Nothing Special   »   [go: up one dir, main page]

JPS6219745A - Detecting method for surface defect of continuous cast slab - Google Patents

Detecting method for surface defect of continuous cast slab

Info

Publication number
JPS6219745A
JPS6219745A JP15877085A JP15877085A JPS6219745A JP S6219745 A JPS6219745 A JP S6219745A JP 15877085 A JP15877085 A JP 15877085A JP 15877085 A JP15877085 A JP 15877085A JP S6219745 A JPS6219745 A JP S6219745A
Authority
JP
Japan
Prior art keywords
mold
temperature
difference
slab
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15877085A
Other languages
Japanese (ja)
Inventor
Akira Matsushita
昭 松下
Wataru Ohashi
渡 大橋
Masami Tenma
天満 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15877085A priority Critical patent/JPS6219745A/en
Priority to AU52846/86A priority patent/AU562731B2/en
Priority to CA000500908A priority patent/CA1270618A/en
Priority to DE8686300689T priority patent/DE3671851D1/en
Priority to EP86300689A priority patent/EP0196746B1/en
Priority to BR8600427A priority patent/BR8600427A/en
Publication of JPS6219745A publication Critical patent/JPS6219745A/en
Priority to US07/143,270 priority patent/US4774998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To detect the defect of the corner part of a slab by providing a temp. sensitive element at each corner part of the mold side constituting the continu ous casting mold for slab, by detecting the respectively opposing two pairs of differential temp. of each corner part and by finding the difference thereof. CONSTITUTION:A mold 1 is composed of the mold side 20 of a long side 2 and short side 3. Temp. sensitive elements 5a-5d, 50a-50d are buried as well at the part of the mold side 20 corresponding to the corner part 4a of a slab. The differential temp. of the opposing two pairs of corner parts with the direc tion of the short axis X as the reference, namely the differential temp. DELTAT1(5a-5b), DELTAT2(5c-5d) are detected for instance and the difference delta in (DELTAT1-DELTAT2) is found. The surface crack is detected as well by taking in advance the difference delta of the case of the breakout (BO) due to the surface crack being caused as the threshold value and by comparing the difference delta in mea surement with the threshold value thereof. Since, therefore, the difference deltain the opposing two pairs of differential temp. DELTAT1 and DELTAT2 of the corner part is compared with the threshold value delta, the surface crack can be detected and the BO can be forcast with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は角鋳片を製造する連続鋳造方法において、前記
鋳片の表面に発生する欠陥、特に鋳片のコーナー部に発
生する表面割れを早期に検出する表面欠陥検出法に関す
る。この種の欠陥検出は、それに起因するブレークアウ
ト(以下BOと言う)等の鋳造トラブルの発生を未然に
防止するために必要である。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a continuous casting method for manufacturing square slabs, which is capable of eliminating defects occurring on the surface of the slab, particularly surface cracks occurring at the corners of the slab. This paper relates to a surface defect detection method for early detection. This type of defect detection is necessary to prevent the occurrence of casting troubles such as breakouts (hereinafter referred to as BO) caused by such defects.

〔従来の技術〕[Conventional technology]

周知のように角鋳片を製造する連続鋳造においては、鋳
片と同一断面形状を有する鋳型に溶鋼を注入し、該溶鋼
を鋳型に接する表面より凝固せしめ所定断面に成形した
後それを鋳型下方より連続的に引出すことによって前記
鋳片の製造が行われている。而して前記鋳型内における
溶鋼の初期凝固状況は連続鋳造操業に重要な影響を与え
る。
As is well known, in continuous casting for producing square slabs, molten steel is poured into a mold having the same cross-sectional shape as the slab, the molten steel is solidified from the surface in contact with the mold, and after being formed into a predetermined cross-section, it is poured into the lower part of the mold. The slab is produced by drawing it out more continuously. The initial solidification state of the molten steel in the mold has an important influence on the continuous casting operation.

例えば前記鋳型内の初期凝固過程で潤滑剤として用いら
れるパウダーが不均一に流入する現象が生じると、凝固
殻表面に各種の欠陥が発生する。
For example, if powder used as a lubricant flows unevenly into the mold during the initial solidification process, various defects will occur on the surface of the solidified shell.

該表面欠陥は鋳片のコーナー部に集中する傾向にあるこ
とが知られており、該表面欠陥が発生すると凝固殻の強
度が低下し、鋳型直下で溶鋼が流出するB○を誘発した
り、製造された鋳片の手入れが必要となる。
It is known that these surface defects tend to concentrate at the corners of slabs, and when these surface defects occur, the strength of the solidified shell decreases, causing molten steel to flow out directly under the mold. Manufactured slabs require care.

特に前記BOが発生するとその復旧に長時間を要し、生
産性を著しく低下させる。又、近年連続鋳造速度の高速
化や連続鋳造と圧延工程の直結化(以下直接圧延と言う
)が積極的に進められているが、前記表面欠陥の発生は
それらを実施する上で大きな障害となっていた。したが
って、鋳型内にある間に欠陥を検出し、欠陥を検出した
ときに、BOを防止する手当てを施こすことが望まれる
In particular, when the BO occurs, it takes a long time to recover, which significantly reduces productivity. In addition, in recent years, efforts have been made to increase the speed of continuous casting and to directly connect continuous casting and rolling processes (hereinafter referred to as direct rolling), but the occurrence of surface defects is a major hindrance to their implementation. It had become. Therefore, it is desirable to detect defects while they are in the mold and to take measures to prevent BO when defects are detected.

ところで従来前述した表面欠陥等の鋳造異常の検出法と
しては、例えば特公昭59−46703号公報に示され
るように鋳型の幅方向に密な間隔で感温素子を配設し、
該感温素子によって検出される鋳型温度の定常水準から
の低温側への偏奇によって鋳片表面の割れを、又定常水
準からの高温側への偏奇によって凝固殻の破断或いはB
Oを検出する方法が一般的であった。
By the way, as a conventional method for detecting casting abnormalities such as the surface defects mentioned above, for example, as shown in Japanese Patent Publication No. 59-46703, temperature sensing elements are arranged at close intervals in the width direction of the mold.
An excursion of the mold temperature from a steady level to a lower temperature side detected by the temperature sensing element may cause cracks on the slab surface, and an excursion from a steady level to a higher temperature side may cause rupture of the solidified shell or B.
A common method was to detect O.

〔発明が解決しようとする問題点〕 前記従来法は鋳型の幅方向に密に配置した感温素子のあ
る部分のみの検出温度が定常水準から低温側へ偏奇した
際に鋳片表面に割れが発生するものと推定し、検出する
ものであった。このため表面割れの検出部位も限定され
、誤判断や見逃し等が多く、特に鋳片のコーナー部に発
生する表面欠陥は殆ど検出できなかった。
[Problems to be Solved by the Invention] In the conventional method, cracks occur on the surface of the slab when the detected temperature of only a portion of the mold where temperature sensing elements are densely arranged in the width direction deviates from a steady level to a low temperature side. It was assumed that this would occur and was detected. For this reason, the detection areas for surface cracks are limited, and there are many cases of misjudgment or oversight, and in particular, surface defects that occur at the corners of slabs can hardly be detected.

本発明は前記従来法の問題点を改善すること、すなわち
コーナー部の欠陥を検出することを目的とする。
The present invention aims to improve the problems of the conventional method, that is, to detect defects at corners.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するための本発明の手段は、角鋳片用
連続鋳造鋳型を構成する鋳型辺の各コーナー部に、略同
一レベルで感温素子を埋設すると共に、予め前記鋳型の
短軸もしくは長軸等を基準として相対する両コーナー部
間の温度差ΔTl、ΔT2の差δと、実操業において過
去に発生した鋳片コーナー部表面割れとの相関より表面
割れ発生閾を設定し、次いで前記感温素子による連続鋳
造中における温度検出値から前記温度差ΔTi、ΔT2
、およびその差δを逐次算出し、前記差δが前記表面割
れ発生閾内になったときを鋳片表面割れとして検出する
ことを特徴とする連続鋳造鋳片の表面欠陥検出法にある
The means of the present invention for solving the above-mentioned problems is to embed temperature-sensing elements at substantially the same level in each corner of the side of the mold constituting a continuous casting mold for square slabs, and to embed temperature-sensing elements in advance at the short axis of the mold. Alternatively, a surface crack occurrence threshold is set based on the correlation between the temperature difference ΔTl, ΔT2 difference δ between both corner parts facing each other with respect to the long axis, etc., and the surface cracks in the corner part of the slab that have occurred in the past in actual operation, and then The temperature differences ΔTi, ΔT2 are determined from the temperature detected by the temperature sensing element during continuous casting.
, and the difference δ thereof are sequentially calculated, and when the difference δ falls within the surface crack occurrence threshold, it is detected as a surface crack of the slab.

〔作用〕[Effect]

さて、鋳片のコーナー部に発生する表面割れ等の欠陥や
、それに起因するBO等は、鋳片コーナー部の凝固遅れ
部に生じる応力集中によるものと考えられる。前記凝固
遅れ及びそれによる応力集中は鋳型内に注入される溶鋼
温度、鋳型短辺のテーパー量、パウダーの流入および潤
滑状態、鋳造速度等の種々の要因より影響を受ける。
Now, defects such as surface cracks that occur at the corner portions of slabs and BO caused by such defects are considered to be due to stress concentration occurring at delayed solidification portions of the corner portions of slabs. The solidification delay and stress concentration caused by the solidification delay are influenced by various factors such as the temperature of the molten steel injected into the mold, the amount of taper on the short side of the mold, the inflow of powder and the lubrication state, and the casting speed.

そこで本発明者らは第2図に示すように、鋳型1を構成
する鋳型辺20(長辺2および短辺3を総称して鋳型辺
20と言う)の鋳片4のコーナー部4aに相当する部位
に熱電対等の感温素子5a〜5d、50a〜50dを埋
設し、鋳型温度の推移を検出すると共に、実操業におい
て過去に発生した表面欠陥と、前記鋳型温度の推移との
相関関係を調査した。
Therefore, as shown in FIG. Temperature-sensing elements 5a to 5d, 50a to 50d such as thermocouples are buried in the areas where the mold temperature changes, and the temperature changes are detected. investigated.

第3図は前記感温素子のうち、長辺2に埋設された各感
温素子5a〜5dで検出される測温値をそのまま表した
もので、破線aの時点では表面割れに起因するBOが発
生した。この第3図で判るように前記BOが発生した際
にも個々の測温値の変化は少なく、従来法のように個々
の測温値が定常水準から低温側へ偏奇した現象をとらえ
て表面欠陥を検出する方法では、前記表面割れ、及びそ
れに起因するBOを検出することはできなかった。
FIG. 3 shows the temperature values detected by the temperature sensing elements 5a to 5d buried in the long side 2 of the temperature sensing elements, and at the point indicated by the broken line a, the BO There has occurred. As can be seen in Fig. 3, even when the BO occurs, there is little change in the individual temperature measurements, and unlike the conventional method, the phenomenon in which the individual temperature measurements are biased from the steady level to the low temperature side is captured and the surface With the method of detecting defects, it was not possible to detect the surface cracks and the BO caused by them.

ところが前記側々の測温値は、前記第2図に1点鎖線X
で示す短軸方向を基準として相対する2対のコーナー部
間、つまり本例では5aと5b、及び5cと5dでは、
同一長辺2におけるコーナー部の温度にも係わらず大幅
に偏奇していることが知見された。
However, the measured temperature values on the sides are shown in the dashed line X in FIG.
Between the two pairs of corner portions facing each other with respect to the short axis direction shown in, that is, in this example, 5a and 5b, and 5c and 5d,
It was found that the temperatures at the corners of the same long side 2 were significantly eccentric.

この知見に着目した本発明者らは先ず短軸方向Xを基準
としてそれぞれ相対する2対のコーナー部の温度差(後
述する長軸方向或いは鋳型の中心点を基準としてそれぞ
れ相対するコーナー部の温度差を含めて、以下コーナー
部間温度差と言う)と、過去、実際に発生した表面欠陥
に起因するBOとの相関について更に調査、研究を行っ
た6第1図はその結果の一例を示すものであって、前記
5aと5bおよび5cと5dで表される両コーナー部間
温度差ΔTl  (5a−5b) 、ΔT2(5cm5
d)をそれぞれ縦軸と横軸に指数〔温度差に表示係数を
掛けた値〕で表し、鋳造結果との関係を示したものであ
る。第1図においてOは表面欠陥の無い正常な鋳片であ
り、・は表面割れに起因するBOの発生した鋳片である
。又、一点鎖線すはΔT1=ΔT2.つまり2対のコー
ナー部間温度差ΔTl、ΔT2の差δが零の状態を示し
、このように差δが零であれば表面割れは全く生じない
。ところが1例えば(八T1−ΔT2)で求めた前記差
δが一2以下、或いは+2以上となると表面割れに起因
するBOが多発するようになった。第1図において実線
b1が前記差δ=+2を、実線b2が前記差δ=−2を
示すものであり1本例では前記差δが、第1図に斜線G
で示す−2〜+2の範囲内であれば表面欠陥の無い正常
な鋳片の製造が可能であった。逆に前記斜線6区域外の
差δとなると表面欠陥に起因するBOの発生率が極めて
高いことがわかった。而して本発明においては前記斜線
6区域外の領域を鋳片表面欠陥発生閾(水下、単に欠陥
発生閾と言う)と定義し、用いた。
Focusing on this knowledge, the inventors first determined the temperature difference between two pairs of corner portions facing each other with respect to the short axis direction We further investigated and researched the correlation between the temperature difference (hereinafter referred to as the temperature difference between corners) and BO caused by surface defects that actually occurred in the past.6 Figure 1 shows an example of the results. The temperature difference ΔTl (5a-5b), ΔT2 (5cm5) between both corners represented by 5a and 5b and 5c and 5d is
d) is expressed as an index (a value obtained by multiplying the temperature difference by a display coefficient) on the vertical and horizontal axes, respectively, to show the relationship with the casting results. In FIG. 1, O indicates a normal slab with no surface defects, and * indicates a slab in which BO has occurred due to surface cracks. Also, the dashed dotted line indicates ΔT1=ΔT2. In other words, the difference δ between the temperature differences ΔTl and ΔT2 between the two pairs of corner portions is zero, and if the difference δ is zero, no surface cracks occur at all. However, when the difference δ determined by, for example, (8T1-ΔT2) became less than 12 or more than +2, BO caused by surface cracks frequently occurred. In FIG. 1, the solid line b1 indicates the difference δ=+2, and the solid line b2 indicates the difference δ=-2. In this example, the difference δ is indicated by the diagonal line G in FIG.
Within the range of -2 to +2 shown by , it was possible to produce normal slabs with no surface defects. On the contrary, it was found that when the difference δ is outside the shaded area 6, the rate of occurrence of BO due to surface defects is extremely high. In the present invention, the area outside the six hatched areas is defined and used as the slab surface defect occurrence threshold (hereinafter simply referred to as defect occurrence threshold).

前記欠陥発生閾は、鋳片のサイズや鋼種、鋳型に注入さ
れる溶鋼温度、鋳型短辺のテーパー量、使用されるパウ
ダーの種類および量、鋳造速度等の各種の操業条件に応
じて、予め求めておき、適宜設定すればよい。
The defect occurrence threshold is determined in advance according to various operating conditions such as the size and steel type of the slab, the temperature of the molten steel poured into the mold, the amount of taper on the short side of the mold, the type and amount of powder used, and the casting speed. All you have to do is find it and set it appropriately.

従って鋳型辺20のコーナー部に埋設された感温素子で
連続鋳造中に検出される温度検出値に基づいて、前記温
度差ΔTi、ΔT2を求め、該ΔTi、ΔT2から差δ
を逐次算出し、誤差δと前記欠陥発生閾とを比較して、
差δが欠陥発生閾内になったとき表面欠陥と検出すれば
よい。
Therefore, the temperature differences ΔTi and ΔT2 are determined based on the temperature detection value detected during continuous casting by a temperature sensing element embedded in the corner part of the mold side 20, and the difference δ is calculated from the ΔTi and ΔT2.
is calculated sequentially, and the error δ is compared with the defect occurrence threshold,
A surface defect may be detected when the difference δ falls within the defect occurrence threshold.

感温素子としては、前述した熱電対で鋳型辺の温度を直
接的に測定するものの他に1例えば鋳型辺の単位面積当
たりを通過する熱量から熱流束を計測する周知の熱流束
計を用いることも可能であり、鋳型辺の厚みの変化や、
冷却水の温度変化に、よる鋳型辺の絶対温度の変動に影
響されることなく鋳型内における初期凝固状況が正確に
検出でき効果的である。
As the temperature sensing element, in addition to the above-mentioned thermocouple that directly measures the temperature of the side of the mold, for example, a well-known heat flux meter that measures heat flux from the amount of heat passing per unit area of the side of the mold may be used. It is also possible to change the thickness of the mold side,
It is effective because the initial solidification state within the mold can be accurately detected without being affected by changes in the absolute temperature of the mold side due to changes in the temperature of the cooling water.

ところで感温素子の埋設位置は製造される鋳片4のコー
ナー部4aに対応する部位であれば長辺2或いは短辺3
のいずれでも良い。本発明者らの経験では鋳片4の角4
bから長辺2では約150mm。
By the way, the buried position of the temperature sensing element is long side 2 or short side 3 if it corresponds to the corner part 4a of the slab 4 to be manufactured.
Either is fine. In the experience of the present inventors, the corner 4 of the slab 4
Approximately 150 mm from b to long side 2.

短辺3では、約501Illn以内であれば前記機能を
効果的に発揮させることが可能であった。周知の、短辺
3を移動せしめることによって鋳片幅を変更することが
可能な幅可変鋳型においては、短辺3に感温素子を埋設
することが好ましいが、例えば長辺2の幅方向に所定の
間隔で複数個の感温素子を埋設しておき、当該操業時の
鋳片幅に応じて最適な位置に埋設された前記感温素子を
選択して用いる方式を採用することも可能である。又鋳
造方向においては、鋳型1内における場面レベルより約
100+nm以上の下方にするのが好ましく、この範囲
であれば鋳造方向に1段もしくは適宜な間隔で複数段、
埋設し、各々の段で前記判断を行えばよい。
For short side 3, it was possible to effectively exhibit the above function as long as it was within about 501 Illn. In a well-known variable width mold in which the slab width can be changed by moving the short side 3, it is preferable to embed a temperature sensing element in the short side 3. It is also possible to adopt a method in which a plurality of temperature sensing elements are buried at predetermined intervals, and the temperature sensing element buried in the optimum position is selected and used depending on the slab width at the time of operation. be. In addition, in the casting direction, it is preferable to lower the surface level in the mold 1 by about 100+ nm or more, and within this range, one step or multiple steps at appropriate intervals in the casting direction.
The above judgment may be made at each stage.

更に、前記温度第へT1、ΔT2を求めるための相対す
るコーナー部間は前記第2図に示すように、短軸方向X
、又は長軸方向Y、又状況に応じては鋳型断面の中心点
Zを基準として設定することが可能である。下記第1表
はその代表的な組合せを示すものである。
Furthermore, as shown in FIG. 2, the distance between the opposing corners for determining the temperature T1 and ΔT2 is in the short axis direction
, or the long axis direction Y, or depending on the situation, it is possible to set the center point Z of the cross section of the mold as a reference. Table 1 below shows typical combinations.

第  1  表 第1表においては、同一印(○或いは×)のものが相対
するコーナー部間を表す。
Table 1 In Table 1, the same marks (○ or x) represent opposing corner parts.

〔実施例〕〔Example〕

幅1000mm、厚み250mmの鋳片を製造する連続
鋳造設備において本発明を実施した。
The present invention was carried out in a continuous casting facility that manufactures slabs with a width of 1000 mm and a thickness of 250 mm.

本実施例においては第4図に示すように長辺2に、鋳片
4の角4bより約50mmの部位に感温素子5として熱
電対を埋設した。、該熱電対の鋳造方向における埋設位
置は場面レベルより200mm下方の部位、1段とした
In this example, as shown in FIG. 4, a thermocouple was embedded as a temperature sensing element 5 on the long side 2 at a distance of about 50 mm from the corner 4b of the slab 4. The buried position of the thermocouple in the casting direction was 200 mm below the scene level, and in one step.

前記鋳型を用い1.6 m/minの鋳造速度で通常の
操業を行い、実際し二表面割れが発生した時のコーナー
部間温度差ΔT1  (5a  5b)。
Temperature difference ΔT1 (5a 5b) between the corners when two-surface cracking actually occurred during normal operation using the above mold at a casting speed of 1.6 m/min.

ΔT2  (5cm5d)及びその差 δ (ΔT1−ΔT2)より、欠陥発生閾を調査した。ΔT2 (5cm5d) and its difference The defect occurrence threshold was investigated from δ (ΔT1−ΔT2).

第5図は前記調査結果に基づいて設定された欠陥発生閾
を示すもので、斜、IG以外の区域が欠陥発生閾である
FIG. 5 shows the defect occurrence threshold set based on the above investigation results, and the area other than the diagonal and IG is the defect occurrence threshold.

次いで操業中における熱電対による測温値から前記コー
ナー部間温度差ΔTi、ΔT2及びその差δを逐次算出
した。第6図は前記差δの変動状況を示すもので、時刻
t1において差δが欠陥発生閾となった。従って鋳片4
に表面欠陥が発生したものと判断し、直ちに警報を発す
ると共に鋳造速度を0.5m/minまで低下させた結
果、BOを未然に防ぐことができた。このように表面欠
陥の発生を連続的に監視して操業を継続したことにより
Next, the temperature differences ΔTi and ΔT2 between the corners and the difference δ between the corners were successively calculated from the temperature values measured by the thermocouple during operation. FIG. 6 shows the variation of the difference δ, and the difference δ became the defect generation threshold at time t1. Therefore, slab 4
It was determined that a surface defect had occurred, and an alarm was immediately issued and the casting speed was reduced to 0.5 m/min. As a result, BO could be prevented. By continuously monitoring the occurrence of surface defects in this way and continuing operations.

表面割れに起因するBOは皆無となった。There was no BO caused by surface cracks.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により鋳片のコーナー部に発生する表面割
れが的確に検出できるようになり、それに起因するBO
の予知が高精度で可能となった。
By implementing the present invention, it is now possible to accurately detect surface cracks that occur at the corners of slabs, and the BO
It has become possible to predict with high accuracy.

このため従来多発していた誤判断による操業アクション
で生じていた鋳片の品質低下や鋳片の温度低下、さらに
は後工程とのマツチング不良などの悪影響を完全に防止
できた。
As a result, it was possible to completely prevent adverse effects such as deterioration in the quality of the slab, drop in the temperature of the slab, and poor matching with subsequent processes, which were caused by operational actions due to misjudgment that frequently occurred in the past.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づいて得た欠陥発生閾の一例を示す
グラフ、第2図は周知の鋳型辺に感温素子を埋設した状
況を示す鋳型断面図、第3図は前記第2図における個々
の感温素子の測温値の推移状況を示すグラフである。第
4図、第5図および第6図は本発明に基づく具体的実施
例を示すもので、第4図は感温素子の埋設状況を示す鋳
型断面図、第5図は欠陥発生閾を示すグラフ、第6図は
差δの推移状況を示すグラフである。 1:鋳型        2:畏辺 3:短辺       2o:鋳型辺 5a〜5d、50a−50b:感温素子東1 図 ΔT1(掘慶○ 手続補正帯(自発) 昭和60年P月21:日 3、補正をする者 事件との関係   特許出願人 住所    東京都千代田区大手町二丁目6番3号名称
    (665)新日本製鐵株式會社代表者 武 1
) 豊 4、代理人  〒103  電話 03−864−60
52住 所  東京都中央区東日本橋2丁目27番6号
5、補正の対象    明細書の特許請求の範囲の欄6
、補正の内容 (1)明細書の第1頁の特許請求の範囲の欄全文を次の
通りに訂正する。 「2、特許請求の範囲 角鋳片用連続鋳造鋳型を構成する鋳型辺の各コーナー部
に、略同一レベルで感温素子を埋設すると共に、予め前
記各コーナー部のそれぞれ相対する2対の温度差ΔTi
、ΔT2の差δと、実操業において発生した鋳片コーナ
ー部表面割れとの相関より表面割れ発生閾を設定し、次
いで前記感温素子による連続鋳造中における温度検出値
から前記温度差ΔTi、ΔT2、およびその差δを逐次
算出し、前記差δが前記表面割れ発生閾内になったとき
を鋳片表面割れとして検出することを特徴とする連続鋳
造鋳片の表面欠陥検出法。」以上
FIG. 1 is a graph showing an example of the defect generation threshold obtained based on the present invention, FIG. 2 is a cross-sectional view of a mold showing a situation in which a temperature-sensitive element is embedded in the well-known side of the mold, and FIG. 3 is the same as that shown in FIG. It is a graph which shows the transition situation of the temperature value of each temperature sensing element in . Figures 4, 5, and 6 show specific examples based on the present invention. Figure 4 is a cross-sectional view of the mold showing how the temperature sensing element is buried, and Figure 5 shows the defect occurrence threshold. The graph in FIG. 6 is a graph showing the change in the difference δ. 1: Mold 2: Side 3: Short side 2o: Mold side 5a-5d, 50a-50b: Temperature sensing element East 1 Figure ΔT1 (Horikei ○ Procedural correction band (self-proposed) P/Mon 21, 1985: Sun 3, Relationship with the case of the person making the amendment Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (665) Nippon Steel Corporation Representative Takeshi 1
) Yutaka 4, Agent 103 Phone: 03-864-60
52 Address 2-27-6-5 Higashi Nihonbashi, Chuo-ku, Tokyo Subject of amendment Claims column 6 of the specification
, Contents of the amendment (1) The entire text of the Claims column on the first page of the specification is corrected as follows. ``2. Claimed scope In each corner of the mold side constituting the continuous casting mold for rectangular slabs, a temperature sensing element is embedded at approximately the same level, and two pairs of opposing temperatures of each corner are preliminarily determined. Difference ΔTi
, ΔT2, and the surface cracks at the slab corners that occurred during actual operation, a surface crack occurrence threshold is set, and then the temperature difference ΔTi, ΔT2 is determined from the temperature detected by the temperature sensing element during continuous casting. , and the difference δ thereof are sequentially calculated, and when the difference δ falls within the surface crack occurrence threshold, it is detected as a surface crack of the slab. "that's all

Claims (1)

【特許請求の範囲】[Claims] 角鋳片用連続鋳造鋳型を構成する鋳型辺の各コーナー部
に、略同一レベルで感温素子を埋設すると共に、予め前
記各コーナー部のそれぞれ相対する2対の温度差ΔTi
、ΔT2の差δと、実操業において発生した鋳片コーナ
ー部表面割れとの相関より表面割れ発生閾を設定し、次
いで前記感温素子による連続鋳造中における温度検出値
から前記温度差ΔTi、ΔT2、およびその差δを逐次
算出し、前記差δが前記表面割れ発生閾内になったとき
を鋳片表面割れを検出することを特徴とする連続鋳造鋳
片の表面欠陥検出法。
Temperature-sensing elements are embedded at approximately the same level in each corner of the mold side constituting the continuous casting mold for square slabs, and the temperature difference ΔTi between two opposing pairs of each corner is set in advance.
, ΔT2, and the surface cracks at the slab corners that occurred during actual operation, a surface crack occurrence threshold is set, and then the temperature difference ΔTi, ΔT2 is determined from the temperature detected by the temperature sensing element during continuous casting. , and the difference δ thereof are sequentially calculated, and a slab surface crack is detected when the difference δ falls within the surface crack occurrence threshold.
JP15877085A 1985-02-01 1985-07-18 Detecting method for surface defect of continuous cast slab Pending JPS6219745A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15877085A JPS6219745A (en) 1985-07-18 1985-07-18 Detecting method for surface defect of continuous cast slab
AU52846/86A AU562731B2 (en) 1985-02-01 1986-01-30 Preventtion of casting defects in continuous casting
CA000500908A CA1270618A (en) 1985-02-01 1986-01-31 Method and apparatus for preventing cast defects in continuous casting plant
DE8686300689T DE3671851D1 (en) 1985-02-01 1986-01-31 METHOD AND DEVICE FOR PREVENTING CASTING ERRORS IN A CONTINUOUS CASTING SYSTEM.
EP86300689A EP0196746B1 (en) 1985-02-01 1986-01-31 Method and apparatus for preventing cast defects in continuous casting plant
BR8600427A BR8600427A (en) 1985-02-01 1986-02-03 PROCESS AND APPARATUS TO AVOID A FOUNDATION DEFECT IN A CONTINUOUS FOUNDATION
US07/143,270 US4774998A (en) 1985-02-01 1988-01-04 Method and apparatus for preventing cast defects in continuous casting plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15877085A JPS6219745A (en) 1985-07-18 1985-07-18 Detecting method for surface defect of continuous cast slab

Publications (1)

Publication Number Publication Date
JPS6219745A true JPS6219745A (en) 1987-01-28

Family

ID=15678959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15877085A Pending JPS6219745A (en) 1985-02-01 1985-07-18 Detecting method for surface defect of continuous cast slab

Country Status (1)

Country Link
JP (1) JPS6219745A (en)

Similar Documents

Publication Publication Date Title
CN114012053B (en) Method for judging abnormal state of crystallizer immersed nozzle nodulation and blockage
CN107442749A (en) A kind of detection method in crystallizer flow field
JPS6219745A (en) Detecting method for surface defect of continuous cast slab
JPH08159883A (en) Normality and abnormality judging method for thermocouple for mold in continuous casting facility and break-out detecting method utilizing the same thermocouple
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH0894309A (en) Method and device for detection of connection point of cast in continuous casting
JPS5970449A (en) Continuous casting method
JPH01262050A (en) Detection of leaning flow of molten steel in mold at continuous casting of steel and method for continuous casting steel
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
JPS62112732A (en) Cooling method for hot rolled steel sheet
JPH01143748A (en) Continuous casting method
JPH0242409B2 (en)
JPH0775766B2 (en) Method for detecting vertical crack in slab in continuous casting
JPH0575502B2 (en)
JP2661380B2 (en) Method for preventing short side vertical cracking and breakout of continuous cast slab
JPS5946702B2 (en) Continuous casting mold
KR970033269A (en) How to measure cast iron defects in continuous casting of steel small section billet
JPH08224648A (en) Method for restraining surface defect in continuous casting
JP3487463B2 (en) Detecting Roll Interval Abnormality in Continuous Casting Machine
JPS6330162A (en) Measurement for shell thickness in continuous casting
JPS63256250A (en) Method for predicting breakout in continuous casting
JPS6024449A (en) Method for estimating internal quality of continuously cast piece
JPH01197051A (en) Method for detecting perfect solidified position in continuous casting slab
JPS63281753A (en) Method for judging validity of mold powder for continuous casting
JPH02165856A (en) Method for discriminating abnormality of temperature measuring element in continuous casting apparatus