Nothing Special   »   [go: up one dir, main page]

JPS6222801B2 - - Google Patents

Info

Publication number
JPS6222801B2
JPS6222801B2 JP54159600A JP15960079A JPS6222801B2 JP S6222801 B2 JPS6222801 B2 JP S6222801B2 JP 54159600 A JP54159600 A JP 54159600A JP 15960079 A JP15960079 A JP 15960079A JP S6222801 B2 JPS6222801 B2 JP S6222801B2
Authority
JP
Japan
Prior art keywords
temperature
circuit
voltage
correction
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54159600A
Other languages
Japanese (ja)
Other versions
JPS5682623A (en
Inventor
Morimasa Ninomya
Fumio Ootsuka
Akiro Yoshimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15960079A priority Critical patent/JPS5682623A/en
Publication of JPS5682623A publication Critical patent/JPS5682623A/en
Publication of JPS6222801B2 publication Critical patent/JPS6222801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は路上車両の室内温度を自動的に目標値
に近づける制御を行う温度制御に関し、さらには
主に太陽の熱輻射の室内への入射に対して乗員に
より快適な温度制御感を与える温度制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to temperature control that automatically brings the indoor temperature of a road vehicle closer to a target value, and furthermore, mainly relates to a temperature control system that automatically controls the indoor temperature of a road vehicle to approach a target value, and furthermore, mainly relates to a temperature control system that controls the indoor temperature of a road vehicle to make it more comfortable for occupants. The present invention relates to a temperature control method that provides a feeling of temperature control.

従来、路上車両の室内温度を制御する場合、太
陽からの熱輻射を感知してそれに応じて温度制御
量を加減補正することが室内温度の目標値からの
ずれを小さくする上で、あるいはまた乗員が直接
に感じる熱輻射の印象を柔げる上で望ましいとさ
れている。そしてこのような補正を行うために各
種の制御入力条件に応じて室内温度を目標値に近
づけるべく温度制御量を決定する電気的演算を行
う場合において、光学的エネルギーまたは熱的エ
ネルギーとして表わされる太陽の熱輻射を電気信
号に変換し、この電気信号によつて電気的演算の
利得を調節することが考えられている。
Conventionally, when controlling the indoor temperature of a road vehicle, sensing the heat radiation from the sun and adjusting the temperature control amount accordingly has been used to reduce the deviation of the indoor temperature from the target value, and also to reduce the deviation of the indoor temperature from the target value. It is considered desirable to soften the impression of heat radiation that is directly felt. In order to perform such correction, when electrical calculations are performed to determine the temperature control amount in order to bring the indoor temperature closer to the target value according to various control input conditions, solar energy expressed as optical energy or thermal energy is used. It has been considered to convert the thermal radiation of 200 nm into an electrical signal, and use this electrical signal to adjust the gain of electrical calculations.

具体的な方法としては、自動車技術会発行の月
刊誌「自動車技術」VoL.31,7月号、第660頁に
も示されているように、温度応答素子を熱輻射を
受けるように配設するとともに、その電気信号の
大きさによつて吹出温度を加減することが公知と
なつている。
As a specific method, as shown in the monthly magazine "Automobile Technology" published by the Society of Automotive Engineers of Japan, Vol. At the same time, it is known to adjust the blowing temperature depending on the magnitude of the electric signal.

また実公昭48−6264号公報、同49−6021号公
報、同54−31468号公報に見られるように、日射
強度を光学的エネルギーまたは熱的エネルギーと
して感知する独立した検出素子を具備し、この検
出素子により温度制御量を連続的に補正すること
も公知となつている。
In addition, as seen in Japanese Utility Model Publications No. 48-6264, No. 49-6021, and No. 54-31468, the system is equipped with an independent detection element that senses solar radiation intensity as optical energy or thermal energy. It is also known to continuously correct the temperature control amount using a detection element.

しかしながら、これら公知の方法においては次
の欠点がある。第1に、車両は通常の走行におい
て太陽からの熱輻射以外にも光学的エネルギーま
たは熱的エネルギーを受けるものであり、検出素
子がこれに応答して補正量を変化させるため、車
室内温度が変動したり、乗員に余分な冷房感を与
えるという不具合を生じることがある。また検出
素子において、これらの不具合を除くためには、
太陽からの熱輻射のみを厳密に見分けるようにす
るには相当な付加的手段を必要とする。第2に検
出素子の性能のばらつきが問題となる。すなわ
ち、感光抵抗素子または感熱抵抗素子は、入射光
または周囲温度に対する電気的特性が一様でな
く、素子毎に特性のばらつきを有する。従つて温
度制御量を正確に決定するため、検出素子の電気
信号に対する温度補正量の関係を調整する必要が
あるが、従来のように検出素子としての抵抗素子
と並列に補正用固定抵抗を接続するなどの、素子
の特性全体を修正する方法では手間がかかり過ぎ
る欠点がある。
However, these known methods have the following drawbacks. First, during normal driving, a vehicle receives optical energy or thermal energy in addition to thermal radiation from the sun, and the detection element changes the correction amount in response to this, so the temperature inside the vehicle changes. This may cause problems such as fluctuations or giving the occupants an extra feeling of cooling. In addition, in order to eliminate these defects in the detection element,
Significant additional measures are required to strictly distinguish only the thermal radiation from the sun. A second problem is the variation in performance of the detection elements. That is, a photosensitive resistance element or a thermosensitive resistance element does not have uniform electrical characteristics with respect to incident light or ambient temperature, and has variations in characteristics from element to element. Therefore, in order to accurately determine the temperature control amount, it is necessary to adjust the relationship between the temperature correction amount and the electrical signal of the detection element. Methods such as modifying the entire characteristics of the element have the drawback of being too time-consuming.

本発明は上述の問題に鑑みて、太陽の熱輻射に
対する温度補正量を予め段階的に定めておき、車
両が受ける日射の光学的エネルギーまたは熱的エ
ネルギーに応答して検出素子が生じる電気信号に
応じて、予め定めてある所定の温度補正量を選択
し温度制御量の修正をなすことにより、まとまつ
た単位で温度補正を与え、誤補正がなくかつ比較
的正確な温度制御を行なうことができ、さらに検
出素子の信号に対する補正量の決定が容易な車両
の室内温度制御方法を提供することを目的とする
ものである。
In view of the above-mentioned problems, the present invention predetermines the temperature correction amount for solar thermal radiation in stages, and adjusts the electric signal generated by the detection element in response to the optical energy or thermal energy of the solar radiation received by the vehicle. Accordingly, by selecting a predetermined temperature correction amount and correcting the temperature control amount, it is possible to apply temperature correction in a large unit and perform relatively accurate temperature control without erroneous correction. Another object of the present invention is to provide a method for controlling the indoor temperature of a vehicle in which it is easy to determine a correction amount for a signal from a detection element.

以下本発明を添付図面に示す実施例について説
明する。
The present invention will be described below with reference to embodiments shown in the accompanying drawings.

第1図は本発明方法を適用する温度制御装置の
主な機能要素の配置を示し、101は外気導入
口、102は内気導入口、103はこの両導入口
101,102を開閉する内外気切換ダンパ、1
04はブロワモータ、105は冷房装置の冷媒蒸
発器によりなる冷却器、106はエンジン冷却水
を熱源とする加熱器で、通風ダクト107内で冷
却器105の下流に直列に設けられている。10
8は温度調整ダンパ(以下A/Mダンパ)で、加
熱器106を通る空気とバイパス通路109を通
る空気との割合を調整することにより加熱器10
6による加熱量を調整するものである。110は
車両室内への吹出口、111はダンパ108を開
閉させるダイヤフラム作動器、112はこのダイ
ヤフラム作動器111に供給する負圧を調整する
負圧調整器で、2個の電磁弁113,114を内
蔵し、この2個の電磁弁113,114によつて
負圧管115および大気開口116をそれぞれ開
閉する構造にしてある。
FIG. 1 shows the arrangement of the main functional elements of a temperature control device to which the method of the present invention is applied, in which 101 is an outside air inlet, 102 is an inside air inlet, and 103 is an inside/outside air switch that opens and closes both the inlets 101 and 102. Damper, 1
04 is a blower motor, 105 is a cooler made of a refrigerant evaporator of the cooling system, and 106 is a heater using engine cooling water as a heat source, which are provided in series downstream of the cooler 105 in the ventilation duct 107. 10
Reference numeral 8 denotes a temperature adjustment damper (hereinafter referred to as an A/M damper), which adjusts the ratio of the air passing through the heater 106 and the air passing through the bypass passage 109.
This is to adjust the amount of heating by step 6. 110 is an air outlet into the vehicle interior; 111 is a diaphragm actuator that opens and closes the damper 108; 112 is a negative pressure regulator that adjusts the negative pressure supplied to the diaphragm actuator 111; The negative pressure pipe 115 and the atmospheric opening 116 are opened and closed by the two solenoid valves 113 and 114, respectively.

これら各機能要素の細部と役割については公知
のものと同等であり、前記ダンパ108の開度を
変えることによつて吹出空気の温度が変化し、も
つて室内の温度を変えることができるのである。
The details and roles of each of these functional elements are the same as those known in the art, and by changing the opening degree of the damper 108, the temperature of the blown air changes, thereby changing the indoor temperature. .

第2図は第1図に示す各機能要素と作動的に結
合される温度制御回路を示すものである。この温
度制御回路は機能的に分けて、各種の制御条件に
応じた電気信号を発生する信号発生回路1と、こ
の信号発生回路1の出力電気信号を受けて車両の
室内温度を目標値に近づけるための温度制御量を
決定し、前記電磁弁113,114の開閉を制御
して前記A/Mダンパ108の位置を調節する増
幅回路2と、車両において日射光線を実質的に受
ける位置に配置され日射の光学的エネルギーに応
答して電気信号を発生する検出素子3を含み、検
出した電気信号の平均化信号に応じた信号電圧を
生じる検出回路4と、この検出回路4に発生する
信号電圧の大きさを2つのスレツシヨルドレベル
で段階的に判定する比較回路5と、この比較回路
5にて判定される各段階に対応して予め定めた所
定の大きさの補正量を示す電気信号に変換して上
記信号発生回路1の出力電気信号を修正する補正
回路6とから成つている。
FIG. 2 shows a temperature control circuit operatively coupled to each of the functional elements shown in FIG. This temperature control circuit is functionally divided into a signal generation circuit 1 that generates electrical signals according to various control conditions, and a signal generation circuit 1 that receives output electrical signals from this signal generation circuit 1 to bring the indoor temperature of the vehicle closer to a target value. an amplifier circuit 2 that determines a temperature control amount for the A/M damper 108 and controls the opening and closing of the solenoid valves 113 and 114 to adjust the position of the A/M damper 108; A detection circuit 4 includes a detection element 3 that generates an electric signal in response to optical energy of solar radiation, and generates a signal voltage according to an averaged signal of the detected electric signals; A comparison circuit 5 that determines the size step by step at two threshold levels, and an electric signal that indicates a predetermined correction amount of the size corresponding to each step determined by the comparison circuit 5. and a correction circuit 6 for converting and correcting the output electrical signal of the signal generating circuit 1.

前記信号発生回路1において、7は目標温度設
定用の可変抵抗器、8は室内温度検出用の負特性
感熱抵抗(以下内気温センサ)、9は室外温度検
出用の負特性感熱抵抗(以下外気温センサ)、9
aは補正抵抗、10はA/Mダンパ108の位置
に応じた信号を負帰還するための抵抗式ポテンシ
ヨメータである。ここで各抵抗素子は直列に接続
されており、可変抵抗器7とポテンシヨメータ1
0との接続点に各種制御条件に対応した電気信号
(電圧)V1を生じる。
In the signal generation circuit 1, 7 is a variable resistor for setting a target temperature, 8 is a negative characteristic heat-sensitive resistor for detecting indoor temperature (hereinafter referred to as "inside temperature sensor"), and 9 is a negative characteristic heat-sensitive resistor for detecting outdoor temperature (hereinafter referred to as "outside temperature sensor"). temperature sensor), 9
a is a correction resistor, and 10 is a resistive potentiometer for negative feedback of a signal corresponding to the position of the A/M damper 108. Here, each resistance element is connected in series, and a variable resistor 7 and a potentiometer 1
At the connection point with 0, an electric signal (voltage) V 1 corresponding to various control conditions is generated.

前記増幅回路2は、信号発生回路1と協働して
公知の帰還型調節系を構成するものである。1
1,12,13は比較基準電圧V2,V3を発生す
る分圧抵抗、14,15は比較器で、比較器14
は電圧V1が電圧V3より小さいときすなわち制御
対象の測定温度が目標温度の下限より低いとき出
力線14aのレベルを「0」とし、比較器15は
電圧V1が電圧V2より大きいときすなわち制御対
象の温度が目標温度の上限より高いとき出力線1
5aのレベルを「0」とする。そして、これら両
比較器14,15はいわゆるウインドコンパレー
タを構成する。16,17はそれぞれ比較器1
4,15の比較反転レベルにヒステリシスを付加
するための帰還抵抗である。
The amplifier circuit 2 cooperates with the signal generating circuit 1 to constitute a known feedback type adjustment system. 1
1, 12, and 13 are voltage dividing resistors that generate comparison reference voltages V 2 and V 3 ; 14 and 15 are comparators;
When the voltage V 1 is smaller than the voltage V 3 , that is, when the measured temperature of the controlled object is lower than the lower limit of the target temperature, the level of the output line 14a is set to "0", and the comparator 15 sets the level of the output line 14a to "0" when the voltage V 1 is larger than the voltage V 2 . In other words, when the temperature of the controlled object is higher than the upper limit of the target temperature, output line 1
Let the level of 5a be "0". Both comparators 14 and 15 constitute a so-called window comparator. 16 and 17 are comparators 1, respectively.
This is a feedback resistor for adding hysteresis to the comparison inversion levels of 4 and 15.

トランジスタ18,19とトランジスタ20,
21はそれぞれ比較器14,15の比較信号を反
転増幅する増幅回路をなし、出力線14aが
「0」レベルのときトランジスタ18がオフ、ト
ランジスタ19がオンとなつて電磁弁113を付
勢開弁し、車室内の温度上昇させるべく温度調整
ダンパ108をa点方向に吸引する。また出力線
15aが「0」レベルのときトランジスタ20が
オフ、トランジスタ21がオンとなつて電磁弁1
14を付勢開弁し、車室内の温度を下降させるべ
く温度調整ダンパ108をb点方向に押し返す。
出力線14a,15aの2つの比較信号がいずれ
も「1」レベルのときは両電磁弁113,114
は消勢閉弁し、温度調整ダンパ108の開度を保
つて車室内温度を保つ。
Transistors 18, 19 and transistor 20,
21 constitutes an amplifier circuit that inverts and amplifies the comparison signals of the comparators 14 and 15, respectively. When the output line 14a is at the "0" level, the transistor 18 is turned off and the transistor 19 is turned on, which energizes the solenoid valve 113 to open it. Then, the temperature adjustment damper 108 is sucked toward point a in order to raise the temperature inside the vehicle. Further, when the output line 15a is at the "0" level, the transistor 20 is turned off and the transistor 21 is turned on, so that the solenoid valve 1
14 is energized to open the valve, and the temperature adjustment damper 108 is pushed back toward point b in order to lower the temperature in the vehicle interior.
When the two comparison signals of the output lines 14a and 15a are both at the "1" level, both the solenoid valves 113 and 114
The valve is deenergized and closed, and the opening degree of the temperature adjustment damper 108 is maintained to maintain the temperature inside the vehicle.

この帰還型調節系における温度制御の基本の作
動は信号発生回路1の検出電圧V1が、2つのス
レツシヨルドレベルV2,V3の中間に位置するよ
うに温度調整ダンパ108の開度を決定すること
である。
The basic operation of temperature control in this feedback type adjustment system is to adjust the opening degree of the temperature adjustment damper 108 so that the detected voltage V 1 of the signal generation circuit 1 is located between the two threshold levels V 2 and V 3 . It is to decide.

前記検出回路4は、前記検出素子3として光量
−電気変換によつて日射量を検出するホトダイオ
ード3aと、このホトダイオード3aと直列に接
続されかつ互いに並列に接続されたコンデンサ2
2および抵抗23を含む。ホトダイオード3aは
受ける光量が増すほど内部抵抗が減少し、コンデ
ンサ22および抵抗23との接続点の電圧V4
上昇させる。コンデンサ22および抵抗23は時
定数回路をなし、ホトダイオード3aの抵抗値が
その時定数より速く変化しても電圧V4が応分の
値に変化するまでの時間を遅延させる役割を有す
る。
The detection circuit 4 includes, as the detection element 3, a photodiode 3a that detects the amount of solar radiation through light-to-electricity conversion, and a capacitor 2 connected in series with the photodiode 3a and in parallel with each other.
2 and a resistor 23. The internal resistance of the photodiode 3a decreases as the amount of light it receives increases, increasing the voltage V 4 at the connection point with the capacitor 22 and resistor 23. The capacitor 22 and the resistor 23 form a time constant circuit, and have the role of delaying the time until the voltage V 4 changes to a corresponding value even if the resistance value of the photodiode 3a changes faster than the time constant.

ホトダイオード3aの取付構造は、第3図に示
すように基板3bに固定され、2本のリード線3
c,3dは下側ハウジング24に支持されてい
る。25は日射を通過させる半透明の半球状天窓
で、筒状中間ハウジング26上端に固定されてい
る。中間ハウジング26は下側ハウジング24と
ねじ結合され、これによつてリング状パツキン2
7,28を介してメータパネル上板29に固定支
持されている。半球状天窓25には若干の通気孔
を設けてもよい。また半球状天窓25は日射光量
が大のときの光量−電気変換特性の飽和を防止す
るための減光フイルタ及び太陽光のうち赤外線を
主に通過させる色フイルタの役割を兼ねている。
The mounting structure of the photodiode 3a is as shown in FIG.
c and 3d are supported by the lower housing 24. 25 is a translucent hemispherical skylight through which solar radiation passes, and is fixed to the upper end of the cylindrical intermediate housing 26. The intermediate housing 26 is screwed together with the lower housing 24, whereby the ring-shaped packing 2
It is fixedly supported by the meter panel upper plate 29 via 7 and 28. The hemispherical skylight 25 may be provided with some ventilation holes. The hemispherical skylight 25 also serves as a dark filter to prevent saturation of the light-to-electrical conversion characteristics when the amount of sunlight is large, and as a color filter that mainly passes infrared rays of sunlight.

前記比較回路5において、30,31,32は
比較基準電圧V5,V6を発生する分圧抵抗、3
3,34は比較器であり、入力抵抗35を介して
受ける前記検出回路4の生じる出力電圧V4が電
圧V5より大きいとき、比較器33の出力線33
aのレベルが「0」となり、出力電圧V4が電圧
V6より大きいと、比較器34の出力線34aの
レベルも「0」となる。入力電圧V4が基準電圧
V6またはV5より小さいと、比較器34、比較器
33の出力線レベルは「開放」となる。ダイオー
ド36,37は逆流阻止用であり、抵抗38,3
9はヒステリシス発生用である。
In the comparison circuit 5, 30, 31, and 32 are voltage dividing resistors that generate comparison reference voltages V 5 and V 6 ;
3 and 34 are comparators, and when the output voltage V 4 generated by the detection circuit 4 received via the input resistor 35 is greater than the voltage V 5 , the output line 33 of the comparator 33 is
The level of a becomes “0” and the output voltage V 4 becomes the voltage
If it is larger than V 6 , the level of the output line 34a of the comparator 34 also becomes "0". Input voltage V 4 is reference voltage
When it is smaller than V 6 or V 5 , the output line levels of the comparators 34 and 33 are "open". Diodes 36 and 37 are for blocking reverse current, and resistors 38 and 3
9 is for generating hysteresis.

前記補正回路6は、上記比較回路5の2つの比
較器33,34の各々と一端が接続され、他端が
前記信号発生回路1の信号発生点に共通に接続さ
れた抵抗40,41から成つている。そして、出
力線33aが「0」レベルとなつたとき、抵抗4
0が、前記信号発生回路1における抵抗回路8,
9,9a,10に対して分流作用をなし、信号電
圧V1を所定の割合で低下させる。また、出力線
34aも「0」レベルになると、抵抗41も分流
作用をなし、信号電圧V1をさらに低下させる。
電圧低下の割合は関係抵抗素子のそのときの抵抗
値によつても変化するが、抵抗40,41の抵抗
値を他の抵抗素子より大きくしておき、前記A/
Mダンパ108の修正量が適当な値になるように
選択される。
The correction circuit 6 includes resistors 40 and 41, one end of which is connected to each of the two comparators 33 and 34 of the comparison circuit 5, and the other end of which is commonly connected to the signal generation point of the signal generation circuit 1. It's on. Then, when the output line 33a reaches the "0" level, the resistor 4
0 is the resistance circuit 8 in the signal generation circuit 1,
9, 9a, and 10, and lowers the signal voltage V1 at a predetermined rate. Furthermore, when the output line 34a also reaches the "0" level, the resistor 41 also acts as a shunt, further lowering the signal voltage V1 .
Although the rate of voltage drop also changes depending on the resistance values of the related resistance elements at that time, the resistance values of the resistors 40 and 41 are made larger than the other resistance elements, and the
The amount of modification of the M damper 108 is selected to be an appropriate value.

42は車載バツテリ電源、43はキースイツチ
のイグニツシヨンスイツチ、44は空調装置の作
動スイツチであり、前記ブロワモータ104、前
記冷却器105、前記加熱器106の各作動回路
への通電も行なう。
Reference numeral 42 designates an on-vehicle battery power supply, 43 an ignition switch of a key switch, and 44 an operating switch for an air conditioner, which also energizes each operating circuit of the blower motor 104, the cooler 105, and the heater 106.

次に上記の構成においてその作動を説明する。
イグニツシヨンスイツチ43および作動スイツチ
44が投入されると、空調装置が作動状態にな
り、また温度制御回路への給電がなされ温度制御
装置としての作動が開始される。いま、ホトダイ
オード3aが受ける光量がスレツシヨルドレベル
より小さく、従つて補正回路6による補正作用が
ないものとして、まず温度制御の通常の作動を説
明する。
Next, the operation of the above configuration will be explained.
When the ignition switch 43 and the operating switch 44 are turned on, the air conditioner is put into operation, power is supplied to the temperature control circuit, and operation as a temperature control device is started. First, the normal operation of temperature control will be explained assuming that the amount of light received by the photodiode 3a is smaller than the threshold level and therefore there is no correction effect by the correction circuit 6.

車室内温度が目標値の範囲内にあるときは、検
出電圧V1がV3<V1<V2を満足する範囲内にあ
り、従つて比較器14,15の比較信号がともに
“1”レベルとなり、電磁弁113,114がと
もに閉弁しているので、A/Mダンパ108は所
定位置に保持されている。
When the vehicle interior temperature is within the target value range, the detected voltage V 1 is within the range that satisfies V 3 < V 1 < V 2 , and therefore the comparison signals of comparators 14 and 15 are both “1”. level, and the solenoid valves 113 and 114 are both closed, so the A/M damper 108 is held at a predetermined position.

車室内温度が目標値の範囲より低下している
と、内気センサ8の抵抗値増加により信号電圧
V1が上昇してV1>V2となり、これにより比較器
14の比較信号14aが「0」レベルとなり、電
磁弁113が開弁してダイヤフラム作動器111
に加わる負圧が大きくなるので、ダンパ108が
高温側(第1図a側)へ移動して加熱器106に
よる加熱量を増加させて、吹出空気温度を上昇さ
せる。そして、ダンパ108の高温側への移動に
よりポテンシヨメータ10の抵抗値が減少して
V1<V2となれば電磁弁113が閉弁状態に戻
る。
When the vehicle interior temperature falls below the target value range, the signal voltage increases due to the increase in the resistance value of the inside air sensor 8.
V 1 increases to become V 1 >V 2 , and as a result, the comparison signal 14a of the comparator 14 goes to the “0” level, the solenoid valve 113 opens, and the diaphragm actuator 111
As the negative pressure applied to the pump increases, the damper 108 moves to the high temperature side (to the side a in FIG. 1), increases the amount of heating by the heater 106, and raises the temperature of the blown air. As the damper 108 moves to the high temperature side, the resistance value of the potentiometer 10 decreases.
When V 1 <V 2 , the solenoid valve 113 returns to the closed state.

逆に、車室内温度が目標値の範囲より上昇する
と、内気センサ8の抵抗値減少によりV1が低下
して、V1<V3となり、これにより比較器15の
比較信号15aが「0」レベルとなり、電磁弁1
14が開弁してダイヤフラム作動器111に加わ
る負圧が小さくなるので、図示しないばねの力に
よりダンパ108が低温側(第1図のb側)へ移
動して加熱器106による加熱量を減少させ、吹
出空気温度を低下させる。そして、ダンパ108
の低温側への移動によりポテンシヨンメータ10
の抵抗値が増加して、V1>V3となれば、電磁弁
114が開閉状態に戻る。
Conversely, when the temperature inside the vehicle rises above the target value range, V 1 decreases due to the decrease in the resistance value of the inside air sensor 8, and V 1 <V 3 , which causes the comparison signal 15a of the comparator 15 to become "0". level, solenoid valve 1
14 opens and the negative pressure applied to the diaphragm actuator 111 becomes smaller, so the damper 108 moves to the low temperature side (side b in FIG. 1) by the force of a spring (not shown), reducing the amount of heating by the heater 106. to lower the blowing air temperature. And damper 108
potentiometer 10 by moving to the low temperature side.
When the resistance value of V 1 >V 3 increases, the solenoid valve 114 returns to the open/closed state.

このようにして、ダンパ108のつりあい位置
はV1がV3<V1<V2の範囲内の値になるように決
定され、その結果として車室内温度は目標値の範
囲内に保たれる。なお、外気温度が変化するとそ
れに応じて外気センサ11cの抵抗値が変化し、
それにつれて検出電圧V1が低下するのをポテン
シオメータ10で補うように外気温度の変化分だ
け温度調整ダンパ108を動かす。このように温
度調整ダンパ108の制御量の変化(開度変化)
によるポテンシオメータ10の端子電圧変化と各
センサの抵抗値変化による電圧変化とのつり合い
がとられるように、各抵抗素子の特性および大き
さが予め決定されている。
In this way, the balanced position of the damper 108 is determined such that V 1 is within the range of V 3 <V 1 <V 2 , and as a result, the vehicle interior temperature is maintained within the target value range. . Note that when the outside air temperature changes, the resistance value of the outside air sensor 11c changes accordingly.
The potentiometer 10 moves the temperature adjustment damper 108 by the amount of change in outside temperature so as to compensate for the decrease in the detected voltage V1 . In this way, the change in the controlled amount (change in opening degree) of the temperature adjustment damper 108
The characteristics and size of each resistance element are determined in advance so that the change in the terminal voltage of the potentiometer 10 caused by the change in the resistance value of each sensor is balanced with the voltage change caused by the change in the resistance value of each sensor.

次に太陽からの熱輻射いわゆる日射がある場合
の温度制御の補正について説明する。いま、ホト
トランジスタ3aが半球状天窓25を透過して受
ける光量は、車両が日射によつて受ける熱エネル
ギーと略比例の関係にある。そして、車両が走行
中に日向と日陰を交互に通過する場合において
も、コンデンサ22と抵抗23の平滑作用によつ
て、検出回路4の出力電圧V4は適当に安定化さ
れて変化する。
Next, a description will be given of correction of temperature control when there is heat radiation from the sun, so-called solar radiation. The amount of light that the phototransistor 3a receives through the hemispherical skylight 25 is approximately proportional to the thermal energy that the vehicle receives from sunlight. Even when the vehicle alternately passes through sunlight and shade while driving, the output voltage V 4 of the detection circuit 4 is appropriately stabilized and changes due to the smoothing effect of the capacitor 22 and the resistor 23.

出力電圧V4が予め定めた基準電圧V5より小さ
い状態、つまり日射がある程度小さいときは、比
較器33,34の出力線33a,34aのレベル
は「開放」状態であり、信号発生回路1は前述の
ように補正なし(補正値が零)で信号電圧V1
発生し温度制御を行なう。この状態で、もし微弱
な日射が車室内温度に影響を及ぼすと、内気セン
サ8がこれを検知して室内温度が目標温度に近ず
くように帰還型調節系が作動する。
When the output voltage V 4 is smaller than the predetermined reference voltage V 5 , that is, when the solar radiation is low to a certain extent, the output lines 33 a and 34 a of the comparators 33 and 34 are in the “open” state, and the signal generating circuit 1 is in the “open” state. As described above, the signal voltage V1 is generated without correction (correction value is zero) to perform temperature control. In this state, if weak solar radiation affects the vehicle interior temperature, the inside air sensor 8 detects this and the feedback control system operates so that the interior temperature approaches the target temperature.

日射が増加してくると、出力電圧V4が上昇
し、その値に応じて比較器33,34の出力線3
3a,34aが順次「0」レベルになる。そし
て、抵抗40,41の分流作用により、信号発生
回路1の出力電圧V1は2段階に低下する。すな
わち、A/Mダンパ108が無補正の位置からb
点側に2段階にわたつて移動し、車室内の日射に
よる温度上昇を相殺する。
When the solar radiation increases, the output voltage V4 increases, and the output line 3 of the comparators 33 and 34 increases according to the value.
3a and 34a sequentially become the "0" level. Then, due to the shunt action of the resistors 40 and 41, the output voltage V1 of the signal generating circuit 1 is reduced in two steps. That is, the A/M damper 108 moves from the uncorrected position to b
It moves to the point side in two steps to offset the temperature rise inside the vehicle due to solar radiation.

第4図にホトトランジスタ3aが受ける光量S
とA/Mダンパ108の補正移動量Tgとの関係
を示すように、温度補正は日射に対して比例関係
でなく段階的に行なわれる。すなわち補正量Tg
が発生する点は日射量Sに対して決定されるが、
補正量Tgそのものは補正回路6の抵抗40,4
1によつて決定される。従つて、補正量Tgの発
生点を例えば基準電圧発生用分圧抵抗の1つ
(30)で調整することにより、日射に対してほぼ
適切な補正を行なうことができる。
Figure 4 shows the amount of light S received by the phototransistor 3a.
As shown in the relationship between Tg and the corrected movement amount Tg of the A/M damper 108, the temperature correction is not proportional to solar radiation but is performed in stages. In other words, the correction amount Tg
The point where this occurs is determined with respect to the amount of solar radiation S, but
The correction amount Tg itself is determined by the resistance 40, 4 of the correction circuit 6.
1. Therefore, by adjusting the generation point of the correction amount Tg using, for example, one of the voltage dividing resistors (30) for generating the reference voltage, it is possible to perform a substantially appropriate correction for solar radiation.

以上述べた温度制御装置は本発明方法の一実施
例を示すものであり、本発明の主旨に従う範囲で
変形することができる。
The temperature control device described above shows one embodiment of the method of the present invention, and can be modified within the scope of the gist of the present invention.

例えば、検出素子3として入射光量に応答する
ものの代わりに、車両フロントガラスを透過した
日射光線を受ける位置に設けた感熱抵抗素子によ
つて熱的エネルギーに応答した電気信号を取出す
ようにしてもよい。
For example, instead of the detection element 3 responding to the amount of incident light, a heat-sensitive resistance element provided at a position that receives sunlight transmitted through the vehicle windshield may be used to extract an electrical signal in response to thermal energy. .

また、補正の開始時に信号発生回路1の出力電
圧V1がステツプ的に低下しそのため吹出空気が
急激に変わるのを防止するために、抵抗40,4
1を通る電流が比較器33,34の出力反転動作
に対して時間遅れをもつて徐々に変わるようにし
てもよい。例えば、抵抗40,41をトランジス
タ等の半導体抵抗素子で構成し、そのバイアス電
圧を入力信号の変化に対して徐々に変化させる積
分回路を付設すればよい。
In addition, in order to prevent the output voltage V 1 of the signal generating circuit 1 from decreasing stepwise at the start of correction and thereby preventing the blown air from changing rapidly, resistors 40 and 4 are connected.
The current flowing through the comparators 33 and 34 may gradually change with a time delay relative to the output inversion operations of the comparators 33 and 34. For example, the resistors 40 and 41 may be constructed of semiconductor resistance elements such as transistors, and an integrating circuit may be provided to gradually change the bias voltage of the resistors 40 and 41 in response to changes in the input signal.

また、上記実施例のように、補正の段階を零レ
ベルも含めて3段階とする他、2段階または4段
階以上としてもよい。
Further, as in the above embodiment, the correction stages may be set to three stages including the zero level, or may be set to two stages or four stages or more.

また、デイジタル計算を、予め設定されたソフ
トウエアの制御プログラムに従つて実行する、い
わゆるマイクロコンピユータと称されるデジタル
コンピユータを用いて行ない、温度制御を行なう
システムにおいても適用可能であり、この場合例
えば光量がどの段階かを判定するプログラムステ
ツプを優先的に実行しその判定結果により補正値
を選択し、その値に応じて温度制御の計算を行な
うプログラムステツプを実行するように制御プロ
グラムを設定してもよい。また、デジタルコンピ
ユータを使用すると、補正段階を4段階以上に設
定することが容易になる。
It can also be applied to systems that perform temperature control by performing digital calculations using a digital computer called a microcomputer, which executes digital calculations according to a preset software control program. The control program is set to preferentially execute a program step that determines the level of light intensity, selects a correction value based on the determination result, and executes a program step that calculates temperature control according to that value. Good too. Furthermore, if a digital computer is used, it becomes easy to set the correction stages to four or more stages.

また、自動車用空調装置はA/Mダンパの開度
108とブロワモータ104の回転数とによつて
車室内に供給する熱量を調節し、もつて温度制御
を行なうものであるから、上記実施例の如くA/
Mダンパ108の開度を補正するほか、ブロワモ
ータ104による送風量を変化させるようにして
補正を行なうことも可能である。例えば、ブロワ
モータ104の通電回路に2つの電流制限抵抗を
挿入接続するとともに、前述の比較回路5におけ
る「0」レベル信号によつてリレーを作動させそ
の電流制限抵抗を短絡して送風量を増加させるよ
うにしてもよい。
Furthermore, since the automobile air conditioner adjusts the amount of heat supplied to the vehicle interior by the opening degree 108 of the A/M damper and the rotation speed of the blower motor 104, thereby controlling the temperature, the above embodiment is not applicable. Like A/
In addition to correcting the opening degree of the M damper 108, it is also possible to perform correction by changing the amount of air blown by the blower motor 104. For example, two current-limiting resistors are inserted and connected to the current-carrying circuit of the blower motor 104, and a relay is activated by the "0" level signal in the comparison circuit 5 to short-circuit the current-limiting resistors to increase the amount of air blown. You can do it like this.

以上述べたように本発明においては、日射の光
学的エネルギーまたは熱的エネルギーの測定と補
正量の設定とを独立して行ない、かつ段階的に補
正量を決定するから、誤補正や検出素子のばらつ
きによる問題もなく、比較的正確で安定な日射補
正を含む温度制御を行なうことができるという優
れた効果がある。
As described above, in the present invention, the measurement of the optical energy or thermal energy of solar radiation and the setting of the correction amount are performed independently, and the correction amount is determined in stages. This has the excellent effect of being able to perform relatively accurate and stable temperature control including solar radiation correction without problems due to variations.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明方法を適用した温度制御装置
の一実施例を示すもので、第1図は機械的な機能
要素の配置を示す模式図、第2図は第1図図示の
温度調整ダンパ(A/Mダンパ)108と作動的
に結合される電気制御系を示す電気結線図、第3
図は第2図中の検出素子3,3aの機械的構造を
を示す縦断面図、第4図は温度制御装置の制御特
性を示す日射量S−補正量Tg特性図である。 1……信号発生回路、2……増幅回路、3……
検出素子、3a……ホトトランジスタ、4……検
出回路、5……比較回路、6……補正回路、4
0,41……補正抵抗、108……温度調正ダン
パ(A/Mダンパ)、111……ダイヤフラム作
動器、113,114……電磁弁。
The accompanying drawings show an embodiment of a temperature control device to which the method of the present invention is applied. FIG. 1 is a schematic diagram showing the arrangement of mechanical functional elements, and FIG. Electrical wiring diagram showing the electrical control system operatively coupled to the A/M damper) 108, No. 3
This figure is a vertical sectional view showing the mechanical structure of the detection elements 3 and 3a in FIG. 2, and FIG. 4 is a solar radiation amount S-correction amount Tg characteristic diagram showing the control characteristics of the temperature control device. 1...Signal generation circuit, 2...Amplification circuit, 3...
Detection element, 3a... Phototransistor, 4... Detection circuit, 5... Comparison circuit, 6... Correction circuit, 4
0, 41... Correction resistor, 108... Temperature adjustment damper (A/M damper), 111... Diaphragm actuator, 113, 114... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 各種の制御条件に応じて車両の室内温度を目
標値に近づけるための温度制御量を決定する温度
制御方法において、車両が受ける日射の光学的エ
ネルギーまたは熱的エネルギーに応答して検出素
子が生じる電気信号の大きさを段階的に判定し、
この段階に対応して予め定めた所定の大きさの補
正データを選択し、選択された補正データに応じ
て前記温度制御量を補正することを特徴とする車
両の室内温度制御方法。
1. In a temperature control method that determines a temperature control amount to bring the indoor temperature of a vehicle closer to a target value according to various control conditions, a detection element is generated in response to optical energy or thermal energy of solar radiation received by the vehicle. Determine the magnitude of the electrical signal step by step,
A method for controlling an indoor temperature of a vehicle, characterized in that correction data having a predetermined size that is predetermined corresponding to this step is selected, and the temperature control amount is corrected in accordance with the selected correction data.
JP15960079A 1979-12-07 1979-12-07 Controlling method for room temperature of vehicle Granted JPS5682623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15960079A JPS5682623A (en) 1979-12-07 1979-12-07 Controlling method for room temperature of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15960079A JPS5682623A (en) 1979-12-07 1979-12-07 Controlling method for room temperature of vehicle

Publications (2)

Publication Number Publication Date
JPS5682623A JPS5682623A (en) 1981-07-06
JPS6222801B2 true JPS6222801B2 (en) 1987-05-20

Family

ID=15697235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15960079A Granted JPS5682623A (en) 1979-12-07 1979-12-07 Controlling method for room temperature of vehicle

Country Status (1)

Country Link
JP (1) JPS5682623A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349042Y2 (en) * 1987-03-31 1991-10-21
JPH0761763B2 (en) * 1987-12-21 1995-07-05 日産自動車株式会社 Automotive air conditioner
JP2606887B2 (en) * 1988-06-27 1997-05-07 カルソニック株式会社 Automotive air conditioners
JP3033168B2 (en) * 1990-10-04 2000-04-17 株式会社デンソー Solar radiation sensor

Also Published As

Publication number Publication date
JPS5682623A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
US4337821A (en) Air conditioner system for automobiles
US4291749A (en) Method and apparatus for controlling compartment temperature of a vehicle
US5547125A (en) Vehicle climate control system and operating method
US4417618A (en) Air-conditioner control system for vehicles
US5564625A (en) Method for controlling motor vehicle interior temperature
US4205944A (en) Electronic control circuit for blowers in vehicles
JPS6222801B2 (en)
EP2155509B1 (en) Air-conditioning system for vehicle with improved sunshine correction
JPS5819484B2 (en) Vehicle air conditioning control device
JPS5814682B2 (en) temperature control device
JPH0516644A (en) Temperature measuring apparatus
JPS6226924B2 (en)
JPH02128913A (en) Air conditioning device for vehicle
JPS58133914A (en) Indoor temperature controller for vehicle
JPS6216842B2 (en)
JPH0696366B2 (en) Air conditioner with solar radiation sensor for automobile
KR0135549B1 (en) Airconditioner control device for a vehicle
KR100892566B1 (en) Correcting method of temperature for in an automatic temperature controller
JPH06289932A (en) Controller for motor-driven blind
JPH04176724A (en) Control of automatic air conditioner for automobile
KR20030056408A (en) A temperature compensation system of car
SU1040475A1 (en) Device for adjusting temperature
JPH07253211A (en) Fan controller
JPH05155229A (en) Air-conditioning control device for vehicle
KR100875706B1 (en) Insolation correction system using outside temperature