle or the woven fabric made of this continuous fiber bundle is rewound to remove fine particles, short fibers, and/or whiskers. An example of this method is to simultaneously suspend the material, immerse it in a liquid, and then wind it onto a bobbin again. The resulting fiber bundle ta is a woven fabric in which fine particles, short fibers, and/or whiskers are attached to the surface of each continuous fiber. in this case,
The number of processing tanks containing processing liquids may be one, but two or more processing tanks containing processing liquids of different compositions may be used for various modified methods.
ま几、処理液としては、微粒子と短繊維および/または
ウィスカとを同時に懸濁したもの全使用してもよく、あ
るいは微粒子tm濁した処理液と短繊維および/まtは
ウィスカ″f、!濁した処理液を2檻の処理槽に入れて
使用してもよい。後者の場合、連続繊維束teは織布を
浸漬する順序は、微粒子を懸濁した処理液からでも、短
繊維および/またはウィスカを懸濁した処理液からでも
よい。As a processing solution, a solution in which fine particles, short fibers and/or whiskers are simultaneously suspended may be used, or a processing solution containing turbid microparticles, short fibers and/or whiskers may be used. A turbid treatment solution may be used by placing it in two treatment tanks.In the latter case, the order in which the continuous fiber bundle te is dipped into the woven fabric may be changed from the treatment solution in which fine particles are suspended to short fibers and/or Alternatively, a treatment solution in which whiskers are suspended may be used.
ここで、連続繊維表面近傍に微粒子が多く付着されて、
短繊維および/またはウィスカがその外側に多く付着さ
れてなる連続繊維束あるいは織布は、以下のようにして
製造することができる。Here, many fine particles are attached near the continuous fiber surface,
A continuous fiber bundle or woven fabric having many short fibers and/or whiskers attached to the outside thereof can be produced as follows.
すなわち、連続繊維束あるいは織布を、微粒子を懸濁し
た処理液に浸漬しt後、短繊維および/またはウィスカ
を懸濁した処理液に浸漬する。この場合、まず微粒子が
連続繊維束の中へ侵入し、繊維一本一本の表面に付着す
る。これにより、繊維間隙が広がり、その後の短繊維お
よび/まtはウィスカの連続繊維束中への侵入が容易に
なる。That is, a continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, and then immersed in a treatment liquid in which short fibers and/or whiskers are suspended. In this case, the fine particles first penetrate into the continuous fiber bundle and adhere to the surface of each fiber. This widens the fiber gap and facilitates subsequent short fibers and/or whiskers to penetrate into the continuous fiber bundle.
あるいは、平均粒径が短繊維および/またはウィスカの
平均長さの1/30以下の微粒子と、短繊維および/ま
mはウィスカと全同時に懸濁した処理液に連続繊維束あ
るいは織布を浸漬する。この場合、微粒子が主としてま
ず繊維間隙へ侵入し、繊維の表面に付着して繊維間全弁
し広げることによって短繊維および/またはウィスカの
繊維間隙への侵入が容易になる。ま几、超音波により振
動を与えると各繊維に均一に繊維束内部の繊維まで付着
を行なうことができる。Alternatively, a continuous fiber bundle or woven fabric is immersed in a treatment solution in which fine particles with an average particle diameter of 1/30 or less of the average length of short fibers and/or whiskers are suspended simultaneously with short fibers and/or whiskers. do. In this case, the fine particles mainly first enter the fiber gaps, adhere to the surfaces of the fibers, and completely spread out the fibers, thereby facilitating the penetration of short fibers and/or whiskers into the fiber gaps. By applying vibration using a microwave or ultrasonic wave, each fiber can be uniformly attached to the fibers inside the fiber bundle.
超音波は処理液を入れた容器の外側に投げた超音波付加
器にニって与えてもよいし、ま之は適当数の超音波振動
子、例えばセラミック振動子を処理液中に適当に配置し
て与えても良い。超音波の照射パターンは連続的であっ
てもパルス状であってもよい。その強度や振動数及び照
射時間は連続繊維やこれに付着させる短繊維、ウィスカ
または微粒子の攬類、あるいは前記付着物の液中密度、
連続繊維の浸漬時間などの処理条件によって選択するが
、例えば振動数は10K[lz 〜2 Q OOKHz
程度が使用し易い。Ultrasonic waves may be applied to an ultrasonic adder placed outside the container containing the processing liquid, or an appropriate number of ultrasonic transducers, such as ceramic oscillators, may be applied to the processing liquid. It may be placed and given. The ultrasonic irradiation pattern may be continuous or pulsed. The intensity, vibration frequency, and irradiation time depend on the concentration of continuous fibers, short fibers, whiskers, or fine particles attached thereto, or the density of the deposits in the liquid.
The selection is made depending on the processing conditions such as the soaking time of the continuous fibers, but for example, the frequency is 10K[lz ~ 2QOOKHz].
The degree is easy to use.
付着させるべき物を懸濁させる液体は水でもよいが、連
続繊維の表面にサイジング剤が塗布されている場合には
、サイジング剤の表面活性剤か溶剤を用いるとよい。例
えばエタノール、メタノール、アセトン特にエタノール
などの有機溶剤は、揮発性が水に比べて高いので乾燥が
早く、生産性が向上する利点がある。ま友、前記有機溶
剤と水との混合物全使用してもよい。The liquid for suspending the substance to be adhered may be water, but if a sizing agent is applied to the surface of the continuous fibers, a surfactant or a solvent for the sizing agent may be used. For example, organic solvents such as ethanol, methanol, acetone, and especially ethanol have higher volatility than water, so they dry quickly and have the advantage of improving productivity. Yes, all mixtures of the organic solvents and water may be used.
1種の付着物を懸濁した処理液を複数用いる場合と2種
以上の付着物を懸濁した処理液を1つ用いる場合のいず
れも処理液中の付着物濃度は特に限定されないが、あま
り小さいと連続繊維上に均一な付着が見られず効果がな
くなり、また逆に大きすぎると付着量が必要以上に多く
なる友め、例えば付着物として平均直径13μmの炭化
ケイ素ウィスカと平均粒径(13μmの炭化ケイ素微粒
子を用い繊維数6000本/ヤーンの連続繊維束を処理
する場合、これらの付着物の濃度は1lL5り/l〜5
ay71程度が望ましい。The concentration of deposits in the treatment solution is not particularly limited in both cases where a plurality of processing solutions containing one type of deposit are used and when a single processing solution containing two or more types of deposits is used. If it is too small, uniform adhesion will not be observed on the continuous fibers and the effect will be lost.If it is too large, the amount of adhesion will be larger than necessary.For example, silicon carbide whiskers with an average diameter of 13 μm and average particle diameter ( When processing a continuous fiber bundle of 6000 fibers/yarn using silicon carbide fine particles of 13 μm, the concentration of these deposits is 1lL5/l~5
A value of about ay71 is desirable.
浸漬時間の調整は可動ローラなどの通常の方法により行
なうことができる。まt必要ならば処理し几連続繊維束
をボビンに巻き取る前に乾燥炉や赤外線乾燥機、熱風乾
燥機等を用いて乾燥させる。さらに、処理中に短繊維や
微粒子の沈殿を防ぐ九めに攪拌手段、例えばスターラー
を用いるか、気体を吹き込んでも良い。The immersion time can be adjusted by a conventional method such as using a movable roller. If necessary, the continuous fiber bundle is treated and dried using a drying oven, an infrared dryer, a hot air dryer, etc. before being wound onto a bobbin. Further, stirring means such as a stirrer or gas may be blown to prevent precipitation of short fibers and fine particles during treatment.
本発明の複合体に用いる連続繊維やこの表面に付着させ
る微粒子、短繊維、ウィスカは市販品をそのまま使用す
ることができる。Continuous fibers used in the composite of the present invention, fine particles, short fibers, and whiskers to be attached to the surface thereof can be commercially available products as they are.
こうして得られ次繊維体またはその織布から、それ自体
公知の方法に従って、F几Pを製造することができる。From the thus obtained secondary fibrous body or its woven fabric, a fabric P can be produced according to a method known per se.
その製造方法としては、〕1ンドレイアップ法、マツチ
ドメタルダイ法、ブレークアクエイ法、フィラメントワ
インディング法、ホットプレス法、オートクレーブ法、
連続引抜き法等が挙げられる。−例としてホットプレス
法を挙げると、この方法によれば、繊維体またはその織
布にプラスチックを含浸させた後、予備硬化してプリプ
レグシート1i製し、このシートを積層し、ついでホッ
トプレスで加圧、加熱して板状の複合体とすることがで
きる。The manufacturing methods include 1-strand lay-up method, matted metal die method, break-aqua method, filament winding method, hot press method, autoclave method,
Examples include continuous drawing method. - Taking the hot press method as an example, according to this method, a fibrous body or its woven fabric is impregnated with plastic, pre-cured to produce a prepreg sheet 1i, the sheets are laminated, and then hot press is applied. It can be made into a plate-like composite by applying pressure and heating.
(実施例)
以下の実施例において本発明を更に詳細に説明する。な
お、本発明は下記の実施例に限定されるものではない。(Example) The present invention will be explained in further detail in the following example. Note that the present invention is not limited to the following examples.
実施例1
炭化珪素ウィスカ(平均直径約0.2μm、平均長さ約
100μm)100fと炭化珪素粒子(平均粒径(12
8μm) 2505’ fエチルアルコール5000c
cの入った処理槽中に投入後、超音波付加器により超音
波振動を与えて懸濁させ、処理液を調整した。炭化珪素
繊維の繊維束(500本糸)をボビンから巻き戻し、浸
漬時間を15秒となるよう可動ローラによって調節して
処理液中に浸漬しながら通し、同時に処理液に超音波を
付加して、更に空気を吹き込んで攪拌し、次いで、圧力
ローラによりて押圧し几後再びボビンに巻き取り、室温
、大気中で乾燥させ友。処理前黒色でありた繊維は処理
後灰緑色を帯び、電子顕微鏡観察の結果、連続繊維の表
面に微粒子が、更にその外側にワイス力が付着している
のが認められ九。ま念、処理後秤量の結果、体積比で1
0チの微粒子とウィスカが付着した連続涜維体が生成し
ていることがわかっ次。Example 1 Silicon carbide whiskers (average diameter of about 0.2 μm, average length of about 100 μm) 100f and silicon carbide particles (average particle diameter of about 12 μm)
8μm) 2505'f Ethyl alcohol 5000c
After putting it into a processing tank containing c, ultrasonic vibration was applied using an ultrasonic adder to suspend it, and a processing liquid was prepared. A fiber bundle of silicon carbide fibers (500 threads) was unwound from the bobbin, and the immersion time was adjusted to 15 seconds using a movable roller, and the fiber bundle was immersed in the processing solution. At the same time, ultrasonic waves were applied to the processing solution. Then, air was blown into the product to stir it, and then it was pressed with a pressure roller, wound up again on a bobbin, and dried in the atmosphere at room temperature. The fibers, which were black before treatment, took on a grayish-green color after treatment, and as a result of electron microscopy observation, it was observed that fine particles were attached to the surface of the continuous fibers, and furthermore, Weiss force was attached to the outside.9. To be sure, the result of weighing after processing is 1 in volume ratio.
Next, it was discovered that a continuous fibrous body with zero-chip particles and whiskers attached was generated.
この処理した繊維体を一軸方向に揃え、これに市販のビ
スフェノールA型エポキシ樹脂ヲ含浸させ、予備硬化さ
せ、厚さ0.1511!Illのプリプレグを得た。こ
れを積層した後、170℃、7に4/cdで4時間ホッ
トプレスして、厚さ2fiの複合体を得几。The treated fibrous body was aligned in the uniaxial direction, impregnated with a commercially available bisphenol A type epoxy resin, and precured to a thickness of 0.1511! A prepreg of Ill was obtained. After laminating this, hot pressing was carried out at 170°C and 7.4/cd for 4 hours to obtain a composite with a thickness of 2fi.
この複合体の断面を走査型電子顕微鏡で調べ九ところ、
炭化珪素粒子が無機繊維界面に一部付着し、無機繊維は
マトリック中に均一に分散し、繊維同志接しているとこ
ろは見当らながり几。まt、繊維と繊維の間には炭化珪
素ウィスカが分散していることが確認出来几。A cross-section of this complex was examined using a scanning electron microscope.
Some of the silicon carbide particles adhere to the inorganic fiber interface, and the inorganic fibers are uniformly dispersed in the matrix, with no visible places where the fibers are in contact with each other. It was also confirmed that silicon carbide whiskers were dispersed between the fibers.
この複合体の繊維含有量は55容量チであり次。複合体
の引張強度は165 Kf/mj、層間剪断強度は12
.3Kp/−であり几。The fiber content of this composite is 55% by volume. The tensile strength of the composite is 165 Kf/mj, and the interlaminar shear strength is 12
.. It is 3Kp/-.
実施例2
実施例1と同様の連続繊維体を一方向にシート状に揃え
、これに市販フェノール・ノボラック型変性エポキシ樹
脂を含浸させ友後、予備硬化させて、厚さα15!In
のプリプレグシートを得友。Example 2 Continuous fibers similar to those in Example 1 were arranged in a sheet shape in one direction, impregnated with a commercially available phenol/novolac type modified epoxy resin, and then precured to a thickness of α15! In
I received a prepreg sheet from a friend.
このシートを積層した後、170℃、17胸/−で4時
間ホットプレスして、厚’:52wmの複合体を得友。After the sheets were laminated, they were hot pressed at 170° C. and 17 cm for 4 hours to obtain a composite with a thickness of 52 wm.
複合体の繊維含量は55容量チでありた。The fiber content of the composite was 55% by volume.
この複合体の断面を走査型電子顕微鏡で調べたところ、
炭化珪素粒子が無機繊維界面に一部付着し、無機繊維は
マトリックス中に均一に分散し、繊維同志接していると
ころは見当らなかった。また、繊維と繊維の間には、炭
化珪素ウィスカが分散していることが確認できた。When we examined a cross section of this complex using a scanning electron microscope, we found that
Part of the silicon carbide particles adhered to the inorganic fiber interface, the inorganic fibers were uniformly dispersed in the matrix, and no fibers were found to be in contact with each other. Furthermore, it was confirmed that silicon carbide whiskers were dispersed between the fibers.
この複合体の繊維含有量は、55容量チであり几。複合
体の引張強度は178Kg / ysJ 、層間剪断強
度は12.6す/IJであっ几。The fiber content of this composite is 55% by volume. The tensile strength of the composite was 178 Kg/ysJ, and the interlaminar shear strength was 12.6 S/IJ.
本発明のF、几Pの断面を電子顕微鏡で調べ九ところ、
F)LPの連続繊維は微粒子とその外側のウィスカの付
着により繊維の間隔が適度に保たれる次めマトリックス
プラスチック中に均一に分散し、付着させない場合に比
べて繊維同士の接触などは減少し友。After examining the cross section of F and P of the present invention with an electron microscope, we found that
F) The continuous fibers of LP are kept at an appropriate spacing by the adhesion of fine particles and whiskers on the outside, and are then uniformly dispersed in the matrix plastic, reducing contact between fibers compared to when no adhesion occurs. friend.
連続繊維に微粒子のみを添加して強化したFRPの場合
には繊維間隔は広がるが、繊維垂直方向の強化効果が少
ない。ま次、連続繊維に9イスカまたは短繊維のみを添
加して強化したFRPの場合は、繊維の間隔が広がりに
くく、繊維軸方向、繊維垂直方向共に強化効果が少ない
。In the case of FRP reinforced by adding only fine particles to continuous fibers, the fiber spacing increases, but the reinforcing effect in the vertical direction of the fibers is small. Second, in the case of FRP reinforced by adding only 9 isca or short fibers to continuous fibers, the spacing between the fibers is difficult to widen, and the reinforcing effect is small in both the fiber axial direction and the fiber perpendicular direction.
(発明の効果)
上述のように本発明の無機繊維強化プラスチック複合体
は、連続繊維のそnぞnの表面に微粒子と短繊維および
/ま皮はウィスカを付着させ几連続繊維束あるいは該連
続繊維束よりなる織布でマトリックスプラスチックが強
化さnているため、複合体中にそれぞnの連続繊維を均
一に分散させることができ、繊維の体積率を非常に広範
囲に制御することが可能である。また連続繊維同志の接
触が減少し、さらにその間に介在する短繊維および/ま
たはウィスカにより繊維垂直方向までも強化され、かつ
複合体の組成が均一となる几め強さなどの機械特性が改
善された。(Effects of the Invention) As described above, the inorganic fiber-reinforced plastic composite of the present invention has fine particles, short fibers, and/or whiskers attached to the surface of continuous fibers to form a continuous fiber bundle or the continuous fibers. Since the matrix plastic is reinforced with a woven fabric consisting of fiber bundles, each continuous fiber can be uniformly dispersed in the composite, making it possible to control the fiber volume fraction over a very wide range. It is. In addition, contact between continuous fibers is reduced, short fibers and/or whiskers interposed between them strengthen the fibers in the vertical direction, and the composition of the composite becomes uniform, improving mechanical properties such as compaction strength. Ta.
ま友、これ□までの繊維強化プラスチック複合材料にお
いては、繊維含有量の少ない場合、繊維が偏在しやすく
、複合剤に従りた理論強度を得ることが難しかったが、
本発明の複合体においては、繊維含有量の少ない場合で
もマトリックスであるプラスチック中に連続繊維が非常
に均一に分散し、複合則通シの強度が得られるので設計
の自由度が向上した。Friend, in the fiber-reinforced plastic composite materials up to this point, when the fiber content was low, the fibers tended to be unevenly distributed and it was difficult to obtain the theoretical strength according to the composite agent.
In the composite of the present invention, even when the fiber content is small, the continuous fibers are very uniformly dispersed in the plastic matrix, and the strength according to the composite rule can be obtained, thereby improving the degree of freedom in design.
また本発明の製造方法によって上記複合体を容易に得る
ことができる。Further, the above composite can be easily obtained by the production method of the present invention.
特許出願人 株式会社豊田中央研究所 同 宇部興産株式会社Patent applicant Toyota Central Research Institute Co., Ltd. Same Ube Industries Co., Ltd.
Claims (1)
された少なくとも1種を構成成分とする連続繊維からな
る連続繊維束または該連続繊維束から作製された織布と
、 該連続繊維の近傍に存在するセラミック、 炭素、金属等の耐熱物質より選択された少なくとも1種
からなる微粒子と、 該連続繊維の繊維間隙に均一に分散して介 在するセラミック、炭素、金属等の耐熱物質より選択さ
れた少なくとも1種からなる短繊維および/またはウィ
スカと、 マトリックスであるプラスチックとからな ることを特徴とする無機繊維強化プラスチック複合体。 (2)微粒子の平均粒径が短繊維および/またはウィス
カの平均長さの1/30以下であることを特徴とする特
許請求の範囲第1項記載の無機繊維強化プラスチック複
合体。 (3)セラミックが炭化物、窒化物、酸化物、硼化物系
セラミックから選択された少なくとも1種であることを
特徴とする特許請求の範囲第1項記載の無機繊維強化プ
ラスチック複合体。 (4)炭化物系セラミックが炭化珪素であり、窒化物系
セラミックが窒化珪素であり、酸化物系セラミックがア
ルミナであることを特徴とする特許請求の範囲第3項記
載の無機繊維強化プラスチック複合体。 (5)セラミックが (i)実質的に珪素、M、炭素および酸素からなる非晶
質物質または、 (ii)実質的にβ−SiC、MC、β−SiCとMC
の固溶体および/またはMC_(_1_−_X_)の粒
径が500Å以下の各結晶質超微粒子および非晶質の SiO_2とMO_2からなる集合体、または(iii
)上記(i)の非晶質物質と上記(ii)の結晶質超微
粒子および非晶質からなる集合体との混 合物、 (但し、上記式中のMはTiまたはZrを示し、Xは0
より大きく1未満の数である)であることを特徴とする
特許請求の範囲第1項または第2項記載の無機繊維強化
プラスチック複合体。 (6)連続繊維に対する微粒子、および短繊維および/
またはウィスカの体積率が0.5〜500%であること
を特徴とする特許請求範囲第1項記載の無機繊維強化プ
ラスチック複合体。 (7)連続繊維の配合割合が、複合体に対して10〜7
0体積%であることを特徴とする特許請求の範囲第1項
記載の無機繊維強化プラスチック複合体。 (8)複合体のマトリックスであるプラスチックがエポ
キシ樹脂、変性エポキシ樹脂、ポリエステル樹脂、ポリ
イミド樹脂、フェノール樹脂、ポリウレタン樹脂、ポリ
アミド樹脂、ポリカーボネート樹脂、シリコン樹脂、フ
ェノキシ型樹脂、ポリフェニレンサルファイド、フッ素
樹脂、炭化水素系樹脂、含ハロゲン系樹脂、アクリル酸
系樹脂、ABS樹脂共重合ポリエステル、ポリエーテル
からなる群から選択されたものであることを特徴とする
特許請求範囲第1項記載の無機繊維強化プラスチック複
合体。 (9)セラミック、炭素および金属よりなる群から選択
された少なくとも1種を構成成分とする連続繊維からな
る連続繊維束または該連続繊維束からなる織布を、セラ
ミック、炭素、金属等の耐熱物質から選択された少なく
とも1種からなる微粒子、および短繊維および/または
ウィスカを懸濁した処理液中に浸漬し、該連続繊維1本
1本の表面に、該微粒子、および該短繊維および/また
はウィスカを付着させることにより生成した繊維体にプ
ラスチックを含浸させた後、固化させることを特徴とす
る無機繊維強化プラスチック複合体の製造方法。 (10)微粒子の平均粒径が短繊維および/またはウィ
スカの平均長さの1/30以下であることを特徴とする
特許請求の範囲第9項記載の無機繊維強化プラスチック
複合体の製造方法。 (11)セラミックが炭化物、窒化物、酸化物、硼化物
系セラミックから選択された少なくと も1種であることを特徴とする特許請求の範囲第9項記
載の無機繊維強化プラスチック複合体の製造方法。 (12)炭化物系セラミックが炭化珪素であり、窒化物
系セラミックが窒化珪素であり、酸化物系セラミックが
アルミナであることを特徴とする特許請求の範囲第11
項記載の無機繊維強化プラスチック複合体の製造方法。 (13)セラミックが (i)実質的に珪素、M、炭素および酸素からなる非晶
質物質または、 (ii)実質的にβ−SiC、MC、β−SiCとMC
の固溶体および/またはMC_(_1_−_X_)の粒
径が500Å以下の各結晶質超微粒子および非晶質の SiO_2とMO_2からなる集合体、または(iii
)上記(i)の非晶質物質と上記(ii)の結晶質超微
粒子および非晶質からなる集合体との混 合物、 (但し、上記式中のMはTiまたはZrを 示し、Xは0より大きく1未満の数である)であること
を特徴とする特許請求の範囲第9項または第10項記載
の無機繊維強化プラスチック複合体の製造方法。 (14)連続繊維に対する微粒子、および短繊維および
/またはウィスカの体積率が0.5〜500%であるこ
とを特徴とする特許請求範囲第9項記載の無機繊維強化
プラスチック複合体の製造方法。 (15)連続繊維の配合割合が、複合体に対して10〜
70体積%であることを特徴とする特許請求の範囲第9
項記載の無機繊維強化プラスチック複合体の製造方法。 5、複合体のマトリックスであるプラスチックがエポキ
シ樹脂、変性エポキシ樹脂、ポリエステル樹脂、ポリイ
ミド樹脂、フェノール樹脂、ポリウレタン樹脂、ポリア
ミド樹脂、ポリカーボネート樹脂、シリコン樹脂、フェ
ノキシ型樹脂、ポリフェニレンサルファイド、フッ素樹
脂、炭化水素系樹脂、含ハロゲン系樹脂、アクリル酸系
樹脂、ABS樹脂共重合ポリエステル、ポリエーテルか
らなる群から選択されたものであることを特徴とする特
許請求範囲第9項記載の無機繊維強化プラスチック複合
体の製造方法。 (17)微粒子が連続繊維の表面近傍に多く付着されて
なり、短繊維および/またはウィスカがその外側に多く
付着されてなることを特徴とする特許請求の範囲第9項
記載の無機繊維強化プラスチック複合体の製造方法。 (18)処理液に超音波振動を与えることを特徴とする
特許請求の範囲第9項記載の無機繊維強化プラスチック
複合体の製造方法。 (19)処理液を入れた処理槽を1つ用いることを特徴
とする特許請求の範囲第9項記載の無機繊維強化プラス
チック複合体の製造方法。 (20)処理液を入れた処理槽を2つ以上用いることを
特徴とする特許請求の範囲第9項記載の無機繊維強化プ
ラスチック複合体の製造方法。 (21)連続繊維束あるいは織布を、微粒子を懸濁した
処理液中に浸漬し、その後短繊維および/またはウィス
カを懸濁した処理液中に浸漬し、連続繊維の表面近傍に
微粒子を多く付着させ、短繊維および/またはウィスカ
をその外側に多く付着させることを特徴とする特許請求
の範囲第20項記載の無機繊維強化プラスチック複合体
の製造方法。[Scope of Claims] (1) A continuous fiber bundle made of continuous fibers containing at least one member selected from the group consisting of ceramic, carbon, and metal, or a woven fabric made from the continuous fiber bundle; Fine particles consisting of at least one type of heat-resistant material selected from ceramic, carbon, metal, etc., existing in the vicinity of the continuous fibers, and heat-resistant material, such as ceramic, carbon, metal, etc., uniformly dispersed and interposed in the fiber gaps of the continuous fibers. An inorganic fiber-reinforced plastic composite comprising short fibers and/or whiskers made of at least one substance selected from substances, and a plastic matrix. (2) The inorganic fiber-reinforced plastic composite according to claim 1, wherein the average particle diameter of the fine particles is 1/30 or less of the average length of the short fibers and/or whiskers. (3) The inorganic fiber-reinforced plastic composite according to claim 1, wherein the ceramic is at least one selected from carbide, nitride, oxide, and boride ceramics. (4) The inorganic fiber reinforced plastic composite according to claim 3, wherein the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the oxide ceramic is alumina. . (5) The ceramic is (i) an amorphous material consisting essentially of silicon, M, carbon and oxygen, or (ii) essentially consisting of β-SiC, MC, β-SiC and MC.
A solid solution of and/or an aggregate consisting of each crystalline ultrafine particle with a particle size of 500 Å or less of MC_(_1_-_X_) and amorphous SiO_2 and MO_2, or (iii
) A mixture of the amorphous substance of the above (i) and the aggregate of the crystalline ultrafine particles and the amorphous of the above (ii), (However, in the above formula, M represents Ti or Zr, and X is 0.
The inorganic fiber-reinforced plastic composite according to claim 1 or 2, wherein the inorganic fiber-reinforced plastic composite is characterized in that the composite material is larger than 1 and less than 1. (6) Fine particles for continuous fibers and short fibers and/or
The inorganic fiber-reinforced plastic composite according to claim 1, wherein the volume percentage of whiskers is 0.5 to 500%. (7) The blending ratio of continuous fibers to the composite is 10 to 7
The inorganic fiber-reinforced plastic composite according to claim 1, characterized in that the content is 0% by volume. (8) The plastic that is the matrix of the composite is epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin, polyamide resin, polycarbonate resin, silicone resin, phenoxy type resin, polyphenylene sulfide, fluororesin, carbonized The inorganic fiber-reinforced plastic composite according to claim 1, which is selected from the group consisting of hydrogen-based resins, halogen-containing resins, acrylic acid-based resins, ABS resin copolyesters, and polyethers. body. (9) Continuous fiber bundles made of continuous fibers containing at least one component selected from the group consisting of ceramics, carbon, and metals or woven fabrics made of the continuous fiber bundles are made of heat-resistant materials such as ceramics, carbon, and metals. Fine particles consisting of at least one kind selected from A method for producing an inorganic fiber-reinforced plastic composite, which comprises impregnating a fibrous body produced by attaching whiskers with plastic and then solidifying it. (10) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, wherein the average particle diameter of the fine particles is 1/30 or less of the average length of the short fibers and/or whiskers. (11) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, wherein the ceramic is at least one selected from carbide, nitride, oxide, and boride ceramics. (12) Claim 11, characterized in that the carbide ceramic is silicon carbide, the nitride ceramic is silicon nitride, and the oxide ceramic is alumina.
A method for producing an inorganic fiber-reinforced plastic composite as described in Section 1. (13) The ceramic is (i) an amorphous material consisting essentially of silicon, M, carbon and oxygen, or (ii) essentially consisting of β-SiC, MC, β-SiC and MC.
A solid solution of and/or an aggregate consisting of each crystalline ultrafine particle with a particle size of 500 Å or less of MC_(_1_-_X_) and amorphous SiO_2 and MO_2, or (iii
) A mixture of the amorphous substance of the above (i) and the aggregate of the crystalline ultrafine particles and the amorphous of the above (ii), (However, in the above formula, M represents Ti or Zr, and X is 0. The method for producing an inorganic fiber-reinforced plastic composite according to claim 9 or 10, wherein the number is greater than 1 and less than 1. (14) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, wherein the volume ratio of fine particles, short fibers and/or whiskers to continuous fibers is 0.5 to 500%. (15) The blending ratio of continuous fibers to the composite is 10 to
Claim 9, characterized in that the content is 70% by volume.
A method for producing an inorganic fiber-reinforced plastic composite as described in Section 1. 5. The plastic that is the matrix of the composite is epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin, polyamide resin, polycarbonate resin, silicone resin, phenoxy type resin, polyphenylene sulfide, fluororesin, hydrocarbon. The inorganic fiber-reinforced plastic composite according to claim 9, wherein the inorganic fiber-reinforced plastic composite is selected from the group consisting of resins, halogen-containing resins, acrylic acid resins, ABS resin copolyesters, and polyethers. manufacturing method. (17) The inorganic fiber-reinforced plastic according to claim 9, characterized in that many fine particles are attached near the surface of continuous fibers, and many short fibers and/or whiskers are attached to the outside thereof. Method of manufacturing the composite. (18) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, which comprises applying ultrasonic vibration to the treatment liquid. (19) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, characterized in that one treatment tank containing a treatment liquid is used. (20) The method for producing an inorganic fiber-reinforced plastic composite according to claim 9, characterized in that two or more treatment tanks containing treatment liquid are used. (21) A continuous fiber bundle or woven fabric is immersed in a treatment liquid in which fine particles are suspended, and then immersed in a treatment liquid in which short fibers and/or whiskers are suspended, so that many fine particles are placed near the surface of the continuous fibers. 21. The method for producing an inorganic fiber-reinforced plastic composite according to claim 20, wherein a large number of short fibers and/or whiskers are attached to the outside of the composite.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62101277A JPS63265620A (en) | 1987-04-24 | 1987-04-24 | Inorganic fiber reinforced plastic composite and its preparation |
US07/061,548 US4961990A (en) | 1986-06-17 | 1987-06-15 | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and process for producing same |
EP87108618A EP0249927B1 (en) | 1986-06-17 | 1987-06-15 | Fibrous material for composite materials, fiber-reinforced composite materials produced therefrom, and processes for producing same |
DE8787108618T DE3774939D1 (en) | 1986-06-17 | 1987-06-15 | FIBERS FOR COMPOSITE MATERIALS, COMPOSITE MATERIALS USING SUCH FIBERS AND METHOD FOR THEIR PRODUCTION. |
CA 539851 CA1283763C (en) | 1986-06-17 | 1987-06-16 | Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62101277A JPS63265620A (en) | 1987-04-24 | 1987-04-24 | Inorganic fiber reinforced plastic composite and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63265620A true JPS63265620A (en) | 1988-11-02 |
Family
ID=14296379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62101277A Pending JPS63265620A (en) | 1986-06-17 | 1987-04-24 | Inorganic fiber reinforced plastic composite and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63265620A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199681A (en) * | 2015-04-10 | 2016-12-01 | 東邦テナックス株式会社 | Fiber-reinforced composite material |
-
1987
- 1987-04-24 JP JP62101277A patent/JPS63265620A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199681A (en) * | 2015-04-10 | 2016-12-01 | 東邦テナックス株式会社 | Fiber-reinforced composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1283763C (en) | Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same | |
US4778722A (en) | Reinforcing fibers and composite materials reinforced with said fibers | |
CA2218907C (en) | Flexible low bulk pre-impregnated tow | |
US4732779A (en) | Fibrous material for composite materials, fiber-reinforced metal produced therefrom, and process for producing same | |
Awan et al. | Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites | |
JP2012518076A (en) | Composite material composed of carbon nanotubes on the fiber | |
JPH10500636A (en) | Manufacturing method of preform for molding | |
EP0272648A2 (en) | Method for producing carbon fiber reinforced thermoplastic resin product | |
JP2001002794A (en) | Unidirectional tape of carbon fiber and its production | |
JPS6359473A (en) | Production of inorganic fiber for composite material | |
JPH0524266B2 (en) | ||
JPH0412894B2 (en) | ||
JPS63265620A (en) | Inorganic fiber reinforced plastic composite and its preparation | |
JPS61295346A (en) | Fiber-reinforced metal and its production | |
JPH0534308B2 (en) | ||
JPS62299569A (en) | Fiber body for composite material and its production | |
JP2551821B2 (en) | Continuous molding method for resin moldings | |
JPS63324A (en) | Fiber reinforced plastic composite and its preparation | |
CA1333031C (en) | Oxidatively stable water soluble amorphous hydrated metal oxide sizing for composite fibers | |
JPH09241929A (en) | Hollow inorganic fiber and production of the same | |
JPS62299568A (en) | Inorganic fiber for composite material | |
JP3339075B2 (en) | Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same | |
JP2551850B2 (en) | HYBRID FIBER, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING METAL REINFORCED WITH THIS FIBER | |
JP2906484B2 (en) | Carbon fiber reinforced carbon composite and method for producing the same | |
JP3383990B2 (en) | Carbon fiber reinforced carbon composite and sliding material using the same |