Nothing Special   »   [go: up one dir, main page]

JPS63235307A - Preparation of alpha-olefin polymer - Google Patents

Preparation of alpha-olefin polymer

Info

Publication number
JPS63235307A
JPS63235307A JP7093787A JP7093787A JPS63235307A JP S63235307 A JPS63235307 A JP S63235307A JP 7093787 A JP7093787 A JP 7093787A JP 7093787 A JP7093787 A JP 7093787A JP S63235307 A JPS63235307 A JP S63235307A
Authority
JP
Japan
Prior art keywords
compound
titanium
ether
hydrocarbon group
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7093787A
Other languages
Japanese (ja)
Other versions
JPH0437084B2 (en
Inventor
Toshio Sasaki
俊夫 佐々木
Seiji Kawai
清司 河合
Takeshi Ebara
健 江原
Hirobumi Jiyouhouji
常法寺 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7093787A priority Critical patent/JPS63235307A/en
Publication of JPS63235307A publication Critical patent/JPS63235307A/en
Publication of JPH0437084B2 publication Critical patent/JPH0437084B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To prepare a highly stereoregular polymer in a high productivity, by (co)polymerizing an alpha-olefin in the presence of a catalyst system consisting of a specified trivalent titanium compound-containing solid catalyst ingredient, an organoaluminum compound and an organosilicon compound. CONSTITUTION:An organosilicon compound having an Si-O bond, a titanium compound of formula I (where R<1> is a 1-20C hydrocarbon group; X is a halogen; 0<n<=4) and an organomagnesium compound are reacted. The resulting solid reaction product is treated with a compound of formula II or III (where R<2> and R<3> are each 1-20C hydrocarbon group) and then with a mixture of an ether compound and titanium tetrachloride. An olefin is (co)polymerized in the presence of a catalyst system consisting of the resulting trivalent titanium compound-containing solid catalyst ingredient, an organoaluminum compound (e.g. triethylaluminum) and a silicon compound (e.g. tetramethoxysilane) having an Si-OR<4> bond (where R<4> is a 1-20C hydrocarbon group) to give a polymer.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、α−オレフィン重合体の製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method for producing an α-olefin polymer.

%+と詳しくは固体触媒当り及びチタン原子当りの触媒
活性が非常lこ高い新規な触媒系を用いて触媒残渣及び
無定形重合体が極めて少ない機械的性質と加工性tC優
れたスーオレフィン1合体の製造方法1ζ関する。
%+, in detail, using a new catalyst system with extremely high catalytic activity per solid catalyst and per titanium atom, resulting in extremely low levels of catalyst residue and amorphous polymers, excellent mechanical properties and processability. Regarding the manufacturing method 1ζ.

〈従来の技術〉 一般1こ、プロピレン、ブテン−1等のα−オレフィン
重合体を製造する方法として、周期律表の■〜■族の遷
移金属化合物とI〜■族の有機金属化合物とからなるい
わゆるチーグラ・ナツタ触媒を使用することは良(知ら
れている。
<Prior art> General 1. As a method for producing α-olefin polymers such as propylene and butene-1, from transition metal compounds of groups ■ to ■ of the periodic table and organometallic compounds of groups I to ■ It is well known to use the so-called Ziegler-Natsuta catalyst.

特に、α−オレフィン重合体を工業的に製造する場合に
は、三塩化チタン触媒が去く使用されている・ しかしながら、該製造法に詔いては工業的に利用価値の
高い高立体規則性α−オレフィン重合体の他に無定形重
合体が副生ずる。
In particular, when producing α-olefin polymers industrially, titanium trichloride catalysts are often used. -Amorphous polymers are produced as by-products in addition to olefin polymers.

この無定形重合体は工業的利用価値が少なく、α−オレ
フィン重合体をフィルム、繊維、その他の加工品に加工
して使用する際の機械的性質に大きく悪影響を及ぼす。
This amorphous polymer has little industrial utility value and has a large adverse effect on mechanical properties when the α-olefin polymer is processed into films, fibers, and other processed products.

又、上記#足形重合体の生成は原料モノマーの損失を招
き、同時に無定形重合体の除去に必要な製造設備が必須
となる等、工業的に見ても極めて大きな不利益を招く。
In addition, the production of the #foot-shaped polymer causes a loss of raw material monomers, and at the same time, production equipment necessary for removing the amorphous polymer is required, resulting in extremely large disadvantages from an industrial perspective.

従うて、この様な無定形重合体の生成が老く無いか、域
は有っても極めて僅かであれば非常に大きな利点となり
得る。
Therefore, it would be a great advantage if such amorphous polymers were not produced prematurely, or if only to a very small extent.

一方、かかる重合法において得られたα−オレフィン重
合体中に触媒残渣が残留し、この触媒残渣はα−オレフ
ィン重合体の安定性、加工性など種々の点に壜いて問題
を引きおこし、触媒残渣除去と安定化のための設備が必
要となる。
On the other hand, catalyst residue remains in the α-olefin polymer obtained by this polymerization method, and this catalyst residue causes various problems such as stability and processability of the α-olefin polymer, and the catalyst Equipment for residue removal and stabilization will be required.

この欠点は単位重量触媒当りの生成α−オレフィン重合
体重量で表わされる触媒活性が太きくなれば改善するこ
とができ、又上記触媒残渣除去のための設備も不要とな
り、α−オレフィン重合体の製造fζ必要な生産コスト
の引き下げも可籠となる。
This drawback can be improved by increasing the catalytic activity expressed by the weight of the α-olefin polymer produced per unit weight of catalyst.Furthermore, equipment for removing the catalyst residue is no longer required, and the α-olefin polymer It will also be possible to reduce the necessary production costs for manufacturing fζ.

三塩化チタンの製造法としては、四塩化チタンを1)水
素で還元した後、ボールitvで粉砕して活性化する。
The method for producing titanium trichloride includes 1) reducing titanium tetrachloride with hydrogen, and then pulverizing and activating it with a ball ITV.

2)金属アルミニウムで還元した後、ボールミル粉砕し
て活性化する。8)有機アルミニウム化合物で一80〜
80℃の温度で還元することによりて得られた還元固体
を120〜180℃の温度で熱処理する等がある。
2) After reduction with metal aluminum, it is activated by ball milling. 8) Organoaluminum compound - 80~
For example, a reduced solid obtained by reduction at a temperature of 80°C is heat-treated at a temperature of 120 to 180°C.

しかしながら、上記三塩化チタンは触媒活性、立体規則
性いずれの点に諺いても充分満足すべきものではない。
However, the above-mentioned titanium trichloride is not fully satisfactory in terms of both catalytic activity and stereoregularity.

又、四塩化チタンを有機アルミニウム化合物で還元する
ことにより製造される還元固体を錯化剤で処理し、更に
四塩化チタンと反応させる方法(特公昭68−8856
号公報)、更に本出願人が先に提案した一般式Ti (
OR)nX4−nで表わされるチタン化合物を有機アル
ミニウム化合物で還元した後、エーテル化合物と四塩化
チタンの混合物で処理する方法(特開昭59−1264
01号公報)等、で得られる固体触媒成分と有機アルミ
ニウム化合物からなる触媒系を用いてα−オレフィンの
重合を行なうと、得られるa−オレフィン重合体の立体
規則性は高いものの、触媒活性は満足できるほど高くな
い。
In addition, a method in which a reduced solid produced by reducing titanium tetrachloride with an organoaluminum compound is treated with a complexing agent and further reacted with titanium tetrachloride (Japanese Patent Publication No. 68-8856
Publication No.), and the general formula Ti (
OR) A method in which a titanium compound represented by n
When α-olefin polymerization is carried out using a catalyst system consisting of a solid catalyst component and an organoaluminum compound obtained in JP 01, etc., although the stereoregularity of the resulting α-olefin polymer is high, the catalytic activity is low. It's not high enough to satisfy me.

三塩化チタンの製造法として、四塩化チタンを有機マグ
ネシウム化合物、例えばグリニV−ル試薬で還元するこ
とによって合成されることも公知である。
It is also known that titanium trichloride is synthesized by reducing titanium tetrachloride with an organomagnesium compound, such as a Grignyl V-reagent.

本出願人は先に、四塩化チタンを有機マグネシウム化合
物で還元して得られる反応固体をルイス酸で処理する方
法を提案した(特公昭57−24861号公報)。
The present applicant previously proposed a method in which a reaction solid obtained by reducing titanium tetrachloride with an organomagnesium compound is treated with a Lewis acid (Japanese Patent Publication No. 57-24861).

しかしながら、かかる方法で得られた触媒を用いてもα
−オレフィンの重合に訝ける触媒活性は高いものの、得
られたα−オレフィン重合体の立体規則性はいまだ満足
できるほど高いものではない。
However, even when using the catalyst obtained by this method, α
-Although the catalytic activity for olefin polymerization is high, the stereoregularity of the obtained α-olefin polymer is still not high enough to satisfy.

〈発明が解決しようとする問題点〉 かかる現状]こおいて、本発明の解決すべき問題点、即
ち本発明の目的は触媒残渣及び無定形重合体の除去が不
必要となるほど充分高い触媒活性と立体規則性を有する
α−オレフ(ン重合体の製造方法を提供することにある
<Problems to be Solved by the Invention> Such Current Status] In this situation, the problems to be solved by the present invention, that is, the purpose of the present invention is to achieve a sufficiently high catalytic activity so that the removal of catalyst residues and amorphous polymers is unnecessary. An object of the present invention is to provide a method for producing an α-olefin polymer having stereoregularity.

く問題点を解決するための手段〉 本発明は、 A)Si−0結合を有する有機ケイ素化合物の共存下、
一般式Ti (OR1)nXa−n (R1は炭素数が
1〜20の炭化水素基、Xはハロゲン原子、nは0 <
 n≦4の数字を表わす。)で表わされるチタン化合物
を有機マグネシウム化合物で還元して得られる固体生成
物を、一般式R2(Co)、O(R1は炭素数1〜20
の炭化水素基を表わす。)で示される酸無水物、或は一
般式R3(COX)、 (R3+を炭X数1〜20(7
)炭化水素基、Xはハロゲン原子を表わす。)で示され
る酸ハライド、及びエーテル化合物と四塩化チタンとの
混合物で処理して得られる三価のチタン化合物含有固体
触媒成分、B)有機アルミニウム化合物、 C) S 1−OR’結合(R4は炭素数が1〜20の
炭化水素基である。)を有するケイ素化合物よりなる触
媒系を用いることによるα−オレフィン重合体の製造方
法である。
Means for Solving the Problems> The present invention provides the following features: A) In the coexistence of an organosilicon compound having a Si-0 bond,
General formula Ti (OR1)nXa-n (R1 is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom, n is 0 <
Represents a number where n≦4. ) A solid product obtained by reducing a titanium compound represented by
represents a hydrocarbon group. ), or general formula R3(COX), (R3+ with carbon number 1 to 20 (7
) Hydrocarbon group, X represents a halogen atom. ) and a trivalent titanium compound-containing solid catalyst component obtained by treatment with a mixture of an ether compound and titanium tetrachloride; B) an organoaluminum compound; This is a method for producing an α-olefin polymer by using a catalyst system made of a silicon compound having a hydrocarbon group having 1 to 20 carbon atoms.

本触媒系の使用により前記目的が達成される。The use of the present catalyst system achieves the above objectives.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

(al  チタン化合物 本発明シζおいて使用されるチタン化合物は一般式Ti
 (OR’ )nX4−n (R1は炭素数が1〜2G
の炭化水素基、Xはハロゲン原子、nはo<n≦4の数
字を表わす。)で表わされる。R1の具体例としてはメ
チル、エチル、n−プロピル、1so−プロピル、n−
ブチル、1so−ブチル、n−アミル、1so−アミル
、n−ヘキシル、n−ヘプチル、n−オクチル、n−デ
シル、n−ドデシル等のアルキル基、フェニル、クレジ
ル、キシリル、ナフチル等のアリール基、シクロヘキシ
ル、シクロペンチル等のシクロアルキル基、プロペニル
等のアリル基、ベンジル等のアラルキル基等が例示され
る。これらのうち炭素数2〜18のアルキル基及び炭素
数6〜18のアリール基が好ましい。特番こ炭素数2〜
18の直鎖状アルキル基が好まし−い。2種以との異な
るOR1基を有するチタン化合物を用いることも可能で
ある。
(al Titanium compound The titanium compound used in the present invention has the general formula Ti
(OR')nX4-n (R1 has 1 to 2G carbon atoms
is a hydrocarbon group, X is a halogen atom, and n is a number satisfying o<n≦4. ). Specific examples of R1 include methyl, ethyl, n-propyl, 1so-propyl, n-
Alkyl groups such as butyl, 1so-butyl, n-amyl, 1so-amyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-dodecyl, aryl groups such as phenyl, cresyl, xylyl, naphthyl, Examples include cycloalkyl groups such as cyclohexyl and cyclopentyl, allyl groups such as propenyl, and aralkyl groups such as benzyl. Among these, an alkyl group having 2 to 18 carbon atoms and an aryl group having 6 to 18 carbon atoms are preferred. Special number carbon number 2~
18 straight chain alkyl groups are preferred. It is also possible to use titanium compounds having two or more different OR1 groups.

Xで表わされるハロゲン原子としては塩素、臭素、ヨウ
素が例示できる。特に塩素が好ましい結果を与える。
Examples of the halogen atom represented by X include chlorine, bromine, and iodine. In particular, chlorine gives favorable results.

一般式 T 1 (0R1) nX4−21  テ表ワ
サレルチタン化合物のnの値としてはo<n≦4、好ま
しくは2≦n≦4、特に好ましくはn −4である゛。
General formula T 1 (0R1) nX4-21 The value of n in the Wasarell titanium compound is o<n≦4, preferably 2≦n≦4, particularly preferably n −4.

一般式 T 1 (OR7) nXa −n (0< 
n≦4)で表わされるチタン化合物の合成方法としては
公知の方法が使用できる。例えば Ti(ORI)4と
 TiX4を所定の割合で反応させる方法、或はTiX
4 と対応するアルコール類を所定量反応させる方法が
使用できる。
General formula T 1 (OR7) nXa −n (0<
A known method can be used to synthesize the titanium compound represented by n≦4). For example, a method of reacting Ti(ORI)4 and TiX4 at a predetermined ratio, or a method of reacting Ti(ORI)4 and TiX4
A method of reacting a predetermined amount of 4 with the corresponding alcohol can be used.

(blsi−0結合を有する有機ティ素化合物本発明の
A)成分の合成:ζ使用される5i−0結合を有する有
機ティ素化合物としては、下記の一般式で表わされるも
のである。
(Organotin compound having a blsi-0 bond Synthesis of component A) of the present invention: ζ The organotin compound having a 5i-0 bond to be used is represented by the following general formula.

S i (OR’ )mR−−m R7(RへS io ) ps iR’。S i (OR') mR--m R7 (Sio to R) ps iR'.

又は (R”tSiO)q ここに、R5は炭素数が1〜20の炭化水X基、R11
、Rf 、Ra 、R’及ヒR1’ tt炭X数カ1〜
20の炭化水素基又は水素原子であり、mはo<m≦4
の数字であり、pは1〜1000の整数であり、qは2
〜1000の整数である。
or (R”tSiO)q where R5 is a hydrocarbon X group having 1 to 20 carbon atoms, R11
, Rf , Ra , R' and R1' tt Charcoal X number 1 ~
20 hydrocarbon groups or hydrogen atoms, m is o<m≦4
, p is an integer from 1 to 1000, and q is 2
It is an integer between ~1000.

有機ケイ素化合物の具体例としては下記のようなものを
示すことができる。
Specific examples of organosilicon compounds include the following.

テトラメトキシシラン、ジメチルジメトキシシラン、テ
トラエトキシシラン、トリエトキシエチルシラン、ジエ
トキシジエチルシラン、エトキシトリエチルシラン、テ
トラインプロポキシシラン、ジイソプロポキシジイソプ
ロピルシラン、テトラプロポキシシラン、ジプロポキシ
ジプロピルシラン、テトラ−n−ブトキシシラン、ジ−
n−ブトキシジ−n−ブチルシラン、ジシクロペントキ
シジエチルシラン、ジェトキシジフェニルシラン、シク
ロへキシロキシトリメチルシラン、テトラフェノキシシ
ラン、トリエトキシフェニルシラン、ヘキサメチルジシ
ロキサン、ヘキサエチルジシロキサン、ヘキサプロピル
ジシロキサン、オクタエチルトリシロキサン、ジメチル
ポリシロキサン、ジフェニルポリシロキサン、メチルヒ
ドロポリシロキサン等を例示することができる。
Tetramethoxysilane, dimethyldimethoxysilane, tetraethoxysilane, triethoxyethylsilane, diethoxydiethylsilane, ethoxytriethylsilane, tetralinepropoxysilane, diisopropoxydiisopropylsilane, tetrapropoxysilane, dipropoxydipropylsilane, tetra-n -butoxysilane, di-
n-Butoxydi-n-butylsilane, dicyclopentoxydiethylsilane, jetoxydiphenylsilane, cyclohexyloxytrimethylsilane, tetraphenoxysilane, triethoxyphenylsilane, hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane , octaethyltrisiloxane, dimethylpolysiloxane, diphenylpolysiloxane, methylhydropolysiloxane, and the like.

これらの有機ケイ素化合物のうち好ましいものは一般式
 S i (OR’ )mR’、 −m  で表わされ
るアルコキシシラン化合物であり、好ましくは1≦m≦
4であり、特にm w 4のテトラアルコキシシラン化
合物が好ましい。
Among these organosilicon compounds, preferred are alkoxysilane compounds represented by the general formula S i (OR')mR', -m, preferably 1≦m≦
4, particularly preferred is a tetraalkoxysilane compound with m w 4.

(C)  有機マグネシウム化合切 次に本発明で用いる有機マグネシウムは、マグネシウム
−炭素の結合を含有する任意の型の有機マグネシウム化
合物を使用することができる。特に一般式 RllMg
X (式中、R11は炭素数1〜20の炭化水素基を、
Xはハロゲン原子を表わす。)で表わされるグリニヤー
化合物及び一般式R12RL3Mg(式中、R12及び
R13は炭素数1〜20の炭化水素基を表わす。)で表
わされるジアルキルマグネシウム化合物又はジアリール
マグネシウム化合物が好適に使用される。ここでRlm
 、 R12、R13は同一でも異なっていてもよく、
メチル、エチル、n−プロピル、1so−プロピル、n
−ブチル、5ec−ブチル、tert−ブチル、n−ア
ミル、1so−アミル、n−ヘキシル、n−オクチル、
2−エチルヘキシル、フェニル、ベンジル等の炭素数1
〜20のアルキル基、アリール基、アラルキル基、アル
ケニル基を示す。
(C) Organomagnesium Compound Next, as the organomagnesium used in the present invention, any type of organomagnesium compound containing a magnesium-carbon bond can be used. Especially the general formula RllMg
X (wherein R11 is a hydrocarbon group having 1 to 20 carbon atoms,
X represents a halogen atom. ) and a dialkylmagnesium compound or diarylmagnesium compound represented by the general formula R12RL3Mg (wherein R12 and R13 represent a hydrocarbon group having 1 to 20 carbon atoms) are preferably used. Rlm here
, R12 and R13 may be the same or different,
Methyl, ethyl, n-propyl, 1so-propyl, n
-butyl, 5ec-butyl, tert-butyl, n-amyl, 1so-amyl, n-hexyl, n-octyl,
1 carbon number such as 2-ethylhexyl, phenyl, benzyl, etc.
~20 alkyl groups, aryl groups, aralkyl groups, and alkenyl groups.

具体的には、グリニヤール化合物としてメチルマグネシ
ウムクロリド、エチルマグネシウムクロリド、エチルマ
グネシウムプロミド、エチルマグネシウムアイオダイド
、n−プ・ロピルマグネシウムクロリド、n−プロピル
マグネシウムプロミド、n−ブチルマグネシウムクロリ
ド、n−ブチルマグネシウムクロリド、n−ブチルマグ
ネシウムプロミド、5ec−ブチルマグネシウムクロリ
ド、5eC−ブチルマグネシウムプロミド、tert−
ブチルマグネシウムクロリド、tert−ブチルマグネ
シウムプロミド、n−アミルマグネシウムクロリド、1
SO−アミルマグネシウムクロリド、フェニルマグネシ
ウムクロリド、フェニルマグネシウムプロミド等が、R
It RII Mg  で表わされる化合物としてジエ
チルマグネシウム、ジ−n−プロピルマグネシウム、ジ
ー1SO−プロピルマグネシウム、ジ−n−ブチルマグ
ネシウム、ジー5ec−ブチルマグネシウム、ジー t
ert−ブチルマグネシウム、n−ブチル−8eC−ブ
チルマグネシウム、ジ−n−アミルマグネシウム、ジフ
ェニルマグネシウム等が挙げられる。
Specifically, Grignard compounds include methylmagnesium chloride, ethylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium iodide, n-propylmagnesium chloride, n-propylmagnesium bromide, n-butylmagnesium chloride, n- Butylmagnesium chloride, n-butylmagnesium bromide, 5ec-butylmagnesium chloride, 5eC-butylmagnesium bromide, tert-
Butylmagnesium chloride, tert-butylmagnesium bromide, n-amylmagnesium chloride, 1
SO-amylmagnesium chloride, phenylmagnesium chloride, phenylmagnesium bromide, etc.
Compounds represented by It RII Mg include diethylmagnesium, di-n-propylmagnesium, di-1SO-propylmagnesium, di-n-butylmagnesium, di-5ec-butylmagnesium, di-t
Examples include ert-butylmagnesium, n-butyl-8eC-butylmagnesium, di-n-amylmagnesium, diphenylmagnesium, and the like.

上記の有機マグネシウム化合物の合成溶媒としては、ジ
エチルエーテル、ジ−n−プロピルエーテル、ジー18
0−プロピルエーテル、ジ−n−ブチルエーテル、シー
1so−ブチルエーテル、ジ−n−アミルエーテル、ジ
ー1SO−アミルエーテル、ジ−n−ヘキシルエーテル
、ジ−n−オクチルエーテル、ジフェニルエーテル、ジ
ベンジルエーテル、フェネトール、アニソール、テトラ
ヒドロフラン、テトラヒドロピラン等のエーテルを用い
ることができる。又、。ヘキサン、ヘプタン、オクタン
、シクロヘキサン、メチルシクロヘキサン、ベンゼン、
トルエン、キシレン等(7) 炭化水素、或はエーテル
と炭化水素との混合溶媒を用いてもよい。有機マグネシ
ウム化合物はエーテル溶液の状態で吏用することが好ま
しい。この場合のエーテル化合物としては、分千円に炭
素数6個以上を含有するエーテル化合物又は環状構造を
有するエーテル化合物が用いられる。
As the synthesis solvent for the above organomagnesium compound, diethyl ether, di-n-propyl ether, di-18
0-propyl ether, di-n-butyl ether, di-1so-butyl ether, di-n-amyl ether, di-1SO-amyl ether, di-n-hexyl ether, di-n-octyl ether, diphenyl ether, dibenzyl ether, phenetol , anisole, tetrahydrofuran, tetrahydropyran, and the like can be used. or,. hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene,
Toluene, xylene, etc. (7) A hydrocarbon or a mixed solvent of ether and hydrocarbon may be used. The organomagnesium compound is preferably used in the form of an ether solution. As the ether compound in this case, an ether compound containing 6 or more carbon atoms or an ether compound having a cyclic structure is used.

特にRIIMg(Jで表わされるグリニヤール化合物を
エーテル溶液の状態で使用することが触媒性能の点から
好ましい。
In particular, it is preferable to use a Grignard compound represented by RIIMg (J) in the form of an ether solution from the viewpoint of catalytic performance.

上記の有機マグネシウム化合物と有機金属化合物との反
応生成物である炭化水素可溶性錯体を炭化水素に溶解し
て使用することもできる。有機金属化合物の例としては
Li、Be。
A hydrocarbon-soluble complex, which is a reaction product of the above organomagnesium compound and an organometallic compound, can also be used by dissolving it in a hydrocarbon. Examples of organometallic compounds include Li and Be.

B、/J又はZnの有機化合物が挙げられる。Examples include organic compounds of B, /J or Zn.

(dl  酸無水物或は酸〕1ライド 本発明に詔いて、成分A)の合成に使用される一般式R
”(GO)tO(R2は炭素数1〜20の炭化水素基を
表わす。)で示されるrias水物、或バ一般式R” 
(COX)、 (R3Gt 炭素数1〜20の炭化水素
基、Xはハロゲン原子を表わす。)で示される酸ハライ
ドの具体例としては、酸無水物の具体例とじて 無水物を、又酸ハライドの具体例としてことができる。
(dl acid anhydride or acid) 1ride According to the present invention, the general formula R used in the synthesis of component A)
"Rias hydrate represented by (GO) tO (R2 represents a hydrocarbon group having 1 to 20 carbon atoms), or the general formula R"
(COX), (R3Gt is a hydrocarbon group having 1 to 20 carbon atoms, X represents a halogen atom). This can be done as a specific example.

い。stomach.

(el  エーテル化合物 次に本発明で使用するエーテル化合物としテハ、ジエチ
ルエーテル、ジ−n−プロピルエーテル、ジインプロピ
ルエーテル、ジ−n−ブチルエーテル、ジ−n−アミル
エーテル、ジインアミルエーテル、ジインアミルエーテ
ル、ジ−n−ヘキシルエーテル、ジーn −オクチルエ
ーテル、メチル−n−ブチルエーテル、メチル−インア
ミルエーテル、エチル−インブチルエーテル等のジアル
キルエーテルが好ましい。
(el Ether Compounds Next, the ether compounds used in the present invention are Teha, diethyl ether, di-n-propyl ether, diinpropyl ether, di-n-butyl ether, di-n-amyl ether, diynamyl ether, diynamyl ether , di-n-hexyl ether, di-n-octyl ether, methyl-n-butyl ether, methyl-in-amyl ether, ethyl-in-butyl ether and the like are preferred.

これらのうちジ−n−ブチルエーテルとジインアミルエ
ーテルが特に好ましい。
Among these, di-n-butyl ether and diynamyl ether are particularly preferred.

(fl  固体触媒成分A)の合成 本発明の固体触媒成分A)は、有機ケイ素化合物の共存
下、チタン化合物を有機マグネシウム化合物で還元して
得られる固体生成物を、酸無水物或は酸ハライド及びエ
ーテル化合物と四塩化チタンとの混合物で処理して合成
される、好ましくは還元して得られる固体生成物を酸無
水物或は酸ハライドで処理した後、エーテル化合物と四
塩化チタンとの混合物で処理して合成される。
(fl) Synthesis of solid catalyst component A) The solid catalyst component A) of the present invention is a solid product obtained by reducing a titanium compound with an organomagnesium compound in the coexistence of an organosilicon compound. and a mixture of an ether compound and titanium tetrachloride, preferably by treating a solid product obtained by reduction with an acid anhydride or an acid halide, and then a mixture of an ether compound and titanium tetrachloride. processed and synthesized.

合成反応はすべて窒素、アルゴン等の不活性気体雰囲気
下で行なわれる。
All synthetic reactions are carried out under an inert gas atmosphere such as nitrogen or argon.

先ず、有機マグネシウム化合物によるチタン化合物の還
元反応の方法としては、チタン化合物と有機ケイ素化合
物の混合物に有機マグネシウム化合物を添加する方法、
或は逆に有機マグネシウム化合物の溶液中にチタン化合
物と有機ケイ素化合物の混合物を添加しでもよい。チタ
ン化合物と有機ケイ素化合物の混合物に、有機マグネシ
ウム化合物を添加する方法が触媒活性の点から好ましい
First, as a method for the reduction reaction of a titanium compound with an organomagnesium compound, a method of adding an organomagnesium compound to a mixture of a titanium compound and an organosilicon compound,
Alternatively, a mixture of a titanium compound and an organosilicon compound may be added to a solution of an organomagnesium compound. A method in which an organomagnesium compound is added to a mixture of a titanium compound and an organosilicon compound is preferred from the viewpoint of catalytic activity.

チタン化合物と有機ケイ素化合物は適当な溶媒に溶解も
しくは希釈して使用するのが好ましい。
The titanium compound and the organosilicon compound are preferably used after being dissolved or diluted in a suitable solvent.

かかる溶媒としては、ヘキサン、ヘプタン、オクタン、
デカン等の脂肪族炭化水素、トルエン、キシレン等の芳
香族炭化水素、シクロへ牛サン、メチルシクロへ牛サン
、デカリン等の脂環式炭化水素、ジエチルエーテル、ジ
ブチルエーテル、ジイソアミルエーテル、テトラヒドロ
フラン等のエーテル化合物が挙げられる。
Such solvents include hexane, heptane, octane,
Aliphatic hydrocarbons such as decane, aromatic hydrocarbons such as toluene and xylene, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, decalin, diethyl ether, dibutyl ether, diisoamyl ether, tetrahydrofuran, etc. Examples include ether compounds.

還元反応温度は、−50〜70℃、好ましくは一80〜
50C1特に好ましくは一25〜85℃の温度範囲であ
る。還元反応温度が高すぎると触媒活性が低下する。
The reduction reaction temperature is -50 to 70°C, preferably -80 to
50C1 is particularly preferably in the temperature range of -25 to 85°C. If the reduction reaction temperature is too high, the catalyst activity will decrease.

滴下時間は特に制限はないが、通常80分〜6時間程度
である。還元反応終了後、更に20〜120℃の温度で
後反応を行なってもよい。
The dropping time is not particularly limited, but is usually about 80 minutes to 6 hours. After the reduction reaction is completed, a post-reaction may be further carried out at a temperature of 20 to 120°C.

有機ケイ素化合物の使用量は、チタン化合物中のチタン
原子に対するケイ素原子の原子比で、Si/Ti=1〜
60、好ましくは8〜80、特に好ましくは5〜25の
範囲である。
The amount of the organosilicon compound used is the atomic ratio of silicon atoms to titanium atoms in the titanium compound, and Si/Ti = 1 to 1.
60, preferably 8-80, particularly preferably 5-25.

又、有機マグネシウム化合物の使用量は、チタン原子と
ケイ素原子の和とマグネシウム原子の原子比で、Ti+
Si/Mg=o、1−10、好ましくは0.2〜5.O
l特に好ましくは0.6〜2、0の範囲である。
In addition, the amount of organic magnesium compound used is the atomic ratio of the sum of titanium atoms and silicon atoms to the magnesium atom, and Ti+
Si/Mg=o, 1-10, preferably 0.2-5. O
1 is particularly preferably in the range of 0.6 to 2.0.

還元反応で得られる固体生成物は固液分離し、ヘキサン
、ヘプタン等の不活性炭化水素溶媒で数回洗浄を行なう
The solid product obtained by the reduction reaction is separated into solid and liquid, and washed several times with an inert hydrocarbon solvent such as hexane or heptane.

このようにして得られた固体生成物は三価のチタン、マ
グネシウム及びハイドロカルビルオキシ基を含有し、一
般に非品性もしくは極めて弱い結晶性を示す。触媒性能
の点から特に非結晶性の構造が好ましい。
The solid product thus obtained contains trivalent titanium, magnesium and hydrocarbyloxy groups and generally exhibits poor quality or very weak crystallinity. In view of catalytic performance, an amorphous structure is particularly preferred.

次に、上記方法で得られた固体生成物は酸無水物或は酸
ハライドで処理を行なう。
Next, the solid product obtained by the above method is treated with an acid anhydride or an acid halide.

酸無水物或は酸ハライドの使用量は固体生成物中のチタ
ン原子1モル当り、1.0〜60モル、更に好ましくは
0.8〜20モル、特に好ましくは011〜10モルで
ある。
The amount of acid anhydride or acid halide used is 1.0 to 60 mol, more preferably 0.8 to 20 mol, particularly preferably 0.11 to 10 mol, per mol of titanium atom in the solid product.

又、固体生成物中のマグネシウム原子1モル当りの酸無
水物或は酸ハライドの使用量は、0.01〜1.0モル
、好ましくは0.08〜0.6モルである。酸無水物或
は酸ハライドの使用量が過度に多い場合には粒子の崩壊
が起こる。
The amount of acid anhydride or acid halide used per mol of magnesium atom in the solid product is 0.01 to 1.0 mol, preferably 0.08 to 0.6 mol. If too much acid anhydride or acid halide is used, particle disintegration will occur.

酸無水物或は酸ハライド1こよる固体生成物の処理は、
スラリー法やボールミル等による機械的粉砕手段等両者
を接触させうる公知のいかなる方法によっても行なうこ
とができるが、機械的粉砕を行なうと固体触媒成分に微
粉が多量に発生し、粒度分布が広くなり、工業的観点か
ら好ましくない。希釈剤の存在下で両者を接触させるの
が好ましい。
Treatment of solid products with acid anhydrides or acid halides is as follows:
This can be carried out by any known method that allows the two to come into contact, such as a slurry method or mechanical pulverization using a ball mill, etc. However, when mechanical pulverization is performed, a large amount of fine powder is generated in the solid catalyst component, resulting in a wide particle size distribution. , which is unfavorable from an industrial point of view. Preferably, the two are brought into contact in the presence of a diluent.

希釈剤としてはペンタン、ヘキサン、ヘプタン、オクタ
ン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン
などの芳香族炭化水素、シクロヘキサン、シクロペンタ
ンなどの脂環式炭化水素、1.2−ジクロルエタン、モ
ノクロルベンゼン等のハロゲン化炭化水素が使用できる
Diluents include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane, aromatic hydrocarbons such as benzene, toluene, and xylene, alicyclic hydrocarbons such as cyclohexane and cyclopentane, 1,2-dichloroethane, and monochlorobenzene. Halogenated hydrocarbons such as halogenated hydrocarbons can be used.

これらのうち芳香族炭化水素及びハロゲン化炭化水素が
特に好ましい。
Among these, aromatic hydrocarbons and halogenated hydrocarbons are particularly preferred.

希釈剤の使用量は固体生成物12当り0.1ml −1
000mlである。好ましくはIP当り1m/−100
−である。処理温度は一50〜150℃であるが、好ま
しくは0〜120℃である。処理時間は10分以上であ
るが、好ましくは80分〜8時間である。処理終了後静
置し、固液分離した後、不活性炭化水素溶媒で数回洗浄
を行ない酸無水物或は酸ノ1ライド処理固体が得られる
The amount of diluent used is 0.1 ml −1 per 12 solid products.
000ml. Preferably 1m/-100 per IP
− is. The treatment temperature is -50 to 150°C, preferably 0 to 120°C. The treatment time is 10 minutes or more, preferably 80 minutes to 8 hours. After completion of the treatment, the mixture is allowed to stand and separated into solid and liquid, and then washed several times with an inert hydrocarbon solvent to obtain an acid anhydride or acid nolide treated solid.

次のエーテル化合物と四塩化チタンとの混合物による処
理の際、酸無水物或は酸7%ライドを共存させて同時に
行なうことも可能である。
During the subsequent treatment with a mixture of an ether compound and titanium tetrachloride, it is also possible to carry out the treatment simultaneously with an acid anhydride or a 7% acid acid ride.

次に、エーテル化合物と四塩化チタンとの混合物による
酸無水物或は酸ハライド処理固体の処理は、スラリー状
態で行なうのが好ましい。スラリー化するのに用いる溶
媒としては、ペンタン、ヘキサン、ヘプタン、オクタン
、デカン等の脂肪族炭化水素、トルエン、キシレン等の
芳香族炭化水素、シクロヘキサン、メチルシクロヘキサ
ン、デカリン等の脂環式炭化水素、ジクロルエタン、ト
リクロルエタン、トリクロルエチレン、モノクロルベン
ゼン、ジクロルベンゼン、トリクロルベンゼン等のハロ
ゲン化炭化水素が挙げられるが、芳香族炭化水素、ハロ
ゲン化炭化水素が特に好ましい。
Next, the treatment of the acid anhydride or acid halide treated solid with the mixture of the ether compound and titanium tetrachloride is preferably carried out in a slurry state. Solvents used for slurrying include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and decane; aromatic hydrocarbons such as toluene and xylene; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and decalin; Examples include halogenated hydrocarbons such as dichloroethane, trichloroethane, trichloroethylene, monochlorobenzene, dichlorobenzene, and trichlorobenzene, and aromatic hydrocarbons and halogenated hydrocarbons are particularly preferred.

スラリー濃度は0.05〜0.57固体/−溶媒、特に
0.1〜0.8f固体/d溶媒が好ましい。
The slurry concentration is preferably 0.05 to 0.57 solids/d solvent, particularly 0.1 to 0.8 f solids/d solvent.

反応温度は80〜150℃、好ましくは46〜120℃
、特に好ましくは60〜ioo℃である。
Reaction temperature is 80-150°C, preferably 46-120°C
, particularly preferably 60 to ioo°C.

反応時間は特に制限は無いが、通常80分から6時間が
好適である。
There is no particular restriction on the reaction time, but 80 minutes to 6 hours is usually suitable.

酸無水物或は酸ハライド処理固体、エーテル化合物及び
四塩化チタンを添加する方法としては、酸無水物或は酸
ハライド処理固体にエーテル化合物と四塩化チタンを加
える方法、逆に、エーテル化合物と四塩化チタンの溶液
中に酸無水物或は酸ハライド処理固体を加える方法等い
ずれの方法でもよい。
The method of adding an acid anhydride or acid halide treated solid, an ether compound and titanium tetrachloride includes a method of adding an ether compound and titanium tetrachloride to an acid anhydride or acid halide treated solid, and conversely, a method of adding an ether compound and a titanium tetrachloride. Any method may be used, such as adding an acid anhydride or acid halide treated solid to a titanium chloride solution.

酸無水物或は酸ハライド処理固体にエーテル化合物と四
塩化チタンを加える方法番ζおいては、予めエーテルと
四塩化チタンを混合した後加える方法、或はエーテル化
合物と四塩化チタンを同時に添加する方法が特に好まし
い。
In method number ζ of adding an ether compound and titanium tetrachloride to an acid anhydride or acid halide treated solid, the ether and titanium tetrachloride are mixed in advance and then added, or the ether compound and titanium tetrachloride are added at the same time. The method is particularly preferred.

酸無水物或は酸ハライド処理固体のエーテル化合物と四
塩化チタンによる反応は2回以上繰返し行なってもよい
。触媒活性及び立体規則性の点からエーテル化合物と四
塩化チタンとの混合物憂とよる反応を少なくとも2回繰
り返し行なうのが好ましい。
The reaction of the acid anhydride or acid halide-treated solid with the ether compound and titanium tetrachloride may be repeated two or more times. From the viewpoint of catalytic activity and stereoregularity, it is preferable to repeat the reaction with a mixture of the ether compound and titanium tetrachloride at least twice.

エーテル化合物の使用量は、固体生成物中に含有される
チタン原子1モルに対し、0.1〜100モル、好まし
くは0.5〜50モル、特に好ましくは1〜20モルで
ある。
The amount of the ether compound used is 0.1 to 100 mol, preferably 0.5 to 50 mol, particularly preferably 1 to 20 mol, per 1 mol of titanium atoms contained in the solid product.

四塩化チタンの添加量は、固体生成物中に含有されるチ
タン原子1モルに対し、1〜1000モル、好ましくは
8〜500モル、特に好ましくは10〜800モルであ
る。又、エーテル化合物1モルに対する四塩化チタンの
添加量はl−100モル、好ましくは1.6〜75モル
、特に好ましくは2〜50モルである。
The amount of titanium tetrachloride added is 1 to 1000 mol, preferably 8 to 500 mol, particularly preferably 10 to 800 mol, per 1 mol of titanium atoms contained in the solid product. The amount of titanium tetrachloride added per mole of the ether compound is 1-100 moles, preferably 1.6 to 75 moles, particularly preferably 2 to 50 moles.

と配力法で得られた三価のチタン化合物含有固体触媒成
分は、固液分離した後、ヘキサン、ヘプタン等の不活性
炭化水素溶媒で数回洗浄した後重合に用いる。
The trivalent titanium compound-containing solid catalyst component obtained by the distribution method is separated into solid and liquid, washed several times with an inert hydrocarbon solvent such as hexane or heptane, and then used for polymerization.

固液分難後、多量のトルエン、キシレン等の芳香族炭化
水素もしくはモノクロルベンゼン等のハロゲン化炭化水
素溶媒で、60〜120℃の温度で1回以上洗浄し、更
にヘキサン等の脂肪族炭化水素溶媒で数回洗浄を繰り返
した後重合に用いるのが触媒活性、立体規則性の点で好
ましい。
After solid-liquid separation, wash with a large amount of aromatic hydrocarbon such as toluene or xylene or halogenated hydrocarbon such as monochlorobenzene at a temperature of 60 to 120°C once or more, and then wash with aliphatic hydrocarbon such as hexane. From the viewpoint of catalytic activity and stereoregularity, it is preferable to use it for polymerization after repeated washing with a solvent several times.

g) 有機アルミニウム化合物B) 本発明において、上述した固体触媒成分A)と組合せて
使用する有機アルミニウム化合物B)は、少なくとも分
子内に1個の/J −炭素結合を有するものである。代
表的なものを−般式で下記に示す。
g) Organoaluminum compound B) In the present invention, the organoaluminum compound B) used in combination with the solid catalyst component A) described above has at least one /J-carbon bond in the molecule. Typical examples are shown below as general formulas.

R14rA5Y、 −r R18R+11Ad Q−AeR17R18ココテ、R
I4 、RII 、R16,R17及びR’ は炭素数
が1〜8個の炭化水素基、Yはノ10ゲン原子、水素原
子又はアルコキシ基を表わす。rは2≦r≦8で表わさ
れる数字である。
R14rA5Y, -r R18R+11Ad Q-AeR17R18 Kokote, R
I4, RII, R16, R17 and R' represent a hydrocarbon group having 1 to 8 carbon atoms, and Y represents a hydrogen atom, a hydrogen atom or an alkoxy group. r is a number expressed as 2≦r≦8.

有機アルミニウム化合物の具体例としては、トリエチル
アルミニウム、トリイソブチルアルミニウム、トリヘキ
シルアルミニウム等のトリアルキルアルミニウム、ジエ
チルアlレミニクムハイドライド、ジイソブチルアルミ
ニウムハイドライド等のジアルキルアルミニウムハイド
ライド、トリアルキルアルミニウムとジアルキルアルミ
ニウムハライドの混合物、テトラエチルジアルモキサン
、テトラブチルジアルモキサン等のアルキルアルモキサ
ンが例示できる。
Specific examples of organoaluminum compounds include trialkylaluminiums such as triethylaluminum, triisobutylaluminum, and trihexylaluminum, dialkylaluminum hydrides such as diethylaluminium hydride and diisobutylaluminum hydride, mixtures of trialkylaluminum and dialkylaluminum halides, Examples include alkylalumoxanes such as tetraethyldialumoxane and tetrabutyldialumoxane.

これら有機アルミニウム化合物のうちトリアルキルアル
ミニウム、トリアルキルアルミニウムとジアルキルアル
ミニウムハライドの混合物、アルキルアルモキサンが好
ましく、とりわけトリエチルアルミニウム、トリインブ
チルアルミニウム、トリエチルアルミニウムとジエチル
アルミニウムクロリドの混合物及びテトラエチルジアル
モキサンが好ましい。
Among these organoaluminum compounds, trialkylaluminum, a mixture of trialkylaluminium and dialkylaluminum halide, and alkylalumoxane are preferred, and triethylaluminum, triinbutylaluminum, a mixture of triethylaluminum and diethylaluminum chloride, and tetraethyldialumoxane are particularly preferred. .

有機アルミニウム化合物の使用tは、固体触媒中のチタ
ン原子1モル当り1〜1000モルのごとく広範囲に選
ぶことができるが、特に5〜600モルの範囲が好まし
い。
The amount of the organoaluminum compound to be used can be selected from a wide range of 1 to 1000 mol per mol of titanium atom in the solid catalyst, but a range of 5 to 600 mol is particularly preferred.

(hl  5i−OR’結合を有するディ素化合物C)
本発明において重合時に触媒成分C)として用いる5i
−OR’結合(R4は炭素数が1〜20の炭化水素基で
ある)を有するディ素化合物は、一般式R”asi(O
R’ )a 21  (R’及びR19は炭素数が1〜
20の炭化水素基、aは0≦a≦8の数字を表わす。)
で表わされるアルコキシシラン化合物が好適に使用され
る。
(Dimine compound C having hl 5i-OR' bond)
5i used as catalyst component C) during polymerization in the present invention
A dimine compound having an -OR' bond (R4 is a hydrocarbon group having 1 to 20 carbon atoms) has the general formula R"asi(O
R') a 21 (R' and R19 have 1 to 1 carbon atoms
20 hydrocarbon groups, a represents a number of 0≦a≦8. )
An alkoxysilane compound represented by is preferably used.

特にR4が炭素数1〜10の直鎖状アルキル基であり、
RI9の少くとも1つがアリール基であるアルコキシシ
ラン化合物が好ましい。
In particular, R4 is a linear alkyl group having 1 to 10 carbon atoms,
Preferred are alkoxysilane compounds in which at least one of RI9 is an aryl group.

具体例としては、テトラメトキシシラン、メチルトリメ
トキシシラン、ジエチルジェトキシシラン、エチルトリ
メトキシシラン、フェニルトリメトキシシラン、フェニ
ルメチルジメトキシシラン、テトラエトキシシラン、メ
チルトリエトキシシラン、エチルトリメトキシシラン、
ビニルトリエトキシシラン、フェニルトリエトキシシラ
ン、ジフェニルジメトキシシラン、ジフェニルジェトキ
シシランブチルトリエトキシシラン、テトラブトキシシ
ラン、ビニルトリブトキシシラン、ジエチルジェトキシ
シラン等を挙げることができる。
Specific examples include tetramethoxysilane, methyltrimethoxysilane, diethyljethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, phenylmethyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane,
Examples include vinyltriethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyljethoxysilane butyltriethoxysilane, tetrabutoxysilane, vinyltributoxysilane, diethyljethoxysilane and the like.

5i−OR’結合を有するケイ素化合物の使用量は、B
)成分である有機アルミニウム化合物のアルミニウム原
子1モル当り、Si原子が0.01〜5モル、好ましく
は0.08〜8モル、特に好ましくは0.05〜1.0
モルである。
The amount of silicon compound having 5i-OR' bond is B
0.01 to 5 moles of Si atoms, preferably 0.08 to 8 moles, particularly preferably 0.05 to 1.0 moles of Si atoms per mole of aluminum atoms in the organoaluminum compound which is the component ().
It is a mole.

(i)  α−オレフィンの重合方法 各触媒成分を重合槽に供給する方法とじては、窒素、ア
ルゴン等の不活性ガス中で水分のない状態で供給する以
外は特に制限すべき条件はない。
(i) Polymerization method of α-olefin There are no particular restrictions on the method of supplying each catalyst component to the polymerization tank, except that it is supplied in an inert gas such as nitrogen or argon without moisture.

触媒成分A)、B)、C)は個別(こ供給してもいいし
、いずれか2者を予め接触させて供給してもよい。
Catalyst components A), B), and C) may be supplied individually, or any two may be brought into contact with each other beforehand and supplied.

重合は一80〜200℃迄にわたって実施することがで
きるが、0℃より低温の領域では重合速度の低下を招き
、又100℃以上では高度に立体規則性を有する重合体
が得られない等の理由によって通常θ〜100℃の範囲
で行なうのが好適である。重合圧力に関しては特に制限
はないが、工業的かつ経済的であるという点で8〜10
0気圧程度気圧力が望ましい。重合法は連続式でもバッ
チ式でもいずれも可能である。又プロパン、ブタン、ペ
ンタン、ヘキサン、ヘプタン、オクタンの如き不活性炭
化水素溶媒によるスラリー重合、無溶媒による液相重合
又は気相重合も可能である。
Polymerization can be carried out at temperatures ranging from -80 to 200°C, but temperatures lower than 0°C may result in a decrease in the polymerization rate, and temperatures above 100°C may not produce highly stereoregular polymers. For some reason, it is usually preferable to carry out the heating in the range of θ to 100°C. There is no particular restriction on the polymerization pressure, but from the viewpoint of industrial and economical pressure, it is 8 to 10.
A pressure of about 0 atmospheres is desirable. The polymerization method can be carried out either continuously or batchwise. Slurry polymerization using an inert hydrocarbon solvent such as propane, butane, pentane, hexane, heptane, or octane, liquid phase polymerization without a solvent, or gas phase polymerization is also possible.

次に本発明をこ適用できるアルファ・オレフィンは、炭
素数が8以上のものであり、具体例としてはプロピレン
、ブテン−1,ペンテン−11ヘキセンニt、a−メチ
ル−ペンテン−1,4−メチル−ペンテン−1等があげ
られるが、本発明は上記化合物iこ限定されるべき性質
のものではない。本発明による重合は、単独重合でも共
重合(エチレンとの共重合を含む)でもいずれも可能で
ある。
Next, the alpha olefin to which the present invention can be applied is one having a carbon number of 8 or more, and specific examples include propylene, butene-1, pentene-11hexenite, a-methyl-pentene-1,4-methyl -pentene-1, etc., but the present invention is not limited to the above compounds. The polymerization according to the present invention can be either homopolymerization or copolymerization (including copolymerization with ethylene).

共重合に際しては2種類又はそれ以上の種類のオレフィ
ンを混合した状態で接触させることにより、共重合体を
得ることができる。
During copolymerization, a copolymer can be obtained by bringing two or more types of olefins into contact in a mixed state.

又、重合を2段以上暑こして行なうヘテロブロック共重
合も容易に行なうことができる。
Further, heteroblock copolymerization in which polymerization is carried out in two or more stages can also be carried out easily.

重合体の分子量を調節するため1ζ水素等の連鎖移動剤
を添加することも可能である。
It is also possible to add a chain transfer agent such as 1ζ hydrogen to adjust the molecular weight of the polymer.

〈実施例〉 以下、実施例及び比較例によって本発明を更iこ詳細ン
ζ説明する。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例中のチタン化合物の価数は、ポーラログラムの測
定から求めた。
The valence of the titanium compounds in the examples was determined from polarogram measurements.

(ポーラログラムの測定条件) 装置: POLAROGRAPHICANALYZER
R−1100(柳本製作所) 試料=1.5モル/eの濃度の酒石酸水溶液とIN硫酸
からなる基礎成約80slに触媒的70qを溶解させて
調製した。
(Polarogram measurement conditions) Equipment: POLAROGRAPHICANALYZER
R-1100 (Yanagimoto Seisakusho) Sample = Prepared by dissolving catalytic 70q in 80 sl of a basic composition consisting of an aqueous solution of tartaric acid and IN sulfuric acid at a concentration of 1.5 mol/e.

測定法:直流電流法 実施例1 四 有機マグネシウム化合物の合成 攪拌機、環流冷却器、滴下ロート、温度計を備えた内容
積1eのフラスコをアルゴンで置換した後、グリニヤー
ル用削状マグネシウム82.Ofを投入した。滴下ロー
トにn−ブチルクロリド120Fとジ−n−ブチルエー
テル500 wtに仕込み、フラスコ中のマグネシウム
に約80d滴下し反応を開始させた。
Measurement method: Direct current method Example 1 4. Synthesis of organomagnesium compound After purging a flask with an internal volume of 1e equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer with argon, a ground magnesium grinder for Grignard grade 82. I put in Of. A dropping funnel was charged with 120 F of n-butyl chloride and 500 wt of di-n-butyl ether, and the mixture was dropped onto the magnesium in the flask for about 80 d to start the reaction.

反応開始後60℃で4時間かけて滴下を続け、滴下終了
後60℃で更に1時間反応を続けた。
After the reaction started, the dropwise addition was continued at 60°C over 4 hours, and after the dropwise addition was completed, the reaction was further continued at 60°C for 1 hour.

その後反応溶液を室温に冷却し、固形分を戸別した。Thereafter, the reaction solution was cooled to room temperature and the solid content was separated.

ジ−n−ブチルエーテル中のn−ブチルマグネシウムク
ロリドを1規定硫酸で加水分解し、1規定水酸化ナトリ
ウム水溶液で逆滴定して濃度を決定したところ(指示薬
としてフェノールフタレインを使用)、濃度は2.2モ
ル/eであった。
When n-butylmagnesium chloride in di-n-butyl ether was hydrolyzed with 1N sulfuric acid and the concentration was determined by back titration with a 1N aqueous sodium hydroxide solution (phenolphthalein was used as an indicator), the concentration was 2. It was .2 mol/e.

(Bl  固体生成物の合成 攪拌機、滴下ロートを備えた内溶積500telのフラ
スコをアルゴンで置換した後、n−ヘプタン800g/
、テトラブトキシチタン4.1r(12,1ミリモル)
及びテトラエトキシシラン42.9f(206ミリモル
)を没入し均一溶液とした。次に、(〜で合成した有機
マグネシウム化合物100 mlを、フラスコ内の温度
を5℃に保ちながら、滴下ロートから2時間かけて徐々
に滴下した。滴下終了後、室温で更に1時間攪拌した後
、室温で固液分囃し、n−ヘプタン800tJで8回洗
浄を操り返したのち減圧乾燥して、茶褐色の固体生成物
82、Ofを得た。固体生成物中に含有されるチタン原
子の価数は、ポーラログラムの測定より8価であった。
(Bl Synthesis of solid product After purging a flask with an internal volume of 500 tel equipped with a stirrer and a dropping funnel with argon, 800 g of n-heptane/
, tetrabutoxytitanium 4.1r (12.1 mmol)
and 42.9f (206 mmol) of tetraethoxysilane were added to form a homogeneous solution. Next, 100 ml of the organomagnesium compound synthesized in (-) was gradually added dropwise from the dropping funnel over a period of 2 hours while maintaining the temperature inside the flask at 5°C. After the addition was completed, the mixture was stirred for an additional hour at room temperature. , solid-liquid separation was performed at room temperature, washed 8 times with 800 tJ of n-heptane, and then dried under reduced pressure to obtain a brown solid product 82, Of.The valence of the titanium atoms contained in the solid product was The number was octavalent as determined by polarogram measurement.

固体生成物中には三価のチタン原子が1.7重置%、マ
グネシウム原子が18.2重潰%、ケイ素原子が2.2
重量%、n−ブチルエーテルが0.8重量%、エトキシ
基が83.5重量%、ブトキシ基が2.4重量%含有さ
れていた。
The solid product contains 1.7% trivalent titanium atoms, 18.2% magnesium atoms, and 2.2% silicon atoms.
It contained 0.8% by weight of n-butyl ether, 83.5% by weight of ethoxy groups, and 2.4% by weight of butoxy groups.

又、この固体生成物のCu−にα 線(こよる広角xa
回折図には明瞭な回折ピークは全く認められず、非晶構
造であった。
In addition, α rays (wide-angle xa
No clear diffraction peaks were observed in the diffraction diagram, indicating an amorphous structure.

C)酸無水物処理固体の合成 内容al 200 mlのフラスコをアルゴンで置換し
た後、TBIで合成した固体生成物8F、トルエン27
M!及び無水フタル酸8.8 mlを加え96℃で1時
間反応を行なった。
C) Synthesis contents of acid anhydride-treated solid al After purging a 200 ml flask with argon, solid product 8F synthesized with TBI, toluene 27
M! Then, 8.8 ml of phthalic anhydride was added and the reaction was carried out at 96°C for 1 hour.

反応後置液分離し、n−へブタン27 ml ’?’8
回洗浄全洗浄った。
Separate the post-reaction liquid and add 27 ml of n-hebutane. '8
Washed twice and washed completely.

(DJ  固体触媒成分の合成 上記Glでの洗浄終了後、フラスコにトルエン27WI
t、ジブチルエーテル27m?(15,9ミリモル)及
び四塩化チタン47.8 ml (485,2ミリモル
)を加え96℃で1時間反応を行なった。反応終了後9
5℃で固液分離した後、同温度でトルエン27ゴで2回
洗浄を行い、更に室温で、n−へブタン27 mlで4
回洗浄を繰り返した。
(DJ Synthesis of Solid Catalyst Component After washing with Gl above, add 27WI of toluene to the flask.
t, dibutyl ether 27m? (15.9 mmol) and 47.8 ml (485.2 mmol) of titanium tetrachloride were added, and the reaction was carried out at 96° C. for 1 hour. After completion of reaction 9
After solid-liquid separation at 5°C, it was washed twice with 27ml of toluene at the same temperature, and then washed with 27ml of n-hebutane 4x at room temperature.
Washing was repeated twice.

上述したn−ブチルエーテルと四塩化チタンとの混合物
による処理を同一条件で更にもう一度繰り返して、黄土
色の固体触媒成分6、14 fを得た。
The treatment with the mixture of n-butyl ether and titanium tetrachloride described above was repeated once again under the same conditions to obtain ocher solid catalyst components 6 and 14 f.

固体触媒成分中1こ含有されるチタン原子の価数は、ポ
ーラログラムの測定より8価であった。
The valence of one titanium atom contained in the solid catalyst component was 8 as determined by polarogram measurement.

固体触媒成分中には、チタン原子が1.8重社%、マグ
ネシウム原子が21.0重量%含有されていた。
The solid catalyst component contained 1.8% by weight of titanium atoms and 21.0% by weight of magnesium atoms.

但)プロピレンの重合 内容積180 mlのマグネチックスターラーによる攪
拌方式のステンレス製オートクレーブをアルゴンffi
換した後、トリエチルアルミニウム0.ロアミリモル、
フェニルトリエトキシシラン0.0157ミリモルと上
記0で邊た固体触媒成分5.6q、及び液化プロピレン
80dをオートクレーブに仕込んだ。
However, a stainless steel autoclave with a stirring system using a magnetic stirrer with a propylene polymerization internal volume of 180 ml was heated with argon ffi.
After conversion, triethylaluminum 0. loa mmol,
0.0157 mmol of phenyltriethoxysilane, 5.6 q of the solid catalyst component dissolved above, and 80 d of liquefied propylene were charged into an autoclave.

オートクレーブを攪拌しながら60C1こ1時間保った
。過剰のプロピレンを放出した後、得られたポリプロピ
レンを一昼夜風乾した。
The autoclave was kept at 60C for 1 hour while stirring. After releasing the excess propylene, the resulting polypropylene was air-dried overnight.

16.2Fのポリプロピレンが得られた。16.2F polypropylene was obtained.

従って、固体触媒成分11当りのポリプロピレンの収1
1(f)(以下PP/cat と略す)はPP/cat
=2890 であった。
Therefore, the yield of polypropylene per 11 solid catalyst components is 1
1(f) (hereinafter abbreviated as PP/cat) is PP/cat
=2890.

又、得られたポリプロピレン粉末を沸mn−へブタンで
6時間抽出した残渣量を百分率で表わした値(以下IY
Nと略す。)はIY−92,8%であった。
Also, the value expressed as a percentage of the amount of residue obtained by extracting the obtained polypropylene powder with boiling mn-hebutane for 6 hours (hereinafter referred to as IY
Abbreviated as N. ) was IY-92.8%.

比較例1 実施例1のC)の酸無水物処理を行なわなかうた以外は
実施例1と同様な方法で固体触媒成分を合成した。固体
触媒成分中にはチタン原子が8.9重量%含有されてい
た。
Comparative Example 1 A solid catalyst component was synthesized in the same manner as in Example 1, except that the acid anhydride treatment in C) of Example 1 was not performed. The solid catalyst component contained 8.9% by weight of titanium atoms.

上記固体触媒成分を用い、実施例1の(Elと同様な方
法でプロピレンの重合を行なった。
Polymerization of propylene was carried out in the same manner as in Example 1 (El) using the above solid catalyst component.

PP/cat=8J 70 、 I Y=80.8%で
あった。
PP/cat=8J70, IY=80.8%.

実施例2 実施例1の(C1の酸無水物処理固体の合成において、
無水フタル酸を2.84使用した以外は実施例1と同様
な方法で固体触媒成分を合成した。固体触媒中にはチタ
ン原子が6.2重量%含有されていた。
Example 2 In the synthesis of the acid anhydride-treated solid of Example 1 (C1),
A solid catalyst component was synthesized in the same manner as in Example 1 except that 2.84% of phthalic anhydride was used. The solid catalyst contained 6.2% by weight of titanium atoms.

上記固体触媒成分を用い、実施例1のC)と同様な方法
でプロピレンの重合を行なった。
Polymerization of propylene was carried out in the same manner as in C) of Example 1 using the above solid catalyst component.

PP/cat=1,940.IY=91.8% であつ
た。
PP/cat=1,940. IY=91.8%.

実施例8 実施例1のqの酸無水物処理固体の合成において、無水
フタル酸の代りに塩化テレフタロイル0.82 ml使
用した以外は実施例1と同様な方法で固体触媒成分を合
成した。固体触媒成分中にはチタン原子が3.5重量%
含有されていた。
Example 8 A solid catalyst component was synthesized in the same manner as in Example 1 except that 0.82 ml of terephthaloyl chloride was used instead of phthalic anhydride in the synthesis of the acid anhydride-treated solid in q of Example 1. 3.5% by weight of titanium atoms in the solid catalyst component
It was contained.

上記固体触媒成分を用い、実施例1の(Elと同様な方
法でプロピレンの重合を行なった。
Polymerization of propylene was carried out in the same manner as in Example 1 (El) using the above solid catalyst component.

PP/cat=2,840 、IY=90.4%テアツ
タ。
PP/cat=2,840, IY=90.4% tear ivy.

実施例4 実施例1の0の酸無水物処理固体の合成において、無水
フタル酸の代りに塩化テレフタロイルを8.2 ml使
用した以外は実施例1と同様な方法で固体触媒成分を合
成した。固体触媒成分中には、チタン原子が8.6重量
%含有されていた。
Example 4 A solid catalyst component was synthesized in the same manner as in Example 1 except that 8.2 ml of terephthaloyl chloride was used instead of phthalic anhydride in the synthesis of the acid anhydride-treated solid of Example 1. The solid catalyst component contained 8.6% by weight of titanium atoms.

上記固体触媒成分を用い、実施例1の(Elと同様な方
法でプロピレンの重合を行なった。
Polymerization of propylene was carried out in the same manner as in Example 1 (El) using the above solid catalyst component.

PP/cat=1,280 、IY=91.2%であっ
た。
PP/cat=1,280, IY=91.2%.

〈発明の効果〉 以上の如く、本発明の触媒系を使用することにより下記
のような効果が得られる。
<Effects of the Invention> As described above, the following effects can be obtained by using the catalyst system of the present invention.

+11  固体触媒当り及びチタン原子当りの触媒活性
が非常に高いため、なんら特別の触媒残渣除去操作をし
なくても、重合体の着色、安定性及び腐蝕性に密接に関
係するハロゲン原子、チタン原子の含有量が極めて少な
い。即ち、触媒残渣除去のための設備が不要となり、α
−オレフィン重合体の生産コストの引き下げが可能とな
る。
+11 Because the catalytic activity per solid catalyst and per titanium atom is extremely high, halogen atoms and titanium atoms, which are closely related to the coloring, stability, and corrosion properties of polymers, can be removed without any special catalyst residue removal operation. The content of is extremely low. In other words, there is no need for equipment to remove catalyst residue, and α
- It becomes possible to reduce the production cost of olefin polymers.

(2)本発明の触媒系を用いれば、立体規則性が非常に
高いα−オレフィン重合体の製造が可能となる。従って
、副生ずる無定形重合体の生成が極めて少ないために無
定形重合体を除去することな(機械的性質に優れたα−
オレフィン重合体が製造できる。
(2) By using the catalyst system of the present invention, it becomes possible to produce α-olefin polymers with extremely high stereoregularity. Therefore, since the formation of by-product amorphous polymer is extremely small, it is not necessary to remove the amorphous polymer (α-
Olefin polymers can be produced.

(8)重合媒体に可溶な立体規則性の低い重合体の生成
が著しく少ないため、反応槽、配管及びフラッシュホッ
パー等への重合体の付着とい−)たプロセス上の問題が
発生しない。又、可溶な重合体の生成量が著しく少ない
ため原料モノマーが有効に利用できる。
(8) Since the production of polymers with low stereoregularity soluble in the polymerization medium is extremely small, process problems such as polymer adhesion to reaction vessels, piping, flash hoppers, etc. do not occur. Furthermore, since the amount of soluble polymer produced is extremely small, raw material monomers can be used effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の理解を助けるためのフローチャート
図である。本フローチャート図は、本発明の実施態様の
代表例であり、本発明は何らこれに限定されるものでは
ない。 手続補正書(方式) 昭和62年7月7日 特許庁長官 小 川 邦 夫 殿          
、−3っ1、事件の表示 昭和62年 特許願第 70987号 2、発明の名称 α−オレフィン重合体の製造方法 8、補正をする者 事件との関係 特許出願人 住 所  大阪市東区北浜6丁目15番地名称  (2
09)住友化学工業株式会社昭和62年6月′80日 6、補正の対象 図面 7、補正の内容 願書に最初に添付した図面の浄書・別紙のとおり(内容
に変更なし)。 以上
FIG. 1 is a flowchart diagram to aid understanding of the present invention. This flowchart is a representative example of the embodiment of the present invention, and the present invention is not limited thereto. Procedural amendment (formality) July 7, 1986 Mr. Kunio Ogawa, Commissioner of the Patent Office
, -3-1, Indication of the case 1988 Patent Application No. 70987 2 Name of the invention Process for producing α-olefin polymer 8 Relationship with the person making the amendment Patent applicant address 6 Kitahama, Higashi-ku, Osaka 15-chome name (2
09) Sumitomo Chemical Co., Ltd. June 1980, 6, Drawing 7 to be amended, Contents of the amendment As per the engraving and attached sheet of the drawing originally attached to the application (no change in content). that's all

Claims (2)

【特許請求の範囲】[Claims] (1)A)Si−O結合を有する有機ケイ素化合物の共
存下、一般式Ti(OR^1)nX_4−n(R^1は
炭素数が1〜20の炭化水素基、Xはハロゲン原子、n
は0<n≦4の数字を表わす。)で表わされるチタン化
合物を有機マグネシウム化合物で還元して得られる固体
生成物を、一般式R^2(CO)_2O(R^2は炭素
数1〜20の炭化水素基を表わす。)で示される酸無水
物、或は一般式R^3(COX)_2(R^3は炭素数
1〜20の炭化水素基、Xはハロゲン原子を表わす。)
で示される酸ハライド、及びエーテル化合物と四塩化チ
タンとの混合物で処理して得られる三価のチタン化合物
含有固体触媒成分、 B)有機アルミニウム化合物、 C)Si−OR^4結合(R^4は炭素数が1〜20の
炭化水素基である。)を有するケイ素化合物よりなる触
媒系を用いてα−オレフィンを単独重合又は共重合する
ことを特徴とするα−オレフィン重合体の製造方法。
(1) A) In the coexistence of an organosilicon compound having a Si-O bond, the general formula Ti(OR^1)nX_4-n (R^1 is a hydrocarbon group having 1 to 20 carbon atoms, X is a halogen atom, n
represents a number of 0<n≦4. ) A solid product obtained by reducing a titanium compound represented by or an acid anhydride with the general formula R^3(COX)_2 (R^3 represents a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom.)
A solid catalyst component containing a trivalent titanium compound obtained by treatment with an acid halide represented by the formula and a mixture of an ether compound and titanium tetrachloride, B) an organoaluminum compound, C) a Si-OR^4 bond (R^4 is a hydrocarbon group having 1 to 20 carbon atoms.) is a hydrocarbon group having 1 to 20 carbon atoms.
(2)三価のチタン化合物含有固体触媒成分(A)がS
i−O結合を有する有機ケイ素化合物の共存下、一般式
Ti(OR^1)nX_4−n(R^1は炭素数が1〜
20の炭化水素基、Xはハロゲン原子、nは0<n≦4
の数字を表わす。)で表わされるチタン化合物を有機マ
グネシウム化合物で還元して得られる固体生成物を、一
般式 R^2(CO)_2O(R^2は炭素数1〜20の炭化
水素基を表わす。)で示される酸無水物、或は一般式R
^3(COX)_2(R^3は炭素数1〜20の炭化水
素基、Xはハロゲン原子を表わす。)で示される酸ハラ
イドで処理した後、エーテル化合物と四塩化チタンとの
混合物で、更に処理して得られる三価のチタン化合物含
有固体触媒であることを特徴とする特許請求の範囲第1
項記載のα−オレフィン重合体の製造方法。
(2) Trivalent titanium compound-containing solid catalyst component (A) is S
In the coexistence of an organosilicon compound having an i-O bond, the general formula Ti(OR^1)nX_4-n (R^1 has 1 to 1 carbon atoms)
20 hydrocarbon groups, X is a halogen atom, n is 0<n≦4
represents the number of ) A solid product obtained by reducing a titanium compound represented by acid anhydride, or general formula R
After treatment with an acid halide represented by ^3(COX)_2 (R^3 is a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom), a mixture of an ether compound and titanium tetrachloride is used. Claim 1, characterized in that it is a solid catalyst containing a trivalent titanium compound obtained by further processing.
A method for producing an α-olefin polymer as described in 1.
JP7093787A 1987-03-24 1987-03-24 Preparation of alpha-olefin polymer Granted JPS63235307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093787A JPS63235307A (en) 1987-03-24 1987-03-24 Preparation of alpha-olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093787A JPS63235307A (en) 1987-03-24 1987-03-24 Preparation of alpha-olefin polymer

Publications (2)

Publication Number Publication Date
JPS63235307A true JPS63235307A (en) 1988-09-30
JPH0437084B2 JPH0437084B2 (en) 1992-06-18

Family

ID=13445913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093787A Granted JPS63235307A (en) 1987-03-24 1987-03-24 Preparation of alpha-olefin polymer

Country Status (1)

Country Link
JP (1) JPS63235307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294610A (en) * 2000-02-08 2001-10-23 Sumitomo Chem Co Ltd Solid catalytic component for polymerizing alpha-olefin, catalyst for polymerizing alpha-olefin, and method for producing alpha-olefinic polymer
US6331501B1 (en) 1998-02-19 2001-12-18 Sumitomo Chemical Company, Limited Catalyst for α-olefin polymerization and process for producing α-olefin polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331501B1 (en) 1998-02-19 2001-12-18 Sumitomo Chemical Company, Limited Catalyst for α-olefin polymerization and process for producing α-olefin polymer
JP2001294610A (en) * 2000-02-08 2001-10-23 Sumitomo Chem Co Ltd Solid catalytic component for polymerizing alpha-olefin, catalyst for polymerizing alpha-olefin, and method for producing alpha-olefinic polymer

Also Published As

Publication number Publication date
JPH0437084B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JPS61218606A (en) Production of alpha-olefin polymer
JPH0343284B2 (en)
JPH0452282B2 (en)
JPH0343285B2 (en)
JPH04306203A (en) Improved drying catalyst for olefin polymerization
JPH0312083B2 (en)
JPH072799B2 (en) Method for producing highly stereoregular a-olefin polymer
JPH0780968B2 (en) Process for producing olefin polymer
JPH01319508A (en) Production of solid catalyst for polymerizing olefin
JPS62256802A (en) Production of alpha-olefin polymer
JPS6312886B2 (en)
JPH03265610A (en) Production of solid catalyst component for polymerization of alpha-olefin
JPS5846129B2 (en) Method for producing highly crystalline olefin polymer
JPH0410889B2 (en)
JPS63235307A (en) Preparation of alpha-olefin polymer
JPH01230606A (en) Production of alpha-olefin polymer
JPH0662702B2 (en) Method for producing α-olefin polymer
JPH0128049B2 (en)
JPS6349688B2 (en)
JP3217466B2 (en) Method for producing propylene polymer
JPS64409B2 (en)
JP3913916B2 (en) Polymerization method of organosilicon compound and α-olefin
JPS6383106A (en) Production of olefin polymer
JPS6241178B2 (en)
JP2001122917A (en) METHOD FOR POLYMERIZING alpha-OLEFIN AND alpha-OLEFIN POLYMER PRODUCED BY THE METHOD

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees