Nothing Special   »   [go: up one dir, main page]

JPS63182214A - Production of zeolite - Google Patents

Production of zeolite

Info

Publication number
JPS63182214A
JPS63182214A JP1423887A JP1423887A JPS63182214A JP S63182214 A JPS63182214 A JP S63182214A JP 1423887 A JP1423887 A JP 1423887A JP 1423887 A JP1423887 A JP 1423887A JP S63182214 A JPS63182214 A JP S63182214A
Authority
JP
Japan
Prior art keywords
zeolite
silica
coal ash
molar ratio
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1423887A
Other languages
Japanese (ja)
Other versions
JPH062576B2 (en
Inventor
Yasuhiko Kato
加藤 安彦
Koji Kakimoto
柿本 幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAKIYUUSHIYUU KOGAI GIJUTSU CENTER KK
Original Assignee
KITAKIYUUSHIYUU KOGAI GIJUTSU CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAKIYUUSHIYUU KOGAI GIJUTSU CENTER KK filed Critical KITAKIYUUSHIYUU KOGAI GIJUTSU CENTER KK
Priority to JP1423887A priority Critical patent/JPH062576B2/en
Publication of JPS63182214A publication Critical patent/JPS63182214A/en
Publication of JPH062576B2 publication Critical patent/JPH062576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain a inexpensive zeolite and to produce a zeolite contg. A-type and X-type zeolite as well as P-type zeolite also by allowing the finely pulverized coal ash to cause thermal-reaction in an aq. soln. of caustic alkali and repeatedly using the reaction filtrate. CONSTITUTION:The coal ash is finely pulverized and allowed to crystallize by heating in the aq. soln. of caustic alkali. Then the solid matter is filtered and obtained from the reaction mixture and dried after washing with water. On the other hand, the filtrate is added to the pulverized new coal ash and is repeatedly used while adjusting the molar ratio of silica/alumina. The A-type zeolite is easily obtained by adjusting the molar ratio of silica/alumina to about 0.1-2 and the X-type zeolite is easily obtained by adjusting the above-mentioned ratio to about 2-5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゼオライトの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing zeolite.

〔従来技術とその問題点〕[Prior art and its problems]

我が国のエネルギー需給暫定見通しについての政府の中
間報告によれば、今後の石炭利用の拡大は、昭和52年
度の石炭供給量的7.8QO万トンを昭和65年度に1
6,350万トン、昭和70年度には19,800万ト
ンと、年率5%で増加していくものとなっている。
According to the government's interim report on Japan's provisional outlook for energy supply and demand, the future expansion of coal use will increase from 7.8QO million tons of coal supply in FY 1980 to 1 in FY 1986.
It is expected to increase at an annual rate of 5%, reaching 63.5 million tons and 198 million tons in 1985.

石炭利用の拡大に伴う問題として、管理型産業廃棄物で
ある石炭灰の処理問題は大気汚染と並び重要であると考
えられる。石炭の中に含まれる15〜20%の灰分は、
ボイラーで燃焼石炭灰として、鉄鋼業では高炉スラツジ
として、また石炭の液化、ガス化プロセス、コールクリ
ーニングにおいてもスラツジとして、大量の産業廃棄物
の発生源になる。我が国の石炭火力発電所から発生する
石炭灰の利用率は発生量の4分の1である。
As a problem associated with the expansion of coal use, the issue of disposing of coal ash, which is a controlled industrial waste, is considered to be as important as air pollution. The 15-20% ash content in coal is
It is a source of large amounts of industrial waste, as coal ash burned in boilers, as blast furnace sludge in the steel industry, and as sludge in coal liquefaction, gasification processes, and coal cleaning. The utilization rate of coal ash generated from coal-fired power plants in Japan is one-fourth of the amount generated.

石炭灰の有効利用は大部分がセメント用原材料であり、
有効利用されなかった150万トン余りの石炭灰は、全
1が陸上、内水面および海面で埋立処分されている。
Most of the effective use of coal ash is as a raw material for cement;
More than 1.5 million tons of coal ash that was not used effectively is disposed of in landfills on land, inland water, and at sea.

今後、一般炭の利用拡大によって発生する石炭灰の量は
、電気事業関係分だけでも65年度800万トン、さら
に70年度には1200万トンに達すると見積もられる
。したがって、石炭灰の有効利用分野と利用量の拡大を
計る開発研究は、今後積極的かつ大胆に進める必要があ
る。
It is estimated that the amount of coal ash that will be generated due to the expanded use of thermal coal will reach 8 million tons in 1965, and even 12 million tons in 1970, just from the electric power industry alone. Therefore, it is necessary to proactively and boldly proceed with research and development aimed at expanding the effective use of coal ash and its usage.

以上述べた諸情勢を勘案し、石炭灰の有効利用法の拡大
を計り、ひいては石炭利用の円滑な拡大を促進する立場
から、石炭灰中のシリカとアルミナ成分に着目、水熱反
応によるゼオライト化を計画し、合成ゼオライトの廃水
処理、産業廃棄物処理への応用を考えた。
Taking into consideration the various situations mentioned above, and from the standpoint of expanding the effective use of coal ash and promoting the smooth expansion of coal use, we focused on the silica and alumina components in coal ash, and turned it into zeolite through a hydrothermal reaction. We planned the application of synthetic zeolite to wastewater treatment and industrial waste treatment.

従来の合成ゼオライトの製造法は、シリカ源(例えば、
水ガラスあるいはシリカゲル、シリカゾル等)と、アル
ミナ源(酸化アルミニウム、又はアルミン酸ソーダ等)
に苛性ソーダと水を加えて加熱反応させて合成する。S
 i Oz + A ” z O31Na20の混合比
で種種のゼオライト(例えばY型、A型、P型など)が
できる。しかし、原料のシリカゲル、アルミナは共に高
価であり、したがって従来の合成ゼオライトは極めて高
価なものであった。
Conventional synthetic zeolite production methods rely on silica sources (e.g.
water glass, silica gel, silica sol, etc.) and an alumina source (aluminum oxide, sodium aluminate, etc.)
It is synthesized by adding caustic soda and water and causing a heating reaction. S
Various types of zeolites (e.g. Y type, A type, P type, etc.) can be made with a mixing ratio of iOz + A''z O31Na20. However, the raw materials, silica gel and alumina, are both expensive, so conventional synthetic zeolites are extremely expensive. It was something.

本発明者らは先に、安価なP型ゼオライトの製造方法と
して、石炭灰を原料とする方法を見出した。(特開昭6
0−14565号参照)。
The present inventors have previously discovered a method using coal ash as a raw material as an inexpensive method for producing P-type zeolite. (Unexamined Japanese Patent Publication No. 6
0-14565).

P型ゼオライトは鉛、カドミウム、ストロンチウムイオ
ンを選択的に吸着し、他種金属イオンの妨害をあまり受
けない。このようなP型ゼオライトの特性を活用して産
業排水や廃棄物の処理に応用する際、天然産のゼオライ
トと競合し、その場合に性能面もさることながら価格的
な問題が両者の優劣を決定する重要な要因になって(る
。そこで、より一層製造単価の低減を計るために、製造
原料中もっとも高価な苛性アルカリ使用量の低減化およ
び石炭灰成分の徹底的利用法を検討し、P型ゼオライト
よりも高い価値を有するゼオライトを同様の方法で製造
する必要があった。
P-type zeolite selectively adsorbs lead, cadmium, and strontium ions, and is not significantly interfered with by other metal ions. When utilizing these characteristics of P-type zeolite and applying it to the treatment of industrial wastewater and waste, it competes with naturally produced zeolite, and in that case, not only performance but also price issues determine the superiority or inferiority of the two. Therefore, in order to further reduce the unit manufacturing cost, we considered reducing the amount of caustic alkali, which is the most expensive manufacturing raw material, and thoroughly utilizing coal ash components. There was a need to produce zeolites of higher value than P-type zeolites in a similar manner.

本発明は、石炭灰を用いて非常に安価なゼオライトを製
造すると共に、反応濾液の循環使用により、P型のみな
らず、A型およびX型を含むゼオライトの製造方法を提
供することを目的とする。
The purpose of the present invention is to produce a very inexpensive zeolite using coal ash, and to provide a method for producing zeolite including not only the P type but also the A type and the X type by recycling the reaction filtrate. do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、石炭灰を微粉砕し、苛性アルカリ水溶液中で
加熱結晶化させ、反応混合物から固形物をろ取し、水洗
後乾燥すると共に、ろ別したろ液を新たに微粉砕した石
炭灰に加え、シリカ/アルミナのモル比を調整しながら
循環使用することを2〜5にするゼオライトの製造方法
である。
The present invention involves finely pulverizing coal ash, heating and crystallizing it in an aqueous caustic solution, filtering the solid matter from the reaction mixture, washing with water and drying it, and using the filtered filtrate as freshly pulverized coal ash. In addition to this, it is a method for producing zeolite in which the molar ratio of silica/alumina is adjusted and recycled to 2 to 5.

本発明の石炭灰から製造する方法を簡単に述べる。The method of producing from coal ash according to the present invention will be briefly described.

原料の石炭灰はフライアッシュ、クリンカアッシュ(ボ
トムアッシュ)、単一の石炭燃焼灰等を用い、微粉砕し
て所定濃度、例えば1〜4N程度の苛性アルカリ水溶液
中でかきまぜながら加熱反応させる。得られた反応混合
物を固体物質と濾液にろ別し、濾液に石炭灰を所定量、
例えば1/10(重量/容量)量投入し、その侭もしく
は水酸化ナトリウム、アルミン酸ナトリウム等のナトリ
ウム源を加え、再度かきまぜながら加熱反応させる。
The raw material coal ash is fly ash, clinker ash (bottom ash), single coal combustion ash, etc., which are pulverized and stirred in a caustic alkali aqueous solution of a predetermined concentration, for example, about 1 to 4 N, and subjected to a heating reaction. The obtained reaction mixture was filtered into a solid substance and a filtrate, and a predetermined amount of coal ash was added to the filtrate.
For example, add a 1/10 (weight/volume) amount, add a sodium source such as sodium hydroxide or sodium aluminate, and stir again while heating to react.

この操作を繰り返し、濾液を循環使用する。加熱反応後
にろ別して得られた固体物質は、水洗後乾燥すると、目
的とするゼオライトが得られる。
This operation is repeated and the filtrate is recycled. The solid material obtained by filtration after the heating reaction is washed with water and then dried to obtain the desired zeolite.

原料の石炭灰は、固形物であるよりは、200メツシュ
程度に粉砕することが好ましい。粉末の方が反応し易い
からである。
The raw material coal ash is preferably pulverized to about 200 mesh particles rather than being a solid material. This is because powder reacts more easily.

反応はアルカリ水溶液中で行うが、水溶液中のアルカリ
度が大きい程反応し易い。しかし、4Nを越えると副反
応が起きやすくなるので好ましくない。アルカリとして
は、ナトリウム源を得る目的から苛性ソーダを用いるこ
とができる。
The reaction is carried out in an alkaline aqueous solution, and the higher the alkalinity of the aqueous solution, the easier the reaction is. However, if it exceeds 4N, side reactions are likely to occur, which is not preferable. As the alkali, caustic soda can be used for the purpose of obtaining a sodium source.

加熱温度は、あまり低いと反応が進み難く、また、高す
ぎると熱的に不経済となるので好ましく゛ない。加熱時
間は加熱温度によって変わるが、通常は例えば60℃〜
200℃にて1時間以上である。しかし、加熱時間が長
すぎても生成量にはあまり大きい影響は与えない。
If the heating temperature is too low, the reaction will be difficult to proceed, and if it is too high, it will be thermally uneconomical, so it is not preferable. The heating time varies depending on the heating temperature, but it is usually 60℃~
The temperature is 200°C for 1 hour or more. However, even if the heating time is too long, it does not have much effect on the amount produced.

本発明は、ろ別したろ液を新たに微粉砕した石炭灰に加
え、濾液を循環使用する。その際に反応溶液中のシリカ
/アルミナのモル比を調整する。
In the present invention, the filtered filtrate is added to freshly pulverized coal ash, and the filtrate is recycled and used. At that time, the molar ratio of silica/alumina in the reaction solution is adjusted.

反応溶液の調整は、苛性アルカリ、例えば水酸化ナトリ
ウムや水酸化カリウム、アルミン酸ナトリラム、水ガラ
ス等を用い、任意にアルカリ源およびアルミニウム源を
加えることによって行う。この場合、シリカ/アルミナ
のモル比を0.1〜2に調整するとA型ゼオライトが得
られやすく、2〜5に調整するとX型ゼオライトが得ら
れやすい。
The reaction solution is prepared by using a caustic alkali such as sodium hydroxide, potassium hydroxide, sodium aluminate, water glass, etc., and optionally adding an alkali source and an aluminum source. In this case, when the silica/alumina molar ratio is adjusted to 0.1 to 2, type A zeolite is easily obtained, and when adjusted to 2 to 5, type X zeolite is easily obtained.

このようにして生成したゼオライトは、例えば走査電子
顕微鏡写真によって確認することができ、その純度は、
例えば粉末X線回折図によって検定することができる。
The zeolite produced in this way can be confirmed, for example, by scanning electron microscopy, and its purity can be determined by
For example, it can be verified by powder X-ray diffractogram.

本発明によれば、反応母液中のナトリウム及びシリカを
有効に利用することができる。
According to the present invention, sodium and silica in the reaction mother liquor can be effectively utilized.

以下、本発明を実施例により説明する。The present invention will be explained below using examples.

〔実施例〕〔Example〕

皿双4放且廻袈 調製例1゜ フライアッシュ50g、3NのNaOH水溶液500c
cを混合し、90〜100℃で約18時間加熱し、反応
終了後、固体物質をろ別し、水で洗浄液のpHが10.
5になるまで充分に洗浄する。そして、110℃で24
時間乾燥する。結晶化度約45%のP型ゼオライトが4
7.2g得られた。P型ゼオライトの生成は、走査電子
顕微鏡写真により従来の水ガラス、アルミン酸ナトリウ
ム、水酸化ナトリウムから合成したP型ゼオライトと比
較して確認した。また、その純度は粉末X線回折図のA
37Mカードを用い、d=3.18のピーク面積(cd
)で検定した。
Preparation example 1゜Fly ash 50g, 3N NaOH aqueous solution 500c
c. and heated at 90 to 100°C for about 18 hours. After the reaction is complete, solid substances are filtered out and washed with water until the pH of the solution reaches 10.
Wash thoroughly until it reaches 5. And 24 at 110℃
Dry for an hour. P-type zeolite with a crystallinity of about 45% is 4
7.2g was obtained. The production of P-type zeolite was confirmed by scanning electron micrographs in comparison with conventional P-type zeolite synthesized from water glass, sodium aluminate, and sodium hydroxide. In addition, its purity is A in the powder X-ray diffraction diagram.
Using a 37M card, the peak area (cd
) was tested.

次に、固体物質をろ別した後の反応溶液の濾液を回収し
た。
Next, the filtrate of the reaction solution after filtering off solid substances was collected.

調製例2゜ タリンカアッシュ50g、3NのNaOH水溶液500
ccを混合し、90〜100℃で約18時間加熱し、反
応終了後、固形分をろ別し、水で洗浄液のpHがl01
5になるまで充分に洗浄する。そして、110℃で24
時間乾燥する。結晶化度約45%のP型ゼオライトが4
8.5g得られた。なお、得られたP型ゼオライトの生
成および純度は調製例1と同様の方法で確認した。
Preparation Example 2 50g of tarinka ash, 500g of 3N NaOH aqueous solution
cc was mixed and heated at 90 to 100°C for about 18 hours. After the reaction, the solid content was filtered out and the pH of the washing solution was adjusted to 101 with water.
Wash thoroughly until it reaches 5. And 24 at 110℃
Dry for an hour. P-type zeolite with a crystallinity of about 45% is 4
8.5g was obtained. The production and purity of the obtained P-type zeolite were confirmed in the same manner as in Preparation Example 1.

次に、固体物質をろ別した後の反応溶液の濾液を回収し
た。
Next, the filtrate of the reaction solution after filtering off solid substances was collected.

調製例3゜ 池島炭の燃焼灰50g、2NのNaOH水溶液500c
cを混合し、90〜100℃で約20時間加熱し、反応
終了後、固形分をろ別し、水で洗浄液のpHが10.5
になるまで充分に洗浄し、110℃で24時間乾燥する
。結晶化度約35%のP型ゼオライトが43.3g得ら
れた。得られたP型ゼオライトの生成および純度は調製
例1と同様の方法で確認した。
Preparation Example 3゜Ikeshima charcoal combustion ash 50g, 2N NaOH aqueous solution 500c
c and heated at 90 to 100°C for about 20 hours. After the reaction, the solid content was filtered out and washed with water until the pH of the solution was 10.5.
Wash thoroughly until dry and dry at 110°C for 24 hours. 43.3 g of P-type zeolite with a crystallinity of about 35% was obtained. The production and purity of the obtained P-type zeolite were confirmed in the same manner as in Preparation Example 1.

01′ンの′ f 実施例1 前記各調製例で述べたような方法で得られた回収濾液に
ついて、それぞれ1.51を21のコルベンに入れ、水
ガラスを45gずつ加え攪拌し、濾液中の成分濃度を定
量分析した。
01'n'f Example 1 1.51 of each of the collected filtrates obtained by the method described in each of the preparation examples above was placed in a 21-sized Kolben, and 45 g of water glass was added and stirred to dissolve the filtrate. Component concentrations were quantitatively analyzed.

その結果の代表例を第1表に示す。Representative examples of the results are shown in Table 1.

」」」聚 代表例   5ift    A 1 、O,Na、0
1      31.250.614    56.4
82      35.76    0.417   
 61.88(g/j?> (NazO/5iOzモル比=4) 次に、各150mlを300m1tのコルベンに入れ第
2表に示すような割合で、アルミン酸ソーダおよびアル
カリ溶液を加え、代表例1についてはシリカ/アルミナ
のモル比を0.1〜2、代表例2についてはシリカ/ア
ルミナのモル比を2.5〜5に調整した。
”” Representative example 5ift A 1 , O, Na, 0
1 31.250.614 56.4
82 35.76 0.417
61.88 (g/j?> (NazO/5iOz molar ratio = 4) Next, put 150 ml of each into a 300 ml ton corben and add sodium aluminate and alkaline solution in the proportions shown in Table 2. For Example 1, the silica/alumina molar ratio was adjusted to 0.1-2, and for Representative Example 2, the silica/alumina molar ratio was adjusted to 2.5-5.

0.5   4  40  25.45 1.67 8
8.101    4  40  10.67 7.7
0 81.691.5   4  40   8.39
 7.98  B1.222    4  40   
4.78 11.74 80.822.5   4  
40   5.76 13.83 114.013  
    4   40    4.79 14.30 
113.833.5    4   40    4.
09 14.64 113.834      4  
  40    3.56 14.90 113.7?
4.5    4   40    3.16 15.
10 113.735      4   40   
 3.83 15.26 113.70各溶液について
、30分間攪拌し、100℃の油浴中で3.5時間加熱
反応させた。
0.5 4 40 25.45 1.67 8
8.101 4 40 10.67 7.7
0 81.691.5 4 40 8.39
7.98 B1.222 4 40
4.78 11.74 80.822.5 4
40 5.76 13.83 114.013
4 40 4.79 14.30
113.833.5 4 40 4.
09 14.64 113.834 4
40 3.56 14.90 113.7?
4.5 4 40 3.16 15.
10 113.735 4 40
3.83 15.26 113.70 Each solution was stirred for 30 minutes and reacted by heating in a 100° C. oil bath for 3.5 hours.

得られた反応液を吸引濾過し、固体物質を蒸留水で洗浄
し、80℃以上で20時間以上乾燥させた。酸化アルミ
ニウムを標準物質とする内部標準法を用い粉末>1回折
により定量した。
The resulting reaction solution was suction filtered, and the solid material was washed with distilled water and dried at 80° C. or higher for 20 hours or more. It was determined by powder >1 diffraction using an internal standard method using aluminum oxide as a standard substance.

その結果を第1図に示す。The results are shown in FIG.

図から判るように、シリカ/アルミナのモル比が0.1
〜2においてA型ゼオライト、シリカ/アルミナのモル
比が2〜5においてX型ゼオライトの生成量が多い。
As can be seen from the figure, the silica/alumina molar ratio is 0.1.
When the molar ratio of silica/alumina is 2 to 5, the amount of type A zeolite produced is large.

実施例2 前記各調製例で述べたような方法で得られた回収濾液に
ついてその侭、濾液中の成分濃度を定量分析した。
Example 2 The recovered filtrate obtained by the method described in each of the preparation examples above was quantitatively analyzed for component concentration in the filtrate.

その結果の他の代表例を第3表に示す。Other representative examples of the results are shown in Table 3.

Jユ1 代表例   5ift    A l z03   N
azO318,790,60249,66 419,840,65249,48 (g/jり (NazO/5tOzモル比=7) 次に、各150mlを300mlのコルヘンに入れ、第
4表に示すような割合で、アルミン酸ソーダおよびアル
カリ溶液を加え、代表例3については、シリカ/アルミ
ナのモル比を0.1〜2、代表例4については、シリカ
/アルミナのモル比を2.5〜5に調整した。
Jyu1 Representative example 5ift A l z03 N
azO318,790,60249,66 419,840,65249,48 (g/j (NazO/5tOz molar ratio = 7) Next, put 150 ml of each into 300 ml of colchen, and in the proportions shown in Table 4, Sodium aluminate and an alkaline solution were added to adjust the silica/alumina molar ratio to 0.1-2 for Representative Example 3 and 2.5-5 for Representative Example 4.

0.5   7  40  15.26 7.62 9
6.961    7  40   7.56 13.
38 76.121.5   7  40   4.9
9 14.62 95.832     7   40
    3.70 15.26  95.692.5 
   7   40    3.10 1?、12 1
09.493     7   40    2.56
 17.38 109.433.5    7   4
0    2.1?  17.57 109.394 
    7   40    1.88 17.n  
109.364.5    7   40    1.
65 1?、82 109.335      7  
 40    1.47 17.90 109.30各
溶液について、30分間攪拌し、100℃の油浴中で3
.5時間加熱反応させた。
0.5 7 40 15.26 7.62 9
6.961 7 40 7.56 13.
38 76.121.5 7 40 4.9
9 14.62 95.832 7 40
3.70 15.26 95.692.5
7 40 3.10 1? , 12 1
09.493 7 40 2.56
17.38 109.433.5 7 4
0 2.1? 17.57 109.394
7 40 1.88 17. n
109.364.5 7 40 1.
65 1? ,82 109.335 7
40 1.47 17.90 109.30 For each solution, stir for 30 minutes and store in an oil bath at 100°C for 30 minutes.
.. The mixture was heated and reacted for 5 hours.

得られた反応液を吸引濾過し、固体物質を蒸留水で洗浄
し、80℃以上で20時間以上乾燥させた。酸化アルミ
ニウムを標準物質とする内部標準法を用い粉末X線回折
により定量した。
The resulting reaction solution was suction filtered, and the solid material was washed with distilled water and dried at 80° C. or higher for 20 hours or more. It was determined by powder X-ray diffraction using an internal standard method using aluminum oxide as a standard substance.

また、この実施例においても、シリカ/アルミナのモル
比がO01〜2においてA型ゼオライト、シリカ/アル
ミナのモル比が2〜5においてX型ゼオライトの生成量
が多い結果が得られた。
Also in this example, results were obtained in which a large amount of type A zeolite was produced when the silica/alumina molar ratio was O01 to 2, and a large amount of X type zeolite was produced when the silica/alumina molar ratio was 2 to 5.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、廃棄物となる石炭
灰を利用し、さらに反応濾液を循環使用するので、従来
の合成ゼオライトに比べて非常に経済的に安価なぜオラ
イドが得られる。また、シリカ/アルミナのモル比を調
整することにより、任意の型の純度の高いゼオライトを
製造することができる。
As explained above, according to the present invention, waste coal ash is used and the reaction filtrate is recycled, so olide can be obtained at a much more economical cost than conventional synthetic zeolites. Further, by adjusting the silica/alumina molar ratio, any type of zeolite with high purity can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例により得られたSiO□/A1
.03モル比と、A型、P型、X型ゼオライトの重量比
および収ffi/Al□03の関係を示すグラフである
FIG. 1 shows SiO□/A1 obtained according to an example of the present invention.
.. 2 is a graph showing the relationship between the molar ratio of 03, the weight ratio of A-type, P-type, and X-type zeolites, and the yield ffi/Al□03.

Claims (3)

【特許請求の範囲】[Claims] (1)石炭灰を微粉砕し、苛性アルカリ水溶液中で加熱
結晶化させ、反応混合物から固形物をろ取し、水洗後乾
燥すると共に、ろ別したろ液を新たに微粉砕した石炭灰
に加え、シリカ/アルミナのモル比を調整しながら循環
使用することを特徴とするゼオライトの製造方法。
(1) Finely pulverize coal ash, heat and crystallize it in an aqueous caustic solution, filter the solid matter from the reaction mixture, wash with water and dry it, and add the filtered filtrate to freshly pulverized coal ash. In addition, a method for producing zeolite characterized by recycling and using the silica/alumina while adjusting the molar ratio.
(2)反応溶液中のシリカ/アルミナのモル比を0.1
〜2にする特許請求の範囲第1項記載の製造方法。
(2) The molar ratio of silica/alumina in the reaction solution was set to 0.1.
2. The manufacturing method according to claim 1.
(3)反応溶液中のシリカ/アルミナのモル比を2〜5
にする特許請求の範囲第1項記載の製造方法。
(3) The molar ratio of silica/alumina in the reaction solution is 2 to 5.
The manufacturing method according to claim 1.
JP1423887A 1987-01-26 1987-01-26 Zeolite production method Expired - Lifetime JPH062576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1423887A JPH062576B2 (en) 1987-01-26 1987-01-26 Zeolite production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1423887A JPH062576B2 (en) 1987-01-26 1987-01-26 Zeolite production method

Publications (2)

Publication Number Publication Date
JPS63182214A true JPS63182214A (en) 1988-07-27
JPH062576B2 JPH062576B2 (en) 1994-01-12

Family

ID=11855502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1423887A Expired - Lifetime JPH062576B2 (en) 1987-01-26 1987-01-26 Zeolite production method

Country Status (1)

Country Link
JP (1) JPH062576B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138115A (en) * 1987-11-25 1989-05-31 Terunaito:Kk Production of faujasite-type zeolite
KR19990068614A (en) * 1999-06-05 1999-09-06 최재영 The Self-Purificatory Structures
US6027708A (en) * 1998-09-08 2000-02-22 Council Of Scientific & Industrial Research Process for the synthesis of flyash based zeolite-Y
JP2002173320A (en) * 2000-12-06 2002-06-21 Ikuhiro Ando Synthetic method of zeolite by induction and zeolite composition
JP2005343765A (en) * 2004-06-04 2005-12-15 Okayama Univ Faujasite type zeolite, zeolite a or composite containing faujasite type zeolite and method of manufacturing the same
JP2007099593A (en) * 2005-10-07 2007-04-19 Toshio Shimoda Continuous synthesis method for highly functional zeolite
WO2019241959A1 (en) * 2018-06-21 2019-12-26 中国科学院大连化学物理研究所 Method for recycling low-silicon x molecular sieve synthesis mother liquid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138115A (en) * 1987-11-25 1989-05-31 Terunaito:Kk Production of faujasite-type zeolite
US6027708A (en) * 1998-09-08 2000-02-22 Council Of Scientific & Industrial Research Process for the synthesis of flyash based zeolite-Y
KR19990068614A (en) * 1999-06-05 1999-09-06 최재영 The Self-Purificatory Structures
JP2002173320A (en) * 2000-12-06 2002-06-21 Ikuhiro Ando Synthetic method of zeolite by induction and zeolite composition
JP2005343765A (en) * 2004-06-04 2005-12-15 Okayama Univ Faujasite type zeolite, zeolite a or composite containing faujasite type zeolite and method of manufacturing the same
JP2007099593A (en) * 2005-10-07 2007-04-19 Toshio Shimoda Continuous synthesis method for highly functional zeolite
JP4580321B2 (en) * 2005-10-07 2010-11-10 敏雄 霜田 Continuous synthesis method of high-performance zeolite
WO2019241959A1 (en) * 2018-06-21 2019-12-26 中国科学院大连化学物理研究所 Method for recycling low-silicon x molecular sieve synthesis mother liquid

Also Published As

Publication number Publication date
JPH062576B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
CN104495899B (en) A kind of carbide slag and flyash work in coordination with the method for recycling
Chunfeng et al. Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies
CN103046111A (en) Method for preparing nano analcime with fly ash
CN113716583A (en) Method for preparing 4A zeolite by using MSWI fly ash and red mud hydrothermal method
CN108059171A (en) A kind of method of flyash synthesis HZSM-5 type zeolites
JPH062574B2 (en) Method for producing P-type zeolite
CN107758681B (en) NaOH and Na2CO3Method for synthesizing 4A type molecular sieve by mixed alkali fusion fly ash
Wajima et al. Synthesis of zeolite X from waste sandstone cake using alkali fusion method
US6692722B2 (en) Manufacturing method of zeolite from waste
JPS63182214A (en) Production of zeolite
JP2526403B2 (en) Method for producing A-type zeolite
CN114212799A (en) Coal ash pretreatment method for molecular sieve preparation
JP3666031B2 (en) Method for producing type A zeolite
JP3442817B2 (en) Method for producing zeolite composition
JP3431499B2 (en) Method for producing artificial zeolite
Lin et al. The complex chemical treatment of alumina–silica-containing materials
WAJIMA et al. Material conversion from various incinerated ashes using alkali fusion method
JP3940801B2 (en) Method for synthesizing zeolite
JPH07165418A (en) Production of zeolite
Elavarasan et al. Utilization of Coal Fly Ash as a Raw Material for the Synthesis of Zeolite like Substance
JPH05221628A (en) Production of zeolite
CN111943223A (en) Method for preparing X-type zeolite by utilizing coal gangue and rice hulls
JPS61174945A (en) Selective adsorbent of metallic ion
TW202033475A (en) Method of incineration ash reused for synthesis of porous materials
JPH0369509A (en) Production of zeolite