JPS62182158A - Cordierite honeycom structure and manufacture - Google Patents
Cordierite honeycom structure and manufactureInfo
- Publication number
- JPS62182158A JPS62182158A JP60293691A JP29369185A JPS62182158A JP S62182158 A JPS62182158 A JP S62182158A JP 60293691 A JP60293691 A JP 60293691A JP 29369185 A JP29369185 A JP 29369185A JP S62182158 A JPS62182158 A JP S62182158A
- Authority
- JP
- Japan
- Prior art keywords
- less
- honeycomb structure
- weight
- cordierite
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052878 cordierite Inorganic materials 0.000 title claims description 39
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002245 particle Substances 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 28
- 239000000454 talc Substances 0.000 claims description 22
- 229910052623 talc Inorganic materials 0.000 claims description 22
- 239000005995 Aluminium silicate Substances 0.000 claims description 15
- 235000012211 aluminium silicate Nutrition 0.000 claims description 15
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000035939 shock Effects 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 239000004927 clay Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910001753 sapphirine Inorganic materials 0.000 description 1
- -1 sapphirine) Chemical compound 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はコージェライトハニカム構造体に関するもので
、さらに詳しくは耐熱衝撃性、気密性及び耐熱性にも優
れた回転蓄熱式又は伝熱式熱交換体用高気密性コージェ
ライトハニカム構造体及びその製造方法に関するもので
ある。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a cordierite honeycomb structure, and more specifically to a cordierite honeycomb structure that has excellent thermal shock resistance, airtightness, and heat resistance. The present invention relates to a highly airtight cordierite honeycomb structure for an exchanger and a method for manufacturing the same.
(従来の技術)
近年工業技術の進歩に伴い、耐熱性、耐熱衝撃性に優れ
た材料の要求が増加している。セラミックスの耐熱衝撃
性は、材料の熱膨張率、熱伝導率、強度、弾性率、ポア
ソン比等の特性に影響されると共に、製品の大きさや形
状、さらに加熱、冷却状態即ち熱移動速度にも影響され
る。(Prior Art) With the progress of industrial technology in recent years, there has been an increasing demand for materials with excellent heat resistance and thermal shock resistance. The thermal shock resistance of ceramics is influenced by the material's properties such as coefficient of thermal expansion, thermal conductivity, strength, modulus of elasticity, and Poisson's ratio, as well as the size and shape of the product, as well as heating and cooling conditions, that is, heat transfer rate. affected.
耐熱衝撃性に影響するこれらの諸因子のうち特に熱膨張
係数の寄与率が大であり、とりわけ、熱移動速度が大で
あるときには熱膨張係数のみに大きく左右されることが
知られており、耐熱衝撃性に優れた低膨張材料の開発が
強く望まれている。Among these factors that affect thermal shock resistance, it is known that the contribution rate of the thermal expansion coefficient is particularly large, and in particular, when the heat transfer rate is large, it is greatly influenced only by the thermal expansion coefficient. The development of low expansion materials with excellent thermal shock resistance is strongly desired.
従来比較的低膨張なセラミックス材料として、コージェ
ライトが知られているが、一般にコージェライトは、緻
密焼結化が難しく、特に室温から800℃までの熱膨張
係数が2.OxlO−6/ ”c以下となるような低膨
張性を示すコージェライト素地では、カルシア、アルカ
リ、カリ、ソーダのような融剤となるべき不純物量を極
めて小量に限定する必要があるためガラス相が非常に少
なく多孔質になる。Cordierite is conventionally known as a relatively low-expansion ceramic material, but cordierite is generally difficult to sinter densely, and its coefficient of thermal expansion from room temperature to 800°C is particularly low at 2. For cordierite substrates that exhibit low expansion properties such as OxlO-6/"c or less, it is necessary to limit the amount of impurities that act as fluxes, such as calcia, alkali, potash, and soda, to an extremely small amount. Very few phases and porous.
従ってこのようなコージェライトセラミックスを例えば
、ハニカム構造にして回転蓄熱式熱交換体に応用した場
合、その開気孔率が大きいためハニカム構造体貫通孔を
形成する隔壁表面の気孔、特に連通気孔を通して加熱流
体と熱回収側流体との相互間に流体のリークが発生し、
熱交換効率及び熱交換体が使用されるシステム全体の効
率が低下する重大な欠点を有している。Therefore, when such cordierite ceramics is applied to a rotating regenerative heat exchanger with a honeycomb structure, for example, because of its large open porosity, heating can occur through the pores on the surface of the partition wall that form the through holes of the honeycomb structure, especially through the communicating holes. Fluid leakage occurs between the fluid and the heat recovery fluid,
It has the serious disadvantage of reducing the heat exchange efficiency and the efficiency of the overall system in which the heat exchanger is used.
このようなことから耐熱衝撃性に優れた、低膨張の高気
密性コージェライトハニカム構造体が強く望まれていた
。For these reasons, there has been a strong desire for a low-expansion, highly airtight cordierite honeycomb structure that has excellent thermal shock resistance.
従来、コージェライトセラミックスが低膨張性を示すこ
とは公知であり、例えば米国特許第3,885.977
号明細書く対応日本出願;特開昭50−75611号公
報)に開示されているように、25〜1ooo℃の間で
の熱膨張係数が少なくとも一方向で11 X 10−’
7℃より小さい配向したコージェライトセラミックスが
知られており、そこではこの配向性を起させる原因とし
て板状粘土、積層粘土に起因する平面的配向を記述して
いるが、本発明と異なって10−20μmの粗いタルク
を用い、粘土も0.1〜10μmの広い範囲にわたり、
しかも細孔に関する記載は一切ない。It has been known that cordierite ceramics exhibit low expansion properties, for example, as described in U.S. Patent No. 3,885.977.
As disclosed in the corresponding Japanese application (Japanese Patent Application Laid-Open No. 50-75611), the coefficient of thermal expansion between 25 and 100°C is 11 x 10-' in at least one direction.
Cordierite ceramics with an orientation smaller than 7°C are known, and planar orientation caused by plate clay or laminated clay is described as the cause of this orientation, but unlike the present invention, - Using coarse talc of 20 μm, clay ranges from 0.1 to 10 μm,
Moreover, there is no mention of pores at all.
さらに、米国特許第3,950.175号明細書(特開
昭50−75612号)には、原料中のタルク又は粘土
の一部又は全品を、パイロフェライト、カイアナイト、
石英、溶融シリカのようなシリカ又はシリカアルミナ源
原料によって置換することにより少なくとも20%の1
0μmより大きな径の開孔を有するコージェライト系多
孔質セラミックスが得られることが開示されているが、
本発明と異なり5μm以上の細孔容積を平均粒径が7μ
m以下の微細タルクにより 0.04cc/g以下に抑
制して気密性を高めることに関する記載は一切ない。Furthermore, U.S. Pat.
At least 20% of
It is disclosed that cordierite porous ceramics having pores with a diameter larger than 0 μm can be obtained,
Unlike the present invention, the average particle size is 7 μm when the pore volume is 5 μm or more.
There is no mention of increasing airtightness by suppressing the amount to 0.04 cc/g or less using fine talc of 0.04 cc/g or less.
さらに特開昭53−82822号には、タルク平均粒径
とコージェライトセラミックスの平均細孔径の正相関性
について述べられてはいるものの、本発明にて得られる
ような1.OxlO−6/ ’cc以下熱膨張係数にす
るためには、タルクの平均粒径を10〜50μmの粗粒
にする必要があり、本発明に示される低膨張で高気密性
のコージェライトセラミックスを容易に類推することは
できない。Furthermore, although JP-A-53-82822 describes a positive correlation between the average talc particle size and the average pore size of cordierite ceramics, 1. In order to achieve a thermal expansion coefficient of less than OxlO-6/'cc, it is necessary to make the average grain size of talc coarse particles of 10 to 50 μm. It is not easy to make an analogy.
さらに特開昭59−122899号には、気孔率が20
〜45%のコージェライトを主成分とするハニカム構造
体の貫通孔を形成する隔壁表面の開気孔を充填物質にて
封着することを特徴とする高気密性コージェライト質回
転蓄熱式熱交換体が開示されているが、本発明のように
コージェライト原料に平均粒径が7μm以下の微細タル
クと2μm以下の微細カオリンを用いることにより5μ
m以上の細孔容積を0.04cc/g以下に抑制し、気
密性を高めることに関する記載はない。また、特開昭5
9−122899号の製造方法では、焼成されたコージ
ェライト質ハニカムに充填物質を泥漿として担持し、さ
らに再焼成する工程が必要なため、本発明に比較してセ
ルの目詰りを生じ易く、コスト高になる欠点がある。Furthermore, in JP-A-59-122899, the porosity is 20.
A highly airtight cordierite rotary regenerative heat exchanger, characterized in that the open pores on the surface of the partition wall forming the through-holes of a honeycomb structure mainly composed of ~45% cordierite are sealed with a filling material. However, as in the present invention, by using fine talc with an average particle size of 7 μm or less and fine kaolin with an average particle size of 2 μm or less as a cordierite raw material, 5 μm
There is no description of suppressing the pore volume of m or more to 0.04 cc/g or less to improve airtightness. Also, JP-A-5
The manufacturing method of No. 9-122899 requires a step of supporting the filler material as a slurry on the fired cordierite honeycomb and then re-firing it, so compared to the present invention, the manufacturing method is more likely to cause cell clogging and is costly. It has the disadvantage of being expensive.
(発明が解決しようとする問題点)
本発明は従来のコージェライトセラミックスの問題点で
ある気密性と低膨張性を両立させた高気密性コージェラ
イトハニカム構造体を提供することを目的とする。(Problems to be Solved by the Invention) An object of the present invention is to provide a highly airtight cordierite honeycomb structure that achieves both airtightness and low expansion, which are the problems of conventional cordierite ceramics.
(問題点を解決するための手段)
本発明者等は、平均粒子径7μm以下のタルク及び平均
粒子径が2μm以下でかつタルク平均粒子径の173以
下の平均粒径のカオリンを用いることにより、直径が5
μm以上の総則孔容積を0.04cc/g以下にして実
質的に気密質にし、40〜800℃の間の熱膨張係数を
1.O×10−”/ ’C以下としたものである。タル
クの平均粒径を7μm以下にすることは、細孔径を小さ
くすることに効果がある。(Means for solving the problem) The present inventors have solved the problem by using talc with an average particle size of 7 μm or less and kaolin with an average particle size of 2 μm or less and 173 or less of the talc average particle size. diameter is 5
The volume of the pores larger than μm is set to 0.04 cc/g or less to make it substantially airtight, and the coefficient of thermal expansion between 40 and 800°C is set to 1. The average particle diameter of talc is 7 μm or less, which is effective in reducing the pore diameter.
また、2μm以下のカオリンを用いることは、気孔率を
抑制することに効果がある。さらに、平均粒子径7μm
以下のタルクとタルク平均粒子径の1/3以下の平均粒
子径のカオリンを組合せて用いることは、コージェライ
トハニカム構造体のセル壁部でのコージェライト結晶の
配向を促進させ、低膨張化に寄与するものである。Furthermore, using kaolin with a diameter of 2 μm or less is effective in suppressing porosity. Furthermore, the average particle size is 7 μm.
Using the following talc in combination with kaolin with an average particle size of 1/3 or less of the talc average particle size promotes the orientation of cordierite crystals in the cell walls of the cordierite honeycomb structure, resulting in low expansion. It is something that contributes.
また、本発明者等は、該ハニカム構造体の化学組成が、
SiO□にて42〜56重量%好ましくは47〜53重
量%、ahosにて30〜45重量%好ましくは32〜
38重量%、MgOにて12〜16重量%好ましくは1
2.5〜15重量%とすることが好適であることを見出
した。該ハニカム構造体は他に不可避的に混入する成分
例えば、TtOz + CaO+ KNaO+ Pe2
ozを全体として2.5重量%以下含んでも良いが、p
、o、は0.1%未満であることが好ましい。これらの
数値を限定する理由は、結晶相の主成分をコージェライ
ト相とし、不純物から生成する高膨張のガラス相を除去
するためである。In addition, the present inventors have discovered that the chemical composition of the honeycomb structure is
42-56% by weight in SiO□, preferably 47-53% by weight, 30-45% by weight in ahos, preferably 32-56% by weight
38% by weight, 12-16% by weight in MgO, preferably 1
It has been found that the content is preferably 2.5 to 15% by weight. The honeycomb structure contains other components that are unavoidably mixed, for example, TtOz + CaO + KNaO + Pe2
It may contain 2.5% by weight or less of oz as a whole, but p
, o, is preferably less than 0.1%. The reason for limiting these values is to make the main component of the crystalline phase a cordierite phase and to remove a high expansion glass phase generated from impurities.
さらに本発明者等は、ハニカム構造体素地の乾燥物の焼
成にあたっては、焼成温度に達する直前の1100−1
350℃の温度領域では20〜b昇温速度で昇温した後
、1350〜1440℃の焼成温度で焼成することが好
ましいことを見出した。昇温速度が20℃/hより小さ
いと熱膨張係数が大となり、60℃/hより大きいと焼
成時の細孔径が大となり気密性が悪くなる。通常30〜
50℃/hが好適な範囲である。また、1350〜14
40℃の温度にて焼成することにより、結晶相の主成分
をコージェライト相とすることができる。Furthermore, the present inventors have determined that when firing the dried material of the honeycomb structure body, 1100-1
It has been found that in the temperature range of 350°C, it is preferable to raise the temperature at a temperature increase rate of 20 to 150°C, and then perform firing at a firing temperature of 1350 to 1440°C. If the temperature increase rate is less than 20°C/h, the coefficient of thermal expansion will be large, and if it is more than 60°C/h, the pore diameter during firing will be large and the airtightness will be poor. Usually 30~
A suitable range is 50°C/h. Also, 1350-14
By firing at a temperature of 40° C., the main component of the crystalline phase can be made into a cordierite phase.
ハニカム構造体のセル密度を62セル/am”(400
セル/inり以上、リブ厚が203μm (8mi+
)以下とするのは、該ハニカム構造体を熱交換体として
、高熱交換効率で低圧力損失のものにするためである。The cell density of the honeycomb structure was set to 62 cells/am” (400
Cell/in or more, rib thickness 203μm (8mi+
) The reason for the following is to use the honeycomb structure as a heat exchanger with high heat exchange efficiency and low pressure loss.
セルの形状には特に限定はないが、通常三角形、正方形
、長方形、六角形、その他フィン付のもの等種々のもの
とすることができる。There is no particular limitation on the shape of the cell, but it can be of various shapes, such as triangular, square, rectangular, hexagonal, and other shapes with fins.
直径が5μm以上の細孔の総則孔容積を0.04cc/
g以下好ましくは0.026cc/g以下に限定するの
は、第1図に示すようにこのようなハニカム構造体の薄
壁を通じての流体の漏れが主に直径が5μm以上の細孔
によるためである。この条件を満足するためには気孔率
を少なくとも30%以下にすることが好ましい。The general rule for pores with a diameter of 5 μm or more is 0.04 cc/
The reason why it is limited to 0.026 cc/g or less, preferably 0.026 cc/g or less, is because fluid leakage through the thin walls of such a honeycomb structure is mainly caused by pores with a diameter of 5 μm or more, as shown in FIG. be. In order to satisfy this condition, the porosity is preferably at least 30% or less.
本発明はタルク、カオリンの微粒子化に際し、乾燥、焼
成時での収縮等によるハニカム構造体亀裂発生の抑制に
効果的な仮焼タルク、仮焼カオリンの使用をも包含する
。タルク、カオリンの仮焼温度の高温化は気孔率増加と
熱膨張率増加を招くため仮焼物の使用する場合は、仮焼
温度はできる限り低い温度の方が好ましい。粒度は生原
料と同様の微粒物を使用しなければ本発明の効果を得る
ことはできない。The present invention also includes the use of calcined talc and kaolin, which are effective in suppressing the occurrence of cracks in the honeycomb structure due to shrinkage during drying and firing, when talc and kaolin are made into fine particles. If the calcining temperature of talc or kaolin is increased, it will increase the porosity and the coefficient of thermal expansion, so when using a calcined product, it is preferable to keep the calcining temperature as low as possible. The effects of the present invention cannot be obtained unless fine particles having a particle size similar to that of the raw raw material are used.
他のコージェライト化原料即ちアルミナ、水酸化アルミ
ニウム等のアルミナ源原料、シリカ、珪砂等のシリカ源
原料は従来より使用されているものを使用することがで
きるが、化学組成におけるアルカリ等不純物量の適正化
及び製造するハニカム構造体のリブ厚に応じて粗粒物の
カット等粒度の適正化を図る必要がある。Other cordierite forming raw materials, such as alumina source raw materials such as alumina and aluminum hydroxide, and silica source raw materials such as silica and silica sand, that have been conventionally used can be used, but the amount of impurities such as alkali in the chemical composition can be used. It is necessary to optimize the grain size, such as cutting coarse particles, depending on the rib thickness of the honeycomb structure to be manufactured.
従って本発明は化学組成でSiO2が42〜56重量%
好ましくは47〜53重量%、AlzO:+が30〜4
5重量%好ましくは32〜38重量%、MgOが12〜
16重量%好ましくは12.5〜15重量%となるよう
に平均粒子径7μm以下のタルク及び平均粒子径2μm
以下でかつタルクの平均粒子径の173以下の平均粒子
径のカオリン及び他のコージェライト化原料を混合し、
この混合物に可塑剤及び粘結剤を加えて可塑化した変形
可能なバッチとし、この可塑化したバッチを押出し成形
法により成形後乾燥し、次いでこの乾燥物を焼成温度に
達する直前の1100〜1350℃の温度領域では20
〜b
て昇温し、1350〜1440℃にて焼成し、結晶相の
主成分がコージェライト相から成り、直径が5μm以上
の細孔の絵絹孔容積が0.04cc/g以下、40〜8
00℃の間の熱膨張係数が1.OX 10−h/ ”C
以下のコージェライトハニカム構造体を製造するもので
ある。Therefore, the chemical composition of the present invention is 42 to 56% by weight of SiO2.
Preferably 47 to 53% by weight, AlzO: + is 30 to 4
5% by weight, preferably 32-38% by weight, MgO 12-38% by weight
Talc with an average particle size of 7 μm or less and an average particle size of 2 μm so that the amount is 16% by weight, preferably 12.5 to 15% by weight.
Mixing kaolin and other cordierite forming raw materials with an average particle size of 173 or less than the average particle size of talc,
A plasticizer and a binder are added to this mixture to make a plasticized deformable batch, and this plasticized batch is molded by extrusion molding and then dried. 20 in the temperature range of °C
The main component of the crystal phase is cordierite phase, the pore volume is 0.04 cc/g or less, 40 to 8
The thermal expansion coefficient between 00℃ and 1. OX 10-h/”C
The following cordierite honeycomb structure is manufactured.
焼成は通常約0.5〜12時間行なう。ハニカム構造体
は結晶相の主成分が90重星%以上のコージェライトか
ら成っている。その他の結晶はムライト、スピネル(サ
フィリンを含む)が主であるが、これらは夫々2.5重
量%以下である。ハニカム構造体は5μm以上の細孔の
総細孔容積が0.04cc/g以下、特にO,,026
cc/g以下のときに、圧力1.4 kg/cm”のと
きのリーク量が100g/sec−m2以下特に50g
/sec ・m2以下の実質的に気密性となり、熱交
換体用に好適のものとなる。Firing is usually carried out for about 0.5 to 12 hours. The main component of the honeycomb structure is cordierite with a crystalline phase of 90% or more. Other crystals are mainly mullite and spinel (including sapphirine), each of which accounts for 2.5% by weight or less. The honeycomb structure has a total pore volume of pores of 5 μm or more of 0.04 cc/g or less, especially O,,026
cc/g or less, the leakage amount at a pressure of 1.4 kg/cm" is 100 g/sec-m2 or less, especially 50 g
/sec·m2 or less, making it substantially airtight and suitable for use as a heat exchanger.
(作用)
本発明はハニカム構造体の5μm以上の細孔の総細孔容
積が0.04cc/g以下で且つ気孔率が30%以下と
小さい為、リーク量が小さく、熱交換効率が高い。また
、熱膨張係数が40〜800℃で1.O×10−6l℃
以下と小さいため、耐熱衝撃性が高い。またリブ厚を2
03μm (8m1l)以下と薄壁にすることができ
るため圧力損失が小さく、高密度セル化が達成できるた
め熱交換効率の高いセラミックス熱交換体を得ることが
できる。また、細孔径が小さく、気孔率も小さいためハ
ニカム構造体の強度は従来のハニカム構造体より高く、
薄壁化が可能である。(Function) In the present invention, since the total pore volume of the pores of 5 μm or more in the honeycomb structure is 0.04 cc/g or less and the porosity is as small as 30% or less, the amount of leakage is small and the heat exchange efficiency is high. Moreover, the thermal expansion coefficient is 1. O x 10-6l℃
Because it is small, it has high thermal shock resistance. Also, increase the rib thickness to 2
Since the walls can be made as thin as 0.3 μm (8 ml) or less, pressure loss is small, and high-density cells can be achieved, making it possible to obtain a ceramic heat exchanger with high heat exchange efficiency. In addition, due to the small pore diameter and low porosity, the strength of the honeycomb structure is higher than that of conventional honeycomb structures.
It is possible to make the walls thinner.
以下本発明を実施例と比較例につきさらに詳細に説明す
る。The present invention will be described in more detail below with reference to Examples and Comparative Examples.
ス趙炭上
次の第1表に示す化学分析値及び粒度の原料を第2表の
調合割合、タルク粒度、カオリン粒度に従って第2表N
ll−1lkL30のバッチを調合し、原料100重量
部に対してメチルセルローズ4.5重量部及び添加水を
加え、混練し、押出成形可能な坏土とした。ここでの使
用原料は総て篩目が63μmの篩を通過したものを使用
した。次いでそれぞれのバッチの坏土を公知の押出成形
法によりリブ厚120μ−11平方センチ当りのセル数
167ケ、短辺/長辺=1/1.73の長方形セル構造
を有する直径93mm高さ100龍の円筒形ハニカム構
造体を成形した。The raw materials with the chemical analysis values and particle sizes shown in Table 1 below are summarized in Table 2 N according to the blending ratio, talc particle size, and kaolin particle size in Table 2.
A batch of ll-1lkL30 was prepared, and 4.5 parts by weight of methyl cellulose and added water were added to 100 parts by weight of the raw material, and the mixture was kneaded to obtain an extrudable clay. The raw materials used here all passed through a sieve with a mesh size of 63 μm. Next, each batch of clay was molded using a known extrusion method to form a rectangular cell structure with a rib thickness of 120 μm, number of cells per 11 square centimeters of 167, short side/long side = 1/1.73, a diameter of 93 mm, and a height of 100 mm. A dragon cylindrical honeycomb structure was molded.
それぞれのバッチによるハニカム構造体は乾燥後第2表
に示す焼成条件で焼成し、焼結体の特性として40℃〜
800℃での熱膨張係数、気孔率、5μm以上の細孔の
総細孔容積、リーク量、コージェライト結晶量、耐熱衝
撃性の評価を実施した。評価結果も第3表に示す。なお
、総てのバッチの焼結体の化学組成でP2O,は0.1
%未満であった。After drying, the honeycomb structure of each batch was fired under the firing conditions shown in Table 2, and the characteristics of the sintered body were 40℃~
The coefficient of thermal expansion at 800° C., porosity, total pore volume of pores of 5 μm or more, amount of leakage, amount of cordierite crystals, and thermal shock resistance were evaluated. The evaluation results are also shown in Table 3. In addition, in the chemical composition of the sintered bodies of all batches, P2O, is 0.1
%.
去隻炎主
第2表隘4のバッチを実施例1と同様の方法によりセル
構造の異った口金により押出成形し、焼成して、第3表
に示すセル構造を有する直径93重園、高さ100龍の
円筒形ハニカム構造体Nt131〜l1h40を製造し
た。それぞれのハニカム構造体の圧力損失、リーク量、
熱膨張係数(CTE)を評価した。評価結果も第3表に
示す。The batch in Table 2, No. 4, was extruded and fired using a die with a different cell structure in the same manner as in Example 1, to produce a 93-layer cellar with a diameter of 93, having the cell structure shown in Table 3. Cylindrical honeycomb structures Nt131 to l1h40 with a height of 100 dragons were manufactured. Pressure loss and leakage amount of each honeycomb structure,
The coefficient of thermal expansion (CTE) was evaluated. The evaluation results are also shown in Table 3.
第3表
* 0.5g/ses −cm” ’f量で測定、単
位長さあたりの圧力…失斡 力rlBクシrv=b+に
εノ′o1、テストピースル甲a5−嘗φ×ω晴1夕[
壁なしのハニカム昏膠て■I冗(発明の効果)
以上、第2表と第3表に示す通り、本発明によれば、5
μm以上の細孔の総則孔容積が 0.04cc/g以下
で、熱膨張係数が1.O×10−’/ ”C以下の、耐
熱衝撃性に優れ、リーク量が極めて小さく、熱交換効率
に優れたハニカム構造体が得られる。従って本発明は産
業上極めて有用である。Table 3 * Measured by 0.5g/ses -cm"'f amount, pressure per unit length... Loss Force rlB comb rv=b+εノ'o1, test piece A5-嘗φ×ωclear 1 evening [
As shown in Tables 2 and 3, according to the present invention, 5
General rules for pores larger than μm: The pore volume is 0.04 cc/g or less, and the thermal expansion coefficient is 1. A honeycomb structure having excellent thermal shock resistance, an extremely small amount of leakage, and an excellent heat exchange efficiency of 0×10-'/''C or less can be obtained. Therefore, the present invention is extremely useful industrially.
第1図は5μm以上の細孔量と加圧空気圧1.4kg/
cs”でのテストピースリーク量の関係を示す図、
第2図は実施例で使用したタルクの粒度分布を示す図、
第3図は実施例で使用のカオリンの粒度分布を示す図、
第4図は本発明のハニカム構造体の1例を示す斜視図で
ある。
第2図の曲線A−Eと第3図の曲線A−Eは夫々第2表
に示したものの値である。
第1図
5)tyytkA上d[L量tcc/9)−第4図
手 続 補 正 書
昭和62年 2月26日
特許庁長官 黒 1) 明 雄 殿1、事件の
表示
昭和60年特許願第293691号
2、発明の名称
3、補正をする者
事件との関係 特許出願人
4、代理人
1、明細書第8頁第9行と第10行の間に下記の文を加
入する。
「なお、タルク、カオリンの粒径は生、仮焼品の調合重
量比による平均粒子径より求めた。」2、同第16頁お
よび第17頁の第2表を別紙の通り訂正する。
3、同第19貞第1行の前に以下の文を加入する。
「実際の例として、第4図および第5図に複数個のコー
ジェライト質マトリンクスセグメントより構成される回
転蓄熱式熱交換体の一例を示す。」
4、同第19頁第9行〜第19行を下記の通り訂正する
。
[第1図は第2表のパンチを含みさらに他の実験例を含
めて5μm以上の細孔容積とテストピースリーク量の関
係を示す図、
第2図は第1表のタルク(^)〜(E)の粒度分布曲線
を示す図、
第3図は第1表のカオリン(A)〜(E)の粒度分布曲
線を示す図、
第4図及び第5図は複数個のコージェライト質マトリッ
クスセグメントより構成される回転蓄熱式熱交換体を示
す図である。」
5、図面中、第4図を訂正第4図とするとともに第5図
を加入する。
第4 図(訂正図)
第5図Figure 1 shows the pore volume of 5μm or more and the pressurized air pressure of 1.4kg/
Figure 2 is a diagram showing the particle size distribution of talc used in the example. Figure 3 is a diagram showing the particle size distribution of kaolin used in the example. The figure is a perspective view showing one example of the honeycomb structure of the present invention. The curve A-E in FIG. 2 and the curve A-E in FIG. 3 are the values shown in Table 2, respectively. Figure 5) tyytkA upper d [L amount tcc/9) - Figure 4 Procedures Amendment February 26, 1988 Commissioner of the Japan Patent Office Black 1) Akio 1, Indication of the case 1985 Patent Application No. 293691 No. 2, Title of the invention 3, Relationship with the case of the person making the amendment Patent applicant 4, agent 1, the following sentence is added between lines 9 and 10 on page 8 of the specification. The particle sizes of talc and kaolin were determined from the average particle size based on the blended weight ratio of raw and calcined products.''2.Table 2 on pages 16 and 17 of the same document is corrected as shown in the attached sheet. 3. Add the following sentence before the 1st line of the 19th chapter. ``As an actual example, FIGS. 4 and 5 show an example of a rotating regenerative heat exchanger composed of a plurality of cordierite matrix segments.'' 4, page 19, lines 9 to 5. Correct line 19 as shown below. [Figure 1 is a diagram showing the relationship between the pore volume of 5 μm or more and the amount of test piece leakage, including the punch in Table 2 and other experimental examples. Figure 2 is the talc in Table 1 (^) ~ Figure 3 shows the particle size distribution curves of kaolin (A) to (E) in Table 1. Figures 4 and 5 show the particle size distribution curves of kaolin (A) to (E) in Table 1. FIG. 3 is a diagram showing a rotary regenerative heat exchanger composed of segments. 5. In the drawings, Figure 4 has been changed to a corrected Figure 4, and Figure 5 has been added. Figure 4 (corrected figure) Figure 5
Claims (1)
が5μm以上の細孔の総細孔容積が0.04cc/g以
下、40〜800℃の間の熱膨張係数が1.0×10^
−^6/℃以下、化学組成でSiO_2が42〜56重
量%、Al_2O_3が30〜45重量%、MgOが1
2〜16重量%であることを特徴とするコージェライト
ハニカム構造体。 2、直径が5μm以上の細孔の総細孔容積が0.026
cc/g以下である特許請求の範囲第1項記載のコージ
ェライトハニカム構造体。 3、セル密度が62セル/cm^2(400セル/in
^2)以上、リブ厚が203μm(8mil)以下であ
る特許請求の範囲第1項記載のコージェライトハニカム
構造体。 4、コージェライトハニカム構造体が熱交換体である特
許請求の範囲第1項記載のコージェライトハニカム構造
体。 5、化学組成でSiO_2が42〜56重量%、Al_
2O_3が30〜45重量%、MgOが12〜16重量
%となるように平均粒子径7μm以下のタルク、平均粒
子径2μm以下でかつタルク平均粒子径の1/3以下の
平均粒子径のカオリン及び他のコージェライト化原料を
混合し、この混合物に可塑剤及び粘結剤を加えて可塑化
した変形可能なバッチとし、この可塑化したバッチを押
出し成形法により成形後乾燥し、次いでこの乾燥物を1
350〜1440℃にて焼成することを特徴とするコー
ジェライトハニカム構造体の製造方法。 6、焼成温度に達する直前の1100〜1350℃の温
度領域では20〜60℃/時の平均昇温速度にて焼成す
る特許請求の範囲第5項記載の製造方法。 7、平均粒子径5μm以下のタルクを用いる特許請求の
範囲第5項記載の製造方法。 8、平均粒子径1μm以下のカオリンを用いる特許請求
の範囲第5項記載の製造方法。 9、コージェライトハニカム構造体が熱交換体である特
許請求の範囲第5項記載の方法。[Claims] 1. The main component of the crystal phase is cordierite phase, the total pore volume of pores with a diameter of 5 μm or more is 0.04 cc/g or less, and the coefficient of thermal expansion is between 40 and 800°C. is 1.0×10^
-^6/℃ or less, the chemical composition is 42-56% by weight of SiO_2, 30-45% by weight of Al_2O_3, and 1% by weight of MgO.
A cordierite honeycomb structure characterized by having a content of 2 to 16% by weight. 2. The total pore volume of pores with a diameter of 5 μm or more is 0.026
cc/g or less, the cordierite honeycomb structure according to claim 1. 3. Cell density is 62 cells/cm^2 (400 cells/in
^2) The cordierite honeycomb structure according to claim 1, wherein the rib thickness is 203 μm (8 mil) or less. 4. The cordierite honeycomb structure according to claim 1, wherein the cordierite honeycomb structure is a heat exchanger. 5. Chemical composition: SiO_2 is 42-56% by weight, Al_
Talc with an average particle size of 7 μm or less, kaolin with an average particle size of 2 μm or less and 1/3 or less of the talc average particle size so that 2O_3 is 30 to 45% by weight and MgO is 12 to 16% by weight. Other cordierite forming raw materials are mixed, a plasticizer and a binder are added to this mixture to make a plasticized deformable batch, this plasticized batch is molded by extrusion molding and then dried, and then this dried product is 1
A method for producing a cordierite honeycomb structure, the method comprising firing at a temperature of 350 to 1440°C. 6. The manufacturing method according to claim 5, wherein the firing is performed at an average temperature increase rate of 20 to 60°C/hour in the temperature range of 1100 to 1350°C just before reaching the firing temperature. 7. The manufacturing method according to claim 5, using talc having an average particle diameter of 5 μm or less. 8. The manufacturing method according to claim 5, using kaolin having an average particle diameter of 1 μm or less. 9. The method according to claim 5, wherein the cordierite honeycomb structure is a heat exchanger.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60293691A JPS62182158A (en) | 1985-12-27 | 1985-12-27 | Cordierite honeycom structure and manufacture |
EP86310131A EP0232621B1 (en) | 1985-12-27 | 1986-12-24 | Catalyst carrier of cordierite honeycomb structure and method of producing the same |
DE8686310131T DE3671390D1 (en) | 1985-12-27 | 1986-12-24 | CATALYST SUPPORT WITH CORDIERITE HONEYCOMB STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF. |
EP86310130A EP0227482B1 (en) | 1985-12-27 | 1986-12-24 | Cordierite honeycomb structural body and method of producing the same |
DE8686310130T DE3680496D1 (en) | 1985-12-27 | 1986-12-24 | CORDIERITE ITEM WITH HONEYCOMB STRUCTURE AND METHOD FOR THEIR PRODUCTION. |
US06/946,901 US4877670A (en) | 1985-12-27 | 1986-12-29 | Cordierite honeycomb structural body and method of producing the same |
US07/320,629 US5030398A (en) | 1985-12-27 | 1989-03-08 | Method of producing a cordierite honeycomb structural body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60293691A JPS62182158A (en) | 1985-12-27 | 1985-12-27 | Cordierite honeycom structure and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62182158A true JPS62182158A (en) | 1987-08-10 |
JPH0437028B2 JPH0437028B2 (en) | 1992-06-18 |
Family
ID=17797984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60293691A Granted JPS62182158A (en) | 1985-12-27 | 1985-12-27 | Cordierite honeycom structure and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62182158A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6461368A (en) * | 1987-09-01 | 1989-03-08 | Showa Kogyo Kk | Porous ceramic for adsorption of oils |
JPH01275464A (en) * | 1988-03-12 | 1989-11-06 | Hoechst Ceram Tec Ag | Molded article of cordierite and its molding method |
JPH02255576A (en) * | 1989-03-29 | 1990-10-16 | Ngk Insulators Ltd | Method for calcining ceramics honeycomb structural body |
JP2001524452A (en) * | 1997-12-02 | 2001-12-04 | コーニング インコーポレイテッド | Low expansion cordierite honeycomb body and method of manufacturing the same |
JP2003502261A (en) * | 1999-06-11 | 2003-01-21 | コーニング インコーポレイテッド | Low expansion / high porosity / high strength cordierite body and method |
JP2006524175A (en) * | 2003-03-19 | 2006-10-26 | アイメリーズ カオリン,インコーポレーテッド | Calcined kaolin with extremely narrow particle size distribution |
JP2008119664A (en) * | 2006-11-15 | 2008-05-29 | Denso Corp | Manufacturing method of exhaust gas purifying filter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141667A (en) * | 1983-12-28 | 1985-07-26 | 日本碍子株式会社 | Material for ceramic honeycomb structure |
-
1985
- 1985-12-27 JP JP60293691A patent/JPS62182158A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141667A (en) * | 1983-12-28 | 1985-07-26 | 日本碍子株式会社 | Material for ceramic honeycomb structure |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6461368A (en) * | 1987-09-01 | 1989-03-08 | Showa Kogyo Kk | Porous ceramic for adsorption of oils |
JPH01275464A (en) * | 1988-03-12 | 1989-11-06 | Hoechst Ceram Tec Ag | Molded article of cordierite and its molding method |
JPH02255576A (en) * | 1989-03-29 | 1990-10-16 | Ngk Insulators Ltd | Method for calcining ceramics honeycomb structural body |
JP2001524452A (en) * | 1997-12-02 | 2001-12-04 | コーニング インコーポレイテッド | Low expansion cordierite honeycomb body and method of manufacturing the same |
JP2003502261A (en) * | 1999-06-11 | 2003-01-21 | コーニング インコーポレイテッド | Low expansion / high porosity / high strength cordierite body and method |
JP2006524175A (en) * | 2003-03-19 | 2006-10-26 | アイメリーズ カオリン,インコーポレーテッド | Calcined kaolin with extremely narrow particle size distribution |
JP2008119664A (en) * | 2006-11-15 | 2008-05-29 | Denso Corp | Manufacturing method of exhaust gas purifying filter |
Also Published As
Publication number | Publication date |
---|---|
JPH0437028B2 (en) | 1992-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030398A (en) | Method of producing a cordierite honeycomb structural body | |
US4001028A (en) | Method of preparing crack-free monolithic polycrystalline cordierite substrates | |
US4295892A (en) | Cordierite ceramic honeycomb and a method for producing the same | |
EP0227482B1 (en) | Cordierite honeycomb structural body and method of producing the same | |
EP0498934B1 (en) | Fabrication of cordierite bodies | |
EP1261564B1 (en) | Fabrication of ultra-thinwall cordierite structures | |
US7071135B2 (en) | Ceramic body based on aluminum titanate and including a glass phase | |
US4772580A (en) | Catalyst carrier of cordierite honeycomb structure and method of producing the same | |
KR930012633A (en) | High porosity cordierite body and its manufacturing method | |
US4476236A (en) | Method for producing a cordierite body | |
US4722916A (en) | Low expansion ceramics and method of producing the same | |
US6770111B2 (en) | Pollucite-based ceramic with low CTE | |
US6254822B1 (en) | Production of porous mullite bodies | |
JPH013067A (en) | Manufacturing method of cordierite honeycomb structure | |
JPS62182158A (en) | Cordierite honeycom structure and manufacture | |
EP0992467A2 (en) | Production of porous mullite bodies | |
JPH0463023B2 (en) | ||
JPH066506B2 (en) | Low expansion ceramics manufacturing method | |
JPS6340777A (en) | Cordierite honeycomb structure and manufacture | |
JP2506503B2 (en) | Multilayer ceramic porous body | |
JPH0470053B2 (en) | ||
JPS61256965A (en) | Manufacture of cordierite ceramic | |
JPH0436113B2 (en) | ||
JP3122272B2 (en) | Ceramics for rotary heat storage type heat exchanger | |
JPH1192215A (en) | Cordierite-based ceramic sintered product, composition therefor and production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |