Nothing Special   »   [go: up one dir, main page]

JPS62209302A - Apparatus for detecting parallel moving quantity - Google Patents

Apparatus for detecting parallel moving quantity

Info

Publication number
JPS62209302A
JPS62209302A JP61052968A JP5296886A JPS62209302A JP S62209302 A JPS62209302 A JP S62209302A JP 61052968 A JP61052968 A JP 61052968A JP 5296886 A JP5296886 A JP 5296886A JP S62209302 A JPS62209302 A JP S62209302A
Authority
JP
Japan
Prior art keywords
electrode needle
potential
parallel
movement
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052968A
Other languages
Japanese (ja)
Inventor
Hidenobu Ishida
石田 秀信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61052968A priority Critical patent/JPS62209302A/en
Publication of JPS62209302A publication Critical patent/JPS62209302A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure parallel moving quantity, by a method wherein the electrode needle fixed to the moving surface of a device parallel to the lattice plane of a monocrystal is allowed to approach the lattice plane to count the change in the potential of the electrode needle. CONSTITUTION:The arrangement of the atoms 3 on the surface F of a monocrystal 2 is fixed in parallel to the x- and y-axes of a parallel moving device. When an electrode needle 1 is allowed to approach the surface F so as to leave a gap of several Angstrom , the movement of charge due to tunnel effect is generated and the potential of the electrode needle 1 changes. Because one cycle of the change in potential coincides with the moving distance of the needle 1 corresponding to one lattice plane interval of the monocrystal 2, the change in potential is measured by a potential measuring device 4 and converted to a pulse to be counted to measure the parallel moving quantity of the electrode needle 1 at the accuracy corresponding to the lattice interval of the monocrystal.

Description

【発明の詳細な説明】 イ、産東上の利用分野 本発明は、超精密平行移動量検出装置に関する口、従来
の技術 近年超LSI等において、益々高密度化が進んでおり、
その発展に伴って被加工物等の平行移動装置の移動精度
の超精密化が要求されてきている、人程度の超精密な精
度で平行移動量を検出する方法は、従来においては一次
元的検出方法としてX線干渉計を用いる方法のみくらい
で実用例は皆無に近い、特に二次元的な平行移動装置に
おける二次元的な平行移動量の検出手段としては、従来
において例がなかった。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Application The present invention relates to an ultra-precision parallel displacement amount detection device.The present invention relates to an ultra-precision parallel displacement amount detection device.In recent years, ultra-large scale integrated circuits, etc., have become increasingly dense.
With this development, there has been a demand for ultra-precise movement accuracy of parallel movement devices for workpieces, etc. Conventionally, methods for detecting the amount of parallel movement with ultra-precise human-level accuracy have been one-dimensional. The only detection method is a method using an X-ray interferometer, and there are almost no practical examples.In particular, as a means for detecting the amount of two-dimensional translation in a two-dimensional translation device, there has been no example in the past.

ハ0発明が解決しようとする問題点 本発明は、λ程度の超精密な精度で平行移動を行う場合
において、平行移動装置の二次元的な移動量の検出を可
能にすることをを目的とする。二、問題点解決のための
手段 格子面間隔の判明している非常に良質な単結晶の一つの
格子面を表面に露出し、同表面と平行な移動面を持つ移
動装置に固定又は連動している極めて先の細い電極針の
先端を人のオーダで上記表面に近接させ、この針を上記
表面に沿って移動させた時、同電極針に流入或は流出す
る電荷によって生ずる電位の変化を検出し計数する電位
測定装置を設けた。
Problems to be Solved by the Invention The purpose of the present invention is to enable detection of the two-dimensional movement amount of a parallel movement device when performing parallel movement with ultra-precise accuracy on the order of λ. do. 2. Means for solving the problem: one lattice plane of a very high-quality single crystal whose lattice spacing is known is exposed on the surface, and it is fixed or linked to a moving device having a moving plane parallel to the same surface. When the tip of an extremely thin electrode needle is brought close to the surface on the order of a human being and the needle is moved along the surface, the change in potential caused by the charge flowing into or out of the electrode needle is measured. A potential measuring device was installed to detect and count.

ホ0作用 本発明によれば、物質の表面に非接触で先端が超鋭利な
電極針を近づけると、量子力学的トンネル効果により、
物質表面と電極針との間で電荷移動が生じ電臣針の電位
が変化する。しかも、単結晶では、結晶表面の電子分布
が原子の規則的配列に応じて、表面上2方向(図におい
てX軸、y軸方向)に(支)めで倣MAな周期で周期的
であるから、電極針を表面に沿って平行移動すれば、周
期的な電位の変化を検知することができる。この周期的
変化の数を計数すれば、電極針の平行移動量を原子間隔
を単位として、超精密な精度で検出が可能になり、この
原理を利用することにより、A程度の超精密な精度の平
行移動装置を実現することが可能になった。
According to the present invention, when an electrode needle with an ultra-sharp tip is brought close to the surface of a substance in a non-contact manner, due to the quantum mechanical tunnel effect,
Charge transfer occurs between the material surface and the electrode needle, and the potential of the electrode needle changes. Moreover, in a single crystal, the electron distribution on the crystal surface is periodic with a period of MA in two directions (X-axis and y-axis directions in the figure) on the surface, depending on the regular arrangement of atoms. By moving the electrode needle parallel to the surface, periodic changes in potential can be detected. By counting the number of these periodic changes, it becomes possible to detect the amount of parallel movement of the electrode needle with ultra-precise accuracy in units of atomic spacing. It has become possible to realize a parallel displacement device.

へ、実施例 第1図に本発明の一実施例を示す0図において、1は先
端が半径が数Aの極めて細い1を横針、2は良質の単結
晶で表面Fの平滑度が極めて良く、結晶の一つの格子面
を露出させたものであり、しかも原子3の格子面間隔が
非常に精度良く知られている結晶でSi、Ge、水晶等
が適当である。
Example 1 In Figure 0 showing an embodiment of the present invention, 1 is a horizontal needle with an extremely thin tip with a radius of several amps, and 2 is a high-quality single crystal with an extremely smooth surface F. It is a crystal in which one lattice plane of the crystal is exposed, and the lattice spacing of the atoms 3 is known with very high precision, such as Si, Ge, and quartz.

4は電極針に電荷が流入或は流出することによって生じ
る電位の変化を検知し、パルス化して計数する電位測定
装置である。
Reference numeral 4 denotes a potential measuring device that detects changes in potential caused by charge flowing into or out of the electrode needle, pulses the change, and counts the change.

単結晶2は図に示すように、原子3が規則正しく並んで
おり、結晶方位を調整して表面Fの原子3の配列が平行
移動装置(図外)のX軸、y軸に平行になるようにして
固定しである。この単結晶2の表面Fに対して電極針1
を数A程度に近づけると、トンネル効果による電荷の移
動が起こり、それに伴って電極針1の電位が変化する0
本発明に使用される単結晶2は、原子3の格子面間隔の
距離の解っている単結晶であるから、電位の変化の1周
期と、電極針1が単結晶2の1格子面間隔を移動する距
離と一致するから、電極針の電位の変化を高入力インピ
ーダンスの電位測定装置4でパルス化して計数すること
により、を横針の平行移動量を検出することができる。
As shown in the figure, the atoms 3 of the single crystal 2 are arranged regularly, and the crystal orientation is adjusted so that the arrangement of the atoms 3 on the surface F is parallel to the X and y axes of the parallel displacement device (not shown). It is fixed. The electrode needle 1 is connected to the surface F of this single crystal 2.
When the voltage approaches several amperes, charge movement occurs due to the tunnel effect, and the potential of the electrode needle 1 changes accordingly.
Since the single crystal 2 used in the present invention is a single crystal in which the distance between the lattice planes of the atoms 3 is known, one cycle of the potential change and the electrode needle 1 correspond to the distance between the lattice planes of the single crystal 2. Since this corresponds to the distance traveled, the amount of parallel movement of the horizontal needle can be detected by converting the change in the potential of the electrode needle into pulses and counting them using the high input impedance potential measuring device 4.

この電極針1を被加工物を保持させた平行移動装置(例
えばxyステージ等)に固定あるいは連結することによ
り、平行移動装置のXあるいはx−y両方向の移動量が
、結晶格子間隔の精度で検出が出来る。
By fixing or connecting the electrode needle 1 to a parallel movement device (for example, an xy stage, etc.) that holds the workpiece, the amount of movement of the parallel movement device in the X or both x and y directions can be adjusted with the precision of the crystal lattice spacing. Can be detected.

具体的な一実施例を第2図に示す、4は第1図に示した
電位測定装置、5は試料を固定して移動させるステージ
、6はステージ5をX軸方向に移動させるX軸駆動装置
、7はステージ5をy軸方向に移動させるy軸駆動装置
、8は駆動装置6゜7から取り出した駆動パルスを基社
ステージ5のxMy軸の移動比率を演算し、移動量の多
い方向の駆動パルスに同期させて約−原子ピッチのチェ
ック信号を発生する移動比率演算装置、9は電位測定装
置から入力される原子単位移動パルス計数と移動比率演
算装置8から入力されるステージ5のxy軸移動比率及
び上記チェック信号を基にステージ5の原子単位の移動
量を演算する原子単位移動量演算装置、10は原子単位
移動量演算装置から出力される原子単位のxy軸方向の
移動量を表示させる表示装置、11は原子単位移動量演
算装置から出力される原子単位のxy軸方向の移動量を
基に制御信号を発生する制御信号発生装置である。この
ような構成で電極針1を第3図(A)に直線して示すよ
うに移動させると、電極針1には第3図(B)に示すよ
うな信号が検出される。
A specific example is shown in FIG. 2, 4 is the potential measuring device shown in FIG. 1, 5 is a stage for fixing and moving the sample, and 6 is an X-axis drive for moving the stage 5 in the X-axis direction. A device, 7 is a y-axis drive device that moves the stage 5 in the y-axis direction, and 8 is a drive device 6. The drive pulse taken out from 7 is used to calculate the movement ratio of the xMy axes of the base stage 5, and the direction in which the amount of movement is large is calculated. A movement ratio calculation device 9 generates a check signal of about -atomic pitch in synchronization with the drive pulse of the stage 5, and 9 is an atomic unit movement pulse count inputted from the potential measuring device and xy of the stage 5 inputted from the movement ratio calculation device 8. An atomic unit movement calculation device calculates the movement amount of the stage 5 in atomic units based on the axis movement ratio and the check signal, and reference numeral 10 calculates the movement amount in the x and y axis directions in atomic units output from the atomic unit movement calculation device. The display device 11 is a control signal generating device that generates a control signal based on the amount of movement in the xy-axis direction of the atomic unit outputted from the atomic unit movement amount calculating device. With this configuration, when the electrode needle 1 is moved in a straight line as shown in FIG. 3(A), a signal as shown in FIG. 3(B) is detected at the electrode needle 1.

この検出信号のパルス数はX軸とy軸の移動量を比較し
て移動量の多い方向の原子単位の移動ン<ルスに等しい
、従って、移動比率演算装置8で求められた比率を基に
して、原子単位移動量演算装置が電位測定装置4から得
られるパルス数がX軸。
The number of pulses of this detection signal is equal to the movement n < rus of the atomic unit in the direction with the largest movement amount by comparing the movement amounts of the X-axis and the y-axis. The number of pulses obtained by the atomic unit movement calculation device from the potential measuring device 4 is the X-axis.

y軸のどちらの検出信号かを検知してその方向の移動量
を演算する。他方向の移動量は演算された移動量と移動
比率演算装置8から得られる移動比率から計算して求め
る。しかし、移動方向の傾きが45度近く直線にで示す
ような移動経路では正規の倍の信号パルスが検出される
可能性があり、この誤動作を防ぐために、移動比率演算
装置8において移動量の多い方向の駆動パルス信号に同
期した約1原子ピツチのチェック信号と重畳する検出信
号だけを計数することにより補正すると共に、この検出
信号によって      〜   、チェック信号発生
動作をクリヤし再スタートさせる。このようにして求め
られた測定信号を表示装置10でCRTやプリンター等
に表示したり、制御信号発生装置11により駆動装置へ
M御信号を移送する。この実施例は結晶を任意に斜めに
移動するようにした場合であるが、最初にX軸を移動さ
せ、後からy軸方向に移動させる場合は、電位測定装置
4から得られるパルス信号より一方向毎にクリアしなが
ら演算を行えば良い。
Which detection signal on the y-axis is detected and the amount of movement in that direction is calculated. The amount of movement in the other direction is calculated from the calculated amount of movement and the movement ratio obtained from the movement ratio calculating device 8. However, in a moving path where the inclination of the moving direction is nearly 45 degrees as indicated by a straight line, there is a possibility that signal pulses twice the normal number will be detected, and in order to prevent this malfunction, the moving ratio calculation device 8 Correction is made by counting only the detection signal superimposed on the check signal of about one atom pitch synchronized with the drive pulse signal in the direction, and the check signal generation operation is cleared and restarted by this detection signal. The measurement signal obtained in this way is displayed on a CRT, printer, etc. by the display device 10, and the M control signal is transferred to the drive device by the control signal generator 11. In this embodiment, the crystal is arbitrarily moved obliquely, but if the crystal is first moved in the X-axis direction and then moved in the y-axis direction, the pulse signal obtained from the potential measuring device 4 It is sufficient to perform calculations while clearing each direction.

上記実施例では、電極針1を移動する型を示しているが
、電極針lを固定して、単結晶の方を平行移動装置に固
定しても、同じ効果が期待できるト、効果 本発明によれば、単結晶の原子間隔をスケール目盛とし
てA程度の超精密な精度の平行移動装置における、移動
量の検出装置を実現することが可能になった。
Although the above embodiment shows a type in which the electrode needle 1 is moved, the same effect can be expected even if the electrode needle 1 is fixed and the single crystal is fixed to a parallel movement device. According to , it has become possible to realize a device for detecting the amount of movement in a parallel movement device with ultra-precise accuracy of A degree using the atomic spacing of a single crystal as a scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図は具体的な
一実施例のブロック図、第3図(A)は電極針の移動位
置図、(B)は電極針の検出信号図である。
Fig. 1 is a perspective view of an embodiment of the present invention, Fig. 2 is a block diagram of a specific embodiment, Fig. 3 (A) is a diagram of the moving position of the electrode needle, and (B) is detection of the electrode needle. It is a signal diagram.

Claims (1)

【特許請求の範囲】[Claims] 一つの格子面を露出している格子面間隔の判明している
単結晶、移動装置に固定又は連動して、上記単結晶の上
記露出している格子面に近接して同面と平行に移動され
る極めて先の細い電極針、同電極針が上記結晶の上記格
子面に沿って移動される時、同電極針に流入及び流出す
る電荷によって生ずる電位の変化を検出計数する電位測
定装置よりなることを特徴とする平行移動量検出装置。
A single crystal with a known lattice spacing that exposes one lattice plane, fixed to or interlocked with a moving device and moved close to and parallel to the exposed lattice plane of the single crystal. an extremely fine-tipped electrode needle, and a potential measuring device that detects and counts changes in potential caused by charges flowing into and out of the electrode needle when the electrode needle is moved along the lattice plane of the crystal. A parallel movement amount detection device characterized by the following.
JP61052968A 1986-03-10 1986-03-10 Apparatus for detecting parallel moving quantity Pending JPS62209302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052968A JPS62209302A (en) 1986-03-10 1986-03-10 Apparatus for detecting parallel moving quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052968A JPS62209302A (en) 1986-03-10 1986-03-10 Apparatus for detecting parallel moving quantity

Publications (1)

Publication Number Publication Date
JPS62209302A true JPS62209302A (en) 1987-09-14

Family

ID=12929689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052968A Pending JPS62209302A (en) 1986-03-10 1986-03-10 Apparatus for detecting parallel moving quantity

Country Status (1)

Country Link
JP (1) JPS62209302A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0304893A2 (en) * 1987-08-25 1989-03-01 Canon Kabushiki Kaisha Encoder
EP0309236A2 (en) * 1987-09-24 1989-03-29 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
JPH0269618A (en) * 1988-09-06 1990-03-08 Canon Inc Encoder
EP0397116A2 (en) * 1989-05-08 1990-11-14 Canon Kabushiki Kaisha Information detecting apparatus
JPH02285213A (en) * 1989-04-27 1990-11-22 Canon Inc Encoder
US5130554A (en) * 1989-05-17 1992-07-14 Canon Kabushiki Kaisha Two-dimensional scanning device for detecting position between two relatively movable objects
US5132533A (en) * 1989-12-08 1992-07-21 Canon Kabushiki Kaisha Method for forming probe and apparatus therefor
US5255258A (en) * 1987-09-24 1993-10-19 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
EP0566214A2 (en) * 1987-09-24 1993-10-20 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
US5349735A (en) * 1990-07-09 1994-09-27 Canon Kabushiki Kaisha Information detection apparatus and displacement information measurement apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721721A (en) * 1987-08-25 1998-02-24 Canon Kabushiki Kaisha Two scanning probes information recording/reproducing system with one probe to detect atomic reference location on a recording medium
EP0304893A2 (en) * 1987-08-25 1989-03-01 Canon Kabushiki Kaisha Encoder
EP0646913A3 (en) * 1987-08-25 1996-08-21 Canon Kk Encoder using the tunnel current effect.
US5519686A (en) * 1987-08-25 1996-05-21 Canon Kabushiki Kaisha Encoder for controlling measurements in the range of a few angstroms
EP0646913A2 (en) * 1987-08-25 1995-04-05 Canon Kabushiki Kaisha Encoder using the tunnel current effect
EP0566214A2 (en) * 1987-09-24 1993-10-20 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
EP0309236A2 (en) * 1987-09-24 1989-03-29 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
US5072116A (en) * 1987-09-24 1991-12-10 Canon Kabushiki Kaisha Microprobe preparation thereof and electronic device by use of said microprobe
EP0566214A3 (en) * 1987-09-24 1994-02-16 Canon Kk
US5255258A (en) * 1987-09-24 1993-10-19 Canon Kabushiki Kaisha Microprobe, preparation thereof and electronic device by use of said microprobe
JPH0269618A (en) * 1988-09-06 1990-03-08 Canon Inc Encoder
JPH02285213A (en) * 1989-04-27 1990-11-22 Canon Inc Encoder
US5150035A (en) * 1989-04-27 1992-09-22 Canon Kabushiki Kaisha Encoder having atomic or molecular structure reference scale
EP0403766A2 (en) * 1989-04-27 1990-12-27 Canon Kabushiki Kaisha Scanning tunnelling microscope displacement detector
US5432346A (en) * 1989-05-08 1995-07-11 Canon Kabushiki Kaisha Relative position change amount detecting apparatus having bi-directional probe with compensated movement
EP0397116A2 (en) * 1989-05-08 1990-11-14 Canon Kabushiki Kaisha Information detecting apparatus
US5130554A (en) * 1989-05-17 1992-07-14 Canon Kabushiki Kaisha Two-dimensional scanning device for detecting position between two relatively movable objects
US5132533A (en) * 1989-12-08 1992-07-21 Canon Kabushiki Kaisha Method for forming probe and apparatus therefor
US5349735A (en) * 1990-07-09 1994-09-27 Canon Kabushiki Kaisha Information detection apparatus and displacement information measurement apparatus

Similar Documents

Publication Publication Date Title
JPS62235504A (en) Capacity-type position measuring transducer
JPH0348102A (en) Detecting apparatus of very small displacement, piezoelectric actuator having this detecting apparatus and scanning probe microscope having this piezoelectric actuator
US20170370688A1 (en) Method for operating a coordinate measuring machine
JPS62209302A (en) Apparatus for detecting parallel moving quantity
Gao et al. On-machine profile measurement of machined surface using the combined three-point method
US6314812B1 (en) Apparatus and method for binocular measurement system
EP0584695A3 (en) Coordinate input apparatus and method, and oscillation generating apparatus
Manske et al. Ongoing trends in precision metrology, particularly in nanopositioning and nanomeasuring technology
CN109613889A (en) Numerically-controlled machine tool on-machine measurement system comprehensive error compensation method based on differential transform
JPH0343944A (en) Scanning tunnel spectrometric microscope and method for detecting scanning tunnel spectrometric information
Tate Acceleration due to gravity at the National Bureau of Standards
Fung et al. An approach to on-machine motion error measurement of a linear slide
Yin et al. Exact straightness reconstruction for on-machine measuring precision workpiece
JPS6020114A (en) Display device of measuring instrument
Kramar et al. The molecular measuring machine
CN2314348Y (en) Multi-channel digital frequency meter
JPH02243918A (en) Displacement detector
CN1242241C (en) Large-scale nano detection optical system
JP2547333B2 (en) Position detection device
JPH02253114A (en) Method and instrument for measuring degree of straightness
Aginian et al. Development of new algorithm in the method of a resonant vibrating target for large scanning speeds
JPS63137519A (en) Device for measuring shape of helical coil
JP2686651B2 (en) Displacement detector
JPH07323023A (en) Stereodisplacement sensor for human body
SU1749697A1 (en) Cylindrical part element linearity tester