JPS63205921A - Manufacture of optical semiconductor element - Google Patents
Manufacture of optical semiconductor elementInfo
- Publication number
- JPS63205921A JPS63205921A JP62038060A JP3806087A JPS63205921A JP S63205921 A JPS63205921 A JP S63205921A JP 62038060 A JP62038060 A JP 62038060A JP 3806087 A JP3806087 A JP 3806087A JP S63205921 A JPS63205921 A JP S63205921A
- Authority
- JP
- Japan
- Prior art keywords
- type
- group
- raw material
- compound
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 230000003287 optical effect Effects 0.000 title claims description 16
- 239000002994 raw material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 27
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 claims description 10
- RVIXKDRPFPUUOO-UHFFFAOYSA-N dimethylselenide Chemical compound C[Se]C RVIXKDRPFPUUOO-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 150000002902 organometallic compounds Chemical class 0.000 claims description 5
- 239000011669 selenium Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- -1 hydrogen compound Chemical class 0.000 claims description 3
- 238000001947 vapour-phase growth Methods 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 4
- 238000010494 dissociation reaction Methods 0.000 claims 2
- 208000018459 dissociative disease Diseases 0.000 claims 2
- 238000010030 laminating Methods 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 claims 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims 1
- ALCDAWARCQFJBA-UHFFFAOYSA-N ethylselanylethane Chemical compound CC[Se]CC ALCDAWARCQFJBA-UHFFFAOYSA-N 0.000 claims 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical group [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 150000002894 organic compounds Chemical class 0.000 abstract description 4
- 150000004678 hydrides Chemical class 0.000 abstract description 3
- 150000001805 chlorine compounds Chemical class 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract 3
- 239000007789 gas Substances 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 1
- 229910000058 selane Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分vf)
本発明は■−■族化合物半導体を用いた光半導体素子の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application vf) The present invention relates to a method for manufacturing an optical semiconductor device using a ■-■ group compound semiconductor.
(従来の技術)
ZnS、Zn8e、Zn5xSe1−x(0(x(1)
等の■−■族化合物半導体は青色LEDあるいは青色L
D材料として期待されている。青色LEDデバイスを実
現する上で最も重要な味題は、それら材料の伝4型制御
にある。(Prior art) ZnS, Zn8e, Zn5xSe1-x(0(x(1)
■-■ group compound semiconductors such as blue LED or blue L
It is expected to be a D material. The most important issue in realizing blue LED devices lies in the 4-type control of these materials.
西洋らは、蒸気圧制御下の液相成長法で、LIをp型の
不純物原料として、p−n接合素子を形成し、青色発光
を得ている( J 、 Appl、Phys、 57(
61゜1985)。Western et al. used LI as a p-type impurity raw material to form a p-n junction element using a liquid phase growth method under vapor pressure control, and obtained blue light emission (J, Appl, Phys, 57).
61°1985).
しかし、これは高温の液相成長法であるため、p−n接
合の界面特性が悪く、大面積の結晶が得られにくいとい
う欠点がある。さらに、p−n接合形成の際のプロセス
過程が多く、複雑であシ、再現性が得られにくいなどの
欠点がある。However, since this is a high-temperature liquid phase growth method, it has the drawback that the interface characteristics of the p-n junction are poor and it is difficult to obtain a large-area crystal. Furthermore, there are disadvantages in that the process steps involved in forming the pn junction are complicated, and reproducibility is difficult to obtain.
これらの欠点を克服するため、有機金属気相成長法(M
OCVD)が研究されている。これは、 Zn5eにお
いては、■族原料としてジメチル亜鉛(DMZ)等の有
機金属化合物を、■族原料としてジメチルセレン(DM
S e )等の有機化合物やセレン化水素といった水素
化合物を用いたものでおる。n壓伝導制御に関しては、
不純物原料としてトリエチルアルミニウム(kL (C
*Hs ) 3)を用いAtを■族元素のサイトに取シ
込ませることにより(特願昭61−051429 )、
又は、不純物原料として塩化水素(He t )を用い
、塩素(CA)を■族元素のサイトに取シ込ませること
によシ(特願昭59−054173 )可能である。p
型伝導制御に関しては、不純物原料としてNH,を用い
、Nを■族すイトに取シ込ませることKよシ浅いアワセ
プタレベルが形成されることが示されている(W、5t
utiusAppl、Phys、Latt、 40(3
) 246 )。In order to overcome these drawbacks, metal organic vapor phase epitaxy (M
OCVD) is being studied. This means that for Zn5e, organometallic compounds such as dimethylzinc (DMZ) are used as the group ■ raw material, and dimethyl selenium (DMZ) is used as the group ■ raw material.
It uses an organic compound such as S e ) or a hydrogen compound such as hydrogen selenide. Regarding n-conduction control,
Triethylaluminum (kL (C
*Hs) 3) By incorporating At into the site of the group II element (Patent application 1986-051429),
Alternatively, this can be achieved by using hydrogen chloride (He t ) as an impurity raw material and incorporating chlorine (CA) into the site of the Group I element (Japanese Patent Application No. 59-054173). p
Regarding type conduction control, it has been shown that by using NH as the impurity raw material and incorporating N into the group II group, a shallower acceptor level than K is formed (W, 5t).
utiusAppl, Phys, Latt, 40(3
) 246).
この従来のMOCVD法によシ、G a A s基板の
上にn型のZn5eを成長させ、その上に、NH,をp
塵の不純物原料としてZn5eを成長し、p−n接合を
形成しても接合界面の特性が非常に悪く、青色発光は、
得られていない。これは、NH,の熱分解温度が高いた
め、従来のMOCVI)法では成長温度を高くしなけれ
ばならない。そのためn型層中のCt%p型層中のNの
相互拡散や、SeおよびZn空孔の発生がおこシ、接合
界面の特性が劣化することによる。By this conventional MOCVD method, n-type Zn5e was grown on the GaAs substrate, and NH,p was grown on it.
Even if Zn5e is grown as a dust impurity raw material and a p-n junction is formed, the properties of the junction interface are very poor, and the blue light emission is
Not obtained. This is because the thermal decomposition temperature of NH is high, so the growth temperature must be raised in the conventional MOCVI) method. Therefore, interdiffusion of Ct% in the n-type layer and N in the p-type layer and generation of Se and Zn vacancies occur, resulting in deterioration of the characteristics of the bonding interface.
(発明が解決しようとする問題点)
以上述べた様に、従来の蒸気圧制御下での液相成長法で
は、高温成長であるため欠陥ができやすく、また、大面
積の結晶は作成できず、p−n接合の界面特性は悪く、
さらにp−n接合形成のプロセスが複雑であるという問
題点があった。(Problems to be Solved by the Invention) As mentioned above, in the conventional liquid phase growth method under vapor pressure control, defects are likely to occur due to high temperature growth, and large-area crystals cannot be created. , the interface characteristics of the p-n junction are poor;
Furthermore, there is a problem that the process of forming the pn junction is complicated.
また、従来のMOCVD法で、NH,をp型不純物原料
に用い、p−n接合を形成して成長温度の低減、結晶の
大面積化、p−n接合形成のプロセスの清略化を行った
がp−n接合の界面特性が悪く青色の発光が得られない
という問題点があった。In addition, in the conventional MOCVD method, NH, is used as a p-type impurity raw material to form a p-n junction, reducing the growth temperature, increasing the area of the crystal, and simplifying the process of forming the p-n junction. However, there was a problem in that the interface characteristics of the p-n junction were poor and blue light emission could not be obtained.
本発明は、良好なp−n接合、界面特性を有する■−■
族化合物半導体を用いた光半導体素子製造方法を提供す
ることを目的とする。The present invention has good p-n junction and interface characteristics.
An object of the present invention is to provide a method for manufacturing an optical semiconductor device using a group compound semiconductor.
(問題点を解決するための手段)
上記目的を達成するために、本発明によるI−■族化合
物半導体を用いた光半導体素子の製造方法を以下に示す
。(Means for Solving the Problems) In order to achieve the above object, a method for manufacturing an optical semiconductor device using a group I-Ⅰ compound semiconductor according to the present invention will be described below.
■族および■族原料に有機化合物あるいは水素化物を用
い、n型不純物原料にアルミニウムの化合物又は塩素の
化合物を用い、p型不純物原料にアンモニア(NHs)
を用い、n型層−■族化合物半導体層とp型層−■族化
合物半導体層を積層させる光半導体素子の製造方法にお
いて、n型層−■族化合物半導体層を従来の熱分解によ
る気相成長法によシ作成し、p型層−■族化合物半導体
層を光照射、たとえば波長350nm以下のエキシマレ
ーザ光照射を伴う気相成長法によシ形成して積層させ、
p−n結合を形成した光半導体素子の製造方法である。An organic compound or hydride is used as a raw material for group III and group III, an aluminum compound or a chlorine compound is used as a raw material for n-type impurities, and ammonia (NHs) is used as a raw material for p-type impurities.
In a method for manufacturing an optical semiconductor device in which an n-type layer - group II compound semiconductor layer and a p-type layer - group II compound semiconductor layer are laminated using A p-type layer - a group compound semiconductor layer is formed by a vapor phase growth method accompanied by light irradiation, for example, excimer laser light irradiation with a wavelength of 350 nm or less, and stacked.
This is a method for manufacturing an optical semiconductor element in which a pn bond is formed.
(作用)
この様な1I−VI族化合物半導体の光半導体素子の製
造方法においてはp型層を積層する際、気相あるいは表
面吸着相のNH3の分解が光エネルギーによシ促進され
、低温で効率よくNがドーピングされるため良好なp型
層、およびp−n接合が形成される。(Function) In this method of manufacturing an optical semiconductor device using a group 1I-VI compound semiconductor, when p-type layers are laminated, the decomposition of NH3 in the gas phase or surface adsorption phase is promoted by light energy, and the decomposition of NH3 is accelerated at low temperatures. Since N is doped efficiently, a good p-type layer and pn junction are formed.
(実施例)
第1図は本発明の方法を実施するための装置の概略図で
ある。この図において反応管(101)内には、基板(
106)がサセプタ(105)上に収容されている。サ
セプタ(105)はヒータ(図示せず)によシ加熱され
ておシ、サセプタ(105)上の基板(106)は所定
の温度に設定される。反応管(101’)内にはガス導
入口(103)より■族原料である有機金属化合物、■
族原料である有機化合物あるいは水素化合物およびキャ
リアガスとn型の成長の際はn型不純物原料であるHC
t ガスがp型の成長の際はn型不純物原料であるNH
3ガスが導入される。またp型の成長の際は反応管(1
01)内および基板(106)上にはエキシマレーザ(
108)からのレーザ光(109)が、合成石英製導入
窓(107)を介し照射される。また、光導入窓(10
7)上への膜形成を抑制するために、ガス導入口(10
4)よシ水素ガスあるいは不活性ガスが反応管(101
)内に導入される。(Example) FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention. In this figure, inside the reaction tube (101) is a substrate (
106) is housed on the susceptor (105). The susceptor (105) is heated by a heater (not shown), and the substrate (106) on the susceptor (105) is set to a predetermined temperature. Into the reaction tube (101'), an organometallic compound, which is a group material, is introduced from a gas inlet (103).
Organic compounds or hydrogen compounds, which are group raw materials, and carrier gas, and HC, which is an n-type impurity raw material, in the case of n-type growth.
When the t gas grows p-type, NH, which is the n-type impurity raw material,
3 gases are introduced. In addition, when growing p-type, the reaction tube (1
01) and on the substrate (106) are excimer lasers (
Laser light (109) from 108) is irradiated through the synthetic quartz introduction window (107). In addition, a light introduction window (10
7) To suppress film formation on the gas inlet (10
4) Inject hydrogen gas or inert gas into the reaction tube (101
) is introduced within.
ガス導入口(103)および(104)から反応管(1
01)内へ導入されたガスを排気する排気系(102)
の排気速度を調節することによシ、反応管(101)内
の圧力は所定の圧力に設定される。この様に構成された
反応管を用いて行った光半導体素子の製造方法について
以下にのべる。From the gas inlets (103) and (104) to the reaction tube (1
01) Exhaust system (102) that exhausts the gas introduced into the interior
By adjusting the pumping speed of the reaction tube (101), the pressure inside the reaction tube (101) is set to a predetermined pressure. A method for manufacturing an optical semiconductor device using a reaction tube configured in this manner will be described below.
■族の原料としてジメチル亜鉛(以下DMZ、!:略す
)、■族原料としてジメチルセレン(以下DMSeと略
す)を、またDMZとDM8 e(7) dP−?リア
ガスとして水素ガスを用いた。また基板には、p型Ga
As基板を、pmの成長の際に導入する照射光としては
ArF (λ=193r1m)光を用いた。Dimethylzinc (hereinafter referred to as DMZ, !: abbreviated) is used as the raw material for the group ■, dimethyl selenium (hereinafter referred to as DMSe) is used as the raw material for the group ■, and DMZ and DM8 e(7) dP-? Hydrogen gas was used as the rear gas. The substrate also includes p-type Ga.
ArF (λ=193r1m) light was used as the irradiation light introduced into the As substrate during pm growth.
又、n型の不純物であるHCzは20(N)pmHsペ
ースを、p型の不純物であるNH,は、1010001
)p!ベースを使用した。In addition, HCz, which is an n-type impurity, has a pace of 20 (N) pmHs, and NH, which is a p-type impurity, has a pace of 1010001
)p! I used the base.
まず、最初にガス導入口(104)よシ水素ガス200
SCCM を反応管(101)内に導入し、排気系(1
02)の排気速度を調節し、反応管(101)内の圧力
を56 torrに設定する。その後サセプタ(105
)を加熱し、サセプタ(105)上のp型GaAs基板
(106)を450℃に設定した。次にガス導入口(1
03)よシ、DMZ、DMSe、−?−? リフ、//
スで6る水素ガスおよびNH3ガスを反応管(101)
内に導入し、同時にエキシマレーザ(108)よシ波長
193nmを有するArFエキシマレーザ光を光導入窓
(107)を介し基板(106)上に垂直に照射し、p
型Zn5e/iを成長した。各原料ガス、キャリアガス
およびNH,ガスノ供給量は、DMZ:3.5xlOr
rpl/1I161. DM8 e : 7. OX
10 mOL/m 、 DMZのキャリアガス(水素
ガス)39SCCM、DMSeのキャリアガス(水素ガ
ス)1008CCM、NH3ガス30SCCMに設定し
た。基板(106)表面上でのArFエキシマレーザ光
の照射エネルギーは1mJ/−に、照射縁シ返し数はs
o ppsに設定した。次に、NH,ガスの供給及び
光照射を同時に停止し、HCtガスを反応管内に導入し
た。HCtガスは200SCCMに設定し、反応管内の
ガス圧力は50 torr 、基板温度は450℃に保
ちn型Zn5e層を成長した。First, first pass the hydrogen gas 200 through the gas inlet (104).
SCCM is introduced into the reaction tube (101), and the exhaust system (1
02) and set the pressure inside the reaction tube (101) to 56 torr. Then the susceptor (105
) was heated, and the p-type GaAs substrate (106) on the susceptor (105) was set at 450°C. Next, the gas inlet (1
03) Yoshi, DMZ, DMSe, -? −? Riff, //
Hydrogen gas and NH3 gas are transferred to the reaction tube (101).
At the same time, the excimer laser (108) irradiates ArF excimer laser light having a wavelength of 193 nm vertically onto the substrate (106) through the light introduction window (107).
Type Zn5e/i was grown. The supply amount of each raw material gas, carrier gas, NH, and gas is DMZ: 3.5xlOr
rpl/1I161. DM8e: 7. OX
The settings were 10 mOL/m, DMZ carrier gas (hydrogen gas) 39 SCCM, DMSe carrier gas (hydrogen gas) 1008 CCM, and NH3 gas 30 SCCM. The irradiation energy of the ArF excimer laser beam on the surface of the substrate (106) was 1 mJ/-, and the number of irradiation edges was s.
o pps. Next, the supply of NH and gas and the light irradiation were simultaneously stopped, and HCt gas was introduced into the reaction tube. The HCt gas was set at 200 SCCM, the gas pressure in the reaction tube was kept at 50 torr, and the substrate temperature was kept at 450° C. to grow an n-type Zn5e layer.
この様にして作成したp−n接合は、良好なダイオード
特性を示し、實色発光が得られた。The pn junction created in this manner exhibited good diode characteristics and produced true color light emission.
上記実施例では、基板温度を450℃に設定したが、基
板温度(Ts)の範囲は400℃≦Ts≦700℃であ
ればよく、又、nfi成長の際とp型成長の際の設定温
度が異なるものであっても良い。また、上記実施例では
、HCtガスの供給量QHC□と■族原料DM8eの供
給1t(Qvl)の比QHC7/QvIを2−55X1
0−2に設定したが、供給比QHc、/QvI0値は、
10−4≦Q HR/Q !+≦10−1の範囲にあれ
ば良い。又、NH。In the above example, the substrate temperature was set at 450°C, but the range of the substrate temperature (Ts) may be 400°C≦Ts≦700°C, and the set temperature for NFI growth and p-type growth may be different. In addition, in the above example, the ratio QHC7/QvI of the supply amount QHC□ of HCt gas and the supply 1 t (Qvl) of the group II raw material DM8e is set to 2-55X1.
Although it was set to 0-2, the supply ratio QHc, /QvI0 value is
10-4≦Q HR/Q! It is sufficient if it is in the range of +≦10−1. Also, NH.
ガスの供給量(、QNH−と、■族原料DMSeの供給
量(Q、)の比QN1/QvIを1.9X10−2に設
定したが、供給比QNH1/Qvlの値は、10−5≦
QNH3/Q腎10−1の範囲にあれば良い。The ratio QN1/QvI of the gas supply amount (,QNH-) and the supply amount (Q,) of group II raw material DMSe was set to 1.9X10-2, but the value of the supply ratio QNH1/Qvl was 10-5≦
It is sufficient if it is in the range of QNH3/Q kidney 10-1.
さらに、基板表面のレーザ光の照射エネルギー(PI)
をl pulseあたp 1mJ/、i 、 v−サ光
ノ繰シ返し周波数をs o pps に設定したが、
レーザ光の照射エネルギ(Pl)の範囲は10 ”mJ
/ad≦P、≦5nmJ/−であればよく、又、レーザ
光の繰シ返し周波数はs o pps 以外でも良い
。Furthermore, the irradiation energy (PI) of the laser beam on the substrate surface
The repetition frequency of the light per l pulse was set to p 1 mJ/, i, and v-sa, but the repetition frequency was set to so pps.
The range of laser beam irradiation energy (Pl) is 10”mJ
/ad≦P and ≦5 nmJ/−, and the repetition frequency of the laser beam may be other than so pps.
なお、本発明は上述した実施例に限定されるものでなく
、その要旨を逸脱しない範囲で変形して実施することが
できる。成長する膜は、Zn8e半導体に限らず、Zn
S、Zn5xSe1−x(0(x(1)及び、他の■−
■族化合物半導体でも良い。又、原料ガスは、DMZ、
DM8eに限らず他の有機金属化合物あるいは水素化物
でも良い。p型成長の際に照射する光はArFエキシマ
レーザ光に限らず、1571m、222nm、248n
m1308f1m、3501’1m以下の波長を有する
エキシマレーザ光でも良く、又低圧水銀ランプ、Xe−
Hgランプ、希ガスマイクロ波放電による輝線を用いて
も良い。Note that the present invention is not limited to the embodiments described above, and can be modified and implemented without departing from the gist thereof. The film to be grown is not limited to Zn8e semiconductor, but also Zn.
S, Zn5xSe1-x(0(x(1) and other ■-
A group compound semiconductor may also be used. In addition, the raw material gas is DMZ,
Not limited to DM8e, other organometallic compounds or hydrides may be used. The light irradiated during p-type growth is not limited to ArF excimer laser light, but also 1571m, 222nm, 248nm.
m1308f1m, 3501'Excimer laser light with a wavelength of 1m or less may be used, or a low pressure mercury lamp, Xe-
A bright line generated by a Hg lamp or a rare gas microwave discharge may be used.
さらに成長に用いるGaAs基板は、他の面方位でも良
く、p型に限らないでもよく、又、GaP等の他のl1
l−V族化合物半導体やZn5e 、 ZnS 。Furthermore, the GaAs substrate used for growth may have other plane orientations and is not limited to p-type, and may also have other 11-type substrates such as GaP.
l-V group compound semiconductors, Zn5e, ZnS.
CdTe 、 ZnTe 等の■−■族化合物半導体で
も良い。また、n型層の成長を行った後、p型層の成長
を行いp−n接合を形成しても良い。A ■-■ group compound semiconductor such as CdTe or ZnTe may also be used. Alternatively, after growing an n-type layer, a p-type layer may be grown to form a pn junction.
本発明によるp型層を成長する際光照射を行う光半導体
素子の製造方法を用いること(より、p型層成長後n型
層の成長を行ってもn型成長時には光を照射しないため
、残留NH,の分解はおこらず、良好なp−n接合界面
が得られ、良好な背色発光が得られた。Using the method of manufacturing an optical semiconductor device according to the present invention in which light irradiation is performed when growing a p-type layer (because even if the n-type layer is grown after the p-type layer is grown, the light is not irradiated during the n-type growth, No decomposition of residual NH occurred, a good p-n junction interface was obtained, and good back-color emission was obtained.
第1図は、本発明の一実施例を説明するための反応管の
構成図である。
101・・・反応管、102・・・排気系、103・・
・ガス導入口、104・・・ガス導入口、105・・・
サセプタ、106・・・GaAs基板、107・・・光
導入窓、108・・・エキシマレーザ、109・・・エ
キシマレーザ光。
代理人 弁理士 則 近 憲 佑
同 竹 花 喜久男FIG. 1 is a configuration diagram of a reaction tube for explaining one embodiment of the present invention. 101... Reaction tube, 102... Exhaust system, 103...
・Gas inlet, 104...Gas inlet, 105...
Susceptor, 106...GaAs substrate, 107...Light introducing window, 108...Excimer laser, 109...Excimer laser light. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana
Claims (6)
属化合物又は水素化合物を、p型不純物原料にアンモニ
ア(NH_3)を用い、n型II−VI族化合物半導体層と
p型II−VI族化合物半導体層を積層させてなる光半導体
素子の製造方法において、前記n型II−VI族化合物半導
体層を熱分解による気相成長法で形成し、前記p型II−
VI族化合物半導体層を光照射を伴う気相成長法で形成し
積層することを特徴とする光半導体素子の製造方法。(1) Using an organometallic compound as a group II raw material, an organometallic compound or a hydrogen compound as a group VI raw material, and ammonia (NH_3) as a p-type impurity raw material, an n-type II-VI group compound semiconductor layer and a p-type II- In a method for manufacturing an optical semiconductor device formed by laminating Group VI compound semiconductor layers, the n-type II-VI compound semiconductor layer is formed by a vapor phase growth method using thermal decomposition, and the p-type II-
1. A method for manufacturing an optical semiconductor device, comprising forming and laminating a Group VI compound semiconductor layer by a vapor phase growth method involving light irradiation.
マレーザ光であることを特徴とする特許請求の範囲第1
項記載の光半導体素子の製造方法。(2) Claim 1, characterized in that the light irradiated is excimer laser light with a wavelength of 350 nm or less.
A method for manufacturing an optical semiconductor device as described in Section 1.
_2)、又はジエチル亜鉛(Zn(C_2H_5)_2
)、前記VI族原料が、セレン(Se)原料としてジメチ
ルセレン(Se(CH_3)_2)又はジエチルセレン
(Se(C_2H_5)_2)、イオウ(S)原料とし
てジメチルイオウ(S(CH_3)_2)又はジエチル
イオウ(S(C_2H_5)_2)であることを特徴と
する特許請求の範囲第1項記載の光半導体素子の製造方
法。(3) The Group II raw material is dimethylzinc (Zn(CH_3)
_2), or diethylzinc (Zn(C_2H_5)_2
), the Group VI raw material is dimethylselenium (Se(CH_3)_2) or diethylselenium (Se(C_2H_5)_2) as a selenium (Se) raw material, dimethylsulfur (S(CH_3)_2) or 2. The method for manufacturing an optical semiconductor device according to claim 1, wherein the material is diethyl sulfur (S(C_2H_5)_2).
ZnSSeであることを特徴とする特許請求の範囲第1
項記載の光半導体素子の製造方法。(4) The II-VI group compound semiconductor is ZnSe, ZnS,
Claim 1 characterized in that it is ZnSSe.
A method for manufacturing an optical semiconductor device as described in Section 1.
素を添加したp型光励起成長層を積層し、ひきつづきこ
の層上に熱解離反応のみによるn型成長層を積層したこ
とを特徴とする特許請求の範囲第1項記載の光半導体素
子の製造方法。(5) A patent characterized in that the epitaxial substrate crystal is p-type, a p-type photoexcited growth layer doped with nitrogen is laminated thereon, and an n-type growth layer formed only by thermal dissociation reaction is subsequently laminated on this layer. A method for manufacturing an optical semiconductor device according to claim 1.
の上に窒素を添加したp型光励起成長層を積層し、ひき
つづきこの層上に熱解離反応のみによるn型成長層を積
層してp−n接合を形成することを特徴とする特許請求
の範囲第1項記載の光半導体素子の製造方法。(6) The epitaxial substrate crystal is made into an i or n type, and a p-type photoexcited growth layer doped with nitrogen is laminated thereon, and then an n-type growth layer formed only by thermal dissociation reaction is laminated on this layer to form a p-n A method of manufacturing an optical semiconductor element according to claim 1, characterized in that a junction is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62038060A JPS63205921A (en) | 1987-02-23 | 1987-02-23 | Manufacture of optical semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62038060A JPS63205921A (en) | 1987-02-23 | 1987-02-23 | Manufacture of optical semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63205921A true JPS63205921A (en) | 1988-08-25 |
Family
ID=12514954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62038060A Pending JPS63205921A (en) | 1987-02-23 | 1987-02-23 | Manufacture of optical semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63205921A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196666A (en) * | 1990-10-03 | 1993-03-23 | Sodick Co., Ltd. | Arm sealing device for an edm machine |
JPH06283760A (en) * | 1993-03-25 | 1994-10-07 | Shin Etsu Handotai Co Ltd | Semiconductor light emittering device and its manufacture |
US5547897A (en) * | 1993-07-14 | 1996-08-20 | Philips Electronics North America Corporation | Photo-assisted nitrogen doping of II-VI semiconductor compounds during epitaxial growth using an amine |
-
1987
- 1987-02-23 JP JP62038060A patent/JPS63205921A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196666A (en) * | 1990-10-03 | 1993-03-23 | Sodick Co., Ltd. | Arm sealing device for an edm machine |
JPH06283760A (en) * | 1993-03-25 | 1994-10-07 | Shin Etsu Handotai Co Ltd | Semiconductor light emittering device and its manufacture |
US5547897A (en) * | 1993-07-14 | 1996-08-20 | Philips Electronics North America Corporation | Photo-assisted nitrogen doping of II-VI semiconductor compounds during epitaxial growth using an amine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0338073A (en) | Manufacture of compound semiconductor light-emitting element | |
US5300185A (en) | Method of manufacturing III-V group compound semiconductor | |
WO2006038567A1 (en) | METHOD FOR PRODUCING P-TYPE Ga2O3 FILM AND METHOD FOR PRODUCING PN JUNCTION-TYPE Ga2O3 FILM | |
JP3143040B2 (en) | Epitaxial wafer and method for manufacturing the same | |
Mullin et al. | MOVPE of narrow and wide gap II–VI compounds | |
JPS63205921A (en) | Manufacture of optical semiconductor element | |
JPH05109621A (en) | Method for growing gallium nitride thin film | |
JP3146874B2 (en) | Light emitting diode | |
JP3771987B2 (en) | Method for producing gallium nitride compound semiconductor | |
JP2002068890A (en) | ZnO-BASED MATERIAL AND METHOD OF PRODUCING THE SAME | |
JPH01215014A (en) | Growth of semiconductor crystal | |
JPH04187597A (en) | Production of thin film of gallium nitride | |
JPS61247686A (en) | Preparation of semiconductor single crystal | |
JP3182584B2 (en) | Compound thin film forming method | |
Irvine et al. | MOVPE of II–VI materials | |
JPH0442891A (en) | Production of semiconductor thin film | |
JPH09132499A (en) | Production of crystal and production of device using the same | |
Sato | Organometallic chemistry related to applications for microelectronics in Japan | |
JP2793939B2 (en) | Method for growing compound semiconductor crystal | |
JPH05251369A (en) | Organic metal chemical vapor growth method | |
CN103972336A (en) | Method for prolonging working life of GaN-based LED device in temperature circulation manner | |
JPS6247174A (en) | Manufacture of semiconductor light emitting device | |
JP2804093B2 (en) | Optical semiconductor device | |
JPH01215019A (en) | Formation of ohmic electrode | |
JPH09266217A (en) | Growing method for p-type ii-vi compound semiconductor |