JPS62179639A - Multi-item biochemical analysis - Google Patents
Multi-item biochemical analysisInfo
- Publication number
- JPS62179639A JPS62179639A JP2106086A JP2106086A JPS62179639A JP S62179639 A JPS62179639 A JP S62179639A JP 2106086 A JP2106086 A JP 2106086A JP 2106086 A JP2106086 A JP 2106086A JP S62179639 A JPS62179639 A JP S62179639A
- Authority
- JP
- Japan
- Prior art keywords
- absorbance
- blank
- item
- sample
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012742 biochemical analysis Methods 0.000 title claims description 11
- 238000002835 absorbance Methods 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 239000000243 solution Substances 0.000 claims description 19
- 239000012490 blank solution Substances 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 10
- 210000001268 chyle Anatomy 0.000 claims description 10
- 210000002966 serum Anatomy 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 5
- 238000012937 correction Methods 0.000 abstract description 9
- 239000000725 suspension Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 2
- 239000012295 chemical reaction liquid Substances 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 7
- 239000012086 standard solution Substances 0.000 description 5
- 108010004103 Chylomicrons Proteins 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000011481 absorbance measurement Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000012088 reference solution Substances 0.000 description 2
- 108010010234 HDL Lipoproteins Proteins 0.000 description 1
- 102000015779 HDL Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、多項目生化学分析方法に関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a multi-item biochemical analysis method.
さらに詳しくは、乳び血清等の懸濁物質が混在した検体
の測定に有用な多項目生化学分析方法に関する。More specifically, the present invention relates to a multi-item biochemical analysis method useful for measuring samples containing suspended substances such as chyle serum.
(0)従来の技術
従来、血清、血漿、尿等の生化学検体中の多項目生化学
分析に、比色分析や比濁分析を用いた方法が行なわれて
おり、通常、各項目毎に分割された検体に所定の反応試
薬を混合して測定液とし、これら各測定液の所定波長に
おける吸光度をエンドポイント法により各々計測して各
々標準検体を比色あるいは比濁して求めた濃度算出係数
を乗することにより各項目の定量が行なわれている。そ
してこの際の分析項目としては、例えばTP、ALB、
T−CHO,PL、TG、T−Bi L、D−Bi L
、GLV、Ca 、 iP等が挙げられ、また吸光度
計測波長としては通常340〜750nmの範囲のもの
が適用されている。(0) Conventional technology Conventionally, multi-item biochemical analysis of biochemical samples such as serum, plasma, urine, etc. has been carried out using colorimetric analysis or nephelometric analysis. Concentration calculation coefficients obtained by mixing the divided specimens with specified reaction reagents to obtain measurement solutions, measuring the absorbance of each of these measurement solutions at specified wavelengths using the endpoint method, and colorimetrically or turbidimetrically measuring each standard sample. Each item is quantified by multiplying by The analysis items at this time include, for example, TP, ALB,
T-CHO, PL, TG, T-Bi L, D-Bi L
, GLV, Ca, iP, etc., and the absorbance measurement wavelength is usually in the range of 340 to 750 nm.
(ハ)発明が解決しようとする問題点
しかしながら、検体の中には、カイロミクロンやりボタ
ンバクが著しく高いために濁っているいわゆる乳び血清
がある。ある項目をエンドポイント法で測定する場合、
反応によって変化する吸光度の他にかかる乳び血清では
、濁りにより光の散乱が生じて見かけの吸光度が増加し
、分析結果に正の影響を与えるという不都合が生じる。(c) Problems to be Solved by the Invention However, some specimens include so-called chyle serum, which is cloudy due to a significantly high content of chylomicrons and botanicals. When measuring a certain item using the endpoint method,
In addition to the absorbance changing due to the reaction, such chyle serum has the disadvantage that turbidity causes light scattering, increasing the apparent absorbance and positively affecting the analytical results.
これを補正するために、各項目毎に、検体とブランク反
応用試薬(各反応試薬から反応成分を除いたもの)とを
混合した検体ブランク液を調製し、上記測定液と同一の
測定条件で吸光度を計測し、これらの検体ブランク液の
吸光度を上記測定液の吸光度から各項目毎に減算する方
法(検体ブランク法)や、実際の検体のブランク液を、
定められた2波長で計測して得られる吸光度差を、予め
濁りの基準液(ポリスチレン粉末懸濁液)を上記2波長
で計測して得られた吸光度を単位濁度あたりの吸光度に
換樟した値で除し、その値にl単波について基めておい
た他の波長(反応液の吸光度計測波長)への換p定数を
乗じて、それを当該波長での検体自身の濁りとして、反
応液の吸光度から減じて補正する方法(待聞昭54−6
3785号公報)などが知られている。In order to correct this, we prepared a sample blank solution for each item by mixing the sample and a blank reaction reagent (reaction components removed from each reaction reagent), and under the same measurement conditions as the above measurement solution. There is a method of measuring the absorbance and subtracting the absorbance of these sample blank solutions for each item from the absorbance of the above-mentioned measurement solution (sample blank method), or using the blank solution of the actual sample.
The absorbance difference obtained by measuring at the two specified wavelengths was converted into the absorbance per unit turbidity by measuring the turbidity reference solution (polystyrene powder suspension) at the above two wavelengths in advance. This value is multiplied by the conversion p constant to another wavelength (absorbance measurement wavelength of the reaction solution) based on the l single wave, and this is taken as the turbidity of the sample itself at that wavelength, and the reaction is calculated. Correction method by subtracting from the absorbance of the liquid (Machimon Sho 54-6
3785), etc. are known.
しかし、前者の方法では、自動分析装置においてはブラ
ンク液H側用のチpンネルを多数必要とする問題点があ
る。一方、後省の方法では、濁りの基準液の入手が容易
ではなく、濁り成分の粒径が異なればスペクトルが異な
るので、単一の基準液を乳び血清などの検体の濁りを総
括した基準液とするのには無理がある。すなわち、乳び
血清の主たる濁り成分であるカイロミクロンの粒径は約
0.5pyp、リポタンパクのうらプレーβ−リポタン
パクは約0.08虐、β−リポタンパクは約0.035
膚、α−リポタンパクは約0.015.iと各々粒径が
相異しており、検体の濁りが何に由来しているものかに
よりスペクトルの形が異なるのでポリエチレン粉末を単
一の基準物質とする前記基準液を用いる補正方法では正
確な補正が困難であった。However, the former method has a problem in that it requires a large number of tip channels for the blank liquid H side in an automatic analyzer. On the other hand, with Gosho's method, it is not easy to obtain a standard solution for turbidity, and the spectrum differs depending on the particle size of the turbidity component, so a single standard solution is used as a standard that summarizes the turbidity of samples such as chyle serum. It is impossible to make it into a liquid. That is, the particle size of chylomicron, which is the main turbidity component of chyle serum, is about 0.5 pyp, the particle size of lipoprotein β-lipoprotein is about 0.08 pyp, and the particle size of β-lipoprotein is about 0.035 pyp.
α-lipoprotein in the skin is about 0.015. The particle size of each sample is different, and the shape of the spectrum differs depending on the origin of the turbidity of the sample. Therefore, the correction method using the standard solution using polyethylene powder as a single reference material is not accurate. It was difficult to make appropriate corrections.
この発明は、かかる問題点を解消すべくなされたもので
あり、ことに、1検体に対してそれぞれを異なった波長
で計測するためのブランクチャンネルを多数必要とせず
、しかも上記濁りの基準液などを用いることなく、濁り
成分による誤差を可能な限り正確に除去できる多項目生
化学分析方法を提供しようとするものである。This invention was made to solve these problems, and in particular, it does not require a large number of blank channels for measuring each sample at different wavelengths, and it also eliminates the need for the turbidity reference solution mentioned above. The purpose of the present invention is to provide a multi-item biochemical analysis method that can eliminate errors caused by turbidity components as accurately as possible without using a turbidity component.
(ニ)問題点を解決するための手段
かくしてこの発明によれば、懸濁物質を混在する検体の
多項目生化学分析を行なうに際し、各項目毎に分割され
た検体に各々の項目測定用の反応試薬を混合して測定液
とし、これら各測定液の所定波長における吸光度を各々
計測しこれらの各吸光度に基づいて複数項目の定聞を行
なうことがらなり、
さらに検体にブランク反応用試薬を混合した一つの検体
ブランク液を調製し、このブランク液の吸光度を少なく
とも二種の波長によりt1測して波長−吸光度の回帰関
数を求め、この回帰関数から上記各項目についての計測
波長にお【ノるブランク吸光度を算出し、この各ブラン
ク吸光度により上記各測定液の吸光度を補正することを
特徴とする多項目生化学分析方法が提供される。(d) Means for Solving the Problems Thus, according to the present invention, when performing multi-item biochemical analysis of a sample containing suspended solids, a sample for each item measurement can be assigned to the sample divided into each item. The reaction reagents are mixed to form a measurement solution, the absorbance of each of these measurement solutions at a predetermined wavelength is measured, and multiple items are determined based on each absorbance.Furthermore, a blank reaction reagent is mixed with the sample. Prepare one specimen blank solution, measure the absorbance of this blank solution at t1 using at least two different wavelengths, obtain a wavelength-absorbance regression function, and use this regression function to determine the measurement wavelength for each of the above items. A multi-item biochemical analysis method is provided, which is characterized in that the blank absorbance of each measurement solution is corrected by calculating the blank absorbance of each of the blank absorbances.
この発明の最も特徴とする点は、乳び血清のごとき懸濁
物質を含有する検体を対象として多項目分析を行なう際
に、一つの検体について単一の検体ブランク液を用いる
点にあり、かつかかる単一の検体ブランク液について、
二種以上の波長における吸光度を計測して検体ブランク
液についての波長−吸光度回帰関数を求め、これに基づ
いて各項目について計測される波長での吸光度を篩出し
、これを反応液の吸光度から差引くことにより乳びを補
正する点および濁りの基準液を必要としない点にある。The most distinctive feature of this invention is that a single sample blank solution is used for one sample when performing multi-item analysis on a sample containing suspended solids such as chyle serum, and For such a single sample blank solution,
The absorbance at two or more wavelengths is measured to obtain a wavelength-absorbance regression function for the sample blank solution, and based on this, the absorbance at the wavelength measured for each item is sieved, and this is calculated as a difference from the absorbance of the reaction solution. The advantages are that chyle can be corrected by subtraction and that no turbidity standard solution is required.
この発明の方法に用いる反応試薬は、意図する分析項目
に対応する当該分野で公知の種々の反応試薬が用いられ
る。これらの反応試薬の中には、例えば、検体中の抗体
に抗原抗体反応させて比濁分析するための抗血清試薬等
も含まれる。As the reaction reagent used in the method of the present invention, various reaction reagents known in the art that correspond to the intended analysis item are used. These reaction reagents include, for example, antiserum reagents for performing nephelometric analysis by causing an antigen-antibody reaction with antibodies in a specimen.
この発明に用いるブランク反応用試薬は、上記反応試薬
から反応成分を除いたものが吸収をもたないものであれ
ば、いずれの反応試薬に対応するものであってもよく、
例えば、反応試薬の溶媒となるlli Wli液、生理
食1シ水、水などが適用できる。The blank reaction reagent used in this invention may correspond to any reaction reagent as long as the reaction reagent from which the reaction component is removed has no absorption.
For example, LliWli solution, physiological saline, water, etc., which serve as a solvent for the reaction reagent, can be used.
かかるブランク反応用試薬を検体と混合した検体ブラン
ク液は一検体につき一つ調製しておけばよい。One specimen blank solution prepared by mixing such a blank reaction reagent with a specimen may be prepared for each specimen.
上記検体ブランク液の吸光度測定は、少なくとも二種の
波長により行なわれる。通常、より正確な回帰関数を得
るために、計測波長を増すことが適している。通常、各
項目の計測は340〜750nmの範囲内で行なわれる
ため、この範囲における波長−吸光度回帰関数が得られ
るべく、この範囲内の2〜4種の波長を適宜分散して選
択するのが好ましい。ただし、意図する各項目の計測波
長の範囲が狭い場合には、これら両端付近の少なくとも
二種の波長に基づいて回帰関数を求めればよい。The absorbance measurement of the sample blank solution is performed using at least two different wavelengths. It is usually appropriate to increase the measurement wavelength to obtain a more accurate regression function. Usually, each item is measured within the range of 340 to 750 nm, so in order to obtain a wavelength-absorbance regression function in this range, it is recommended to appropriately disperse and select 2 to 4 wavelengths within this range. preferable. However, if the intended measurement wavelength range for each item is narrow, the regression function may be determined based on at least two types of wavelengths near both ends.
回帰関数の求め方について以下説明する。The method for determining the regression function will be explained below.
まず計測波長λ(n■)をχ軸に、吸光度A(AbS)
をy軸にとると、濁りのスペクトルは例えば第1図のよ
うになる。濁った試料を同時に0種の波長λ1、A2・
・・・・・Anで計測した場合の吸光度を各々AI、A
2・・・・・・八〇とすると、波長と吸光度の関係はA
=aλb (a、bは定数)の式に近似できる。ここで
定数aは濁りの程度、bは濁り成分の平均粒径で決まる
。従って波長と吸光の組み合せ(λ、A)=(λs、A
t>、(A2、A2)・・・・・・(An 、 An
)でべき乗回帰(この場合最小二乗法)づれば、定数a
、bの値が決定できるので、これに基づいて任意の波長
におけるブランク液の吸光度を推定することができる。First, with the measurement wavelength λ (n■) on the χ axis, the absorbance A (AbS)
If the y-axis is taken as the y-axis, the turbidity spectrum will be as shown in FIG. 1, for example. At the same time, 0 different wavelengths λ1, A2, and
...The absorbance when measured with An is AI and A, respectively.
2...If it is 80, the relationship between wavelength and absorbance is A
It can be approximated to the formula =aλb (a and b are constants). Here, the constant a is determined by the degree of turbidity, and b is determined by the average particle size of the turbidity component. Therefore, the combination of wavelength and absorption (λ, A) = (λs, A
t>, (A2, A2)...(An, An
) by power regression (least squares method in this case), the constant a
, b can be determined, and based on this, the absorbance of the blank liquid at any wavelength can be estimated.
また、前述のごとく乳び血清中の濁り成分はカイロミク
ロンとりボタンバクの2種類に大別されるため、より厳
格な回帰を行なうには、波長と吸光度の関係をA=at
λbl+a2λト2で表わし、al、blはカイロミク
ロンに由来、a2、b2はリポタンパクに由来する定数
として、異なる少なくとも4つの波長からat、a7、
b工、l12を求めて波長と吸光度の回帰関数とするの
が適している。しかしながら、実用分析においては、前
述のごとき平均粒径からのべき乗回帰で充分に意図する
補正ができることが見出されている。In addition, as mentioned above, the turbid components in chyle serum can be roughly divided into two types: chylomicron and botanical, so in order to perform a more rigorous regression, the relationship between wavelength and absorbance should be expressed as A = at
It is expressed as λbl+a2λto2, where al, bl are constants derived from chylomicrons, a2, b2 are constants derived from lipoproteins, and at, a7,
It is suitable to calculate b, l12 and use it as a regression function of wavelength and absorbance. However, in practical analysis, it has been found that the intended correction can be made sufficiently by power regression from the average particle size as described above.
なお、各測定反応液と検体ブランク液における検体の混
合比が異なる場合には、容量補正を行なえばよく、必ず
しもこれらの最終反応液中の検体濃度が一致し−Cなく
てもよい。ブランク液ff1vB(〃)、その中の検体
fivB (11>、測定液it vA(xl)、そ
の中の検体量vA(1!)とし、検体ブランク液の波長
λにおける上記回帰関数にょる算出吸光度をAB 、測
定反応液の波長λにおける吸゛光度をA△とすると、測
定反応液の波長λにおける実質的な反応による吸光度A
cは、
Ac =AA −(VB ・VA/VA −VB
) −ABで求めることができる。Note that if the mixing ratios of the analytes in each measurement reaction solution and the sample blank solution are different, volume correction may be performed, and the analyte concentrations in these final reaction solutions do not necessarily have to match -C. Blank liquid ff1vB (〃), specimen fivB (11>) in it, measurement liquid it vA (xl), amount of specimen in it vA (1!), calculated absorbance using the above regression function at the wavelength λ of the specimen blank liquid. If AB is the absorbance of the measurement reaction solution at the wavelength λ, and A△ is the absorbance of the measurement reaction solution at the wavelength λ, then the absorbance A due to the substantial reaction at the wavelength λ of the measurement reaction solution is
c is Ac = AA - (VB ・VA/VA - VB
) -AB can be obtained.
この発明の方法は、通常、多項目に対応する複数の分析
ラインを備えた多項目自動分析装置を用い、さらに、ブ
ランク反応用試薬を検体に添加する分注手段と、この検
体ブランク液の吸光度を少なくとも2種の波長で各々計
測する多波長光度計を備えたブランクラインを付設して
行なうのが好ましい。さらに、上記ブランクラインで計
測された2種以上の吸光度に基づいて懸濁物質が混在す
る各々の検体による検体ブランク液について波長−吸光
度の回帰関数を求めて任意の測定項目・波長における検
体ブランク吸光度を算出してかつ必要に応じて前記容量
補正を行ない、これを反応液の吸光度から差引く演算を
行なう演算部をプログラム制御されたマイクロプロセッ
サで構成して自動化するのが好ましい。かかる多項目生
化学分析装置の構成を第2図に示した。第2図において
、[IH21・・・は複数の分析ライン、(3)は単一
のブランクライン、(4) (4)・・・は測定液、(
4A)は検体ブランク液、f5) (5) (51・・
・は検体分注器、!6H7)は反応試薬、(8)はブラ
ンク反応用試薬、(9)(至)は各々の項目測定用の波
長固定光学計測系、01)は多波長測光可能な光学計測
系で(11A ”)は分光111i1121は光電検出
器、(131は上記補正演n部をそれぞれ示すものであ
る。The method of the present invention usually uses a multi-item automatic analyzer equipped with multiple analysis lines corresponding to multiple items, and further includes a dispensing means for adding a blank reaction reagent to the sample, and an absorbance of the sample blank solution. It is preferable that a blank line equipped with a multi-wavelength photometer that measures each wavelength at least at two different wavelengths be provided. Furthermore, based on the absorbance of two or more types measured on the blank line, a wavelength-absorbance regression function is calculated for each sample blank solution containing suspended solids, and the sample blank absorbance at any measurement item/wavelength is calculated. It is preferable to automate the calculation by using a program-controlled microprocessor to calculate the volume, perform the volume correction as necessary, and subtract it from the absorbance of the reaction solution. The configuration of such a multi-item biochemical analyzer is shown in FIG. In Fig. 2, [IH21... is a plurality of analysis lines, (3) is a single blank line, (4) (4)... is a measurement liquid, (
4A) is sample blank solution, f5) (5) (51...
・A sample dispenser! 6H7) is a reaction reagent, (8) is a blank reaction reagent, (9) (to) is a fixed wavelength optical measurement system for measuring each item, 01) is an optical measurement system capable of multi-wavelength photometry (11A '') 111 and 1121 are photoelectric detectors, and 131 is the above-mentioned correction processing unit, respectively.
(ホ)作 用
この発明の方法によれば、測定液中に存在する検体中の
懸濁物質の散乱等に基づく吸光度の正の誤差が補正され
ることとなる。(E) Effect According to the method of the present invention, a positive error in absorbance due to scattering of suspended matter in a sample present in a measurement solution is corrected.
(へ)実施例
3種類の実検体(乳び血清>504に対して、各々ブラ
ンク反応用試薬として生理食塩水を2.5 xlを加え
てブランク液を調製し、340nmと700nmでの吸
光度を測定し、最小二乗法によって波長と吸光度の関係
Δ=a Abl、:おける定数a及びbを算出した。(F) Example For three types of actual samples (Chyle serum > 504), prepare a blank solution by adding 2.5 xl of physiological saline as a blank reaction reagent to each sample, and measure the absorbance at 340 nm and 700 nm. The constants a and b in the relationship between wavelength and absorbance Δ=a Abl, were calculated by the least squares method.
かかる回帰関数に基づいて、このブランク液の400.
450,500,550,600及び650nm 1.
:おける吸光度を締出した。一方、実際に340〜70
0nmの間で走査して得られたスペクトルは第3図に示
すごとくであった。Based on such a regression function, 400.
450, 500, 550, 600 and 650nm 1.
: The absorbance at On the other hand, actually 340-70
The spectrum obtained by scanning between 0 nm was as shown in FIG.
上記、回帰関数に基づいた400〜650nmの算出吸
光度と、実測値(第3図)による400〜650nmの
吸光度とを比較した結果を第1表に示す。Table 1 shows the results of a comparison between the calculated absorbance at 400 to 650 nm based on the regression function and the absorbance at 400 to 650 nm based on the measured value (FIG. 3).
(以下余白、次頁に続く)
第 1 表
(単位 mAbs)
このように、前記回帰関数による値と、実際の吸光度と
はほぼ一致しており、異なる波長におけるブランク液の
吸光度を実際に測定することなく、正確に推定すること
が可能であることが判る。従って、上記回帰関数を用い
ることにより多項目生化学分析における各項目について
濁りの補正を簡便に行なうことができることが判明した
。(Margins below, continued on next page) Table 1 (Unit: mAbs) In this way, the values obtained by the regression function and the actual absorbance are almost the same, and the absorbance of the blank liquid at different wavelengths is actually measured. It turns out that it is possible to estimate accurately without any errors. Therefore, it has been found that by using the above regression function, it is possible to easily correct turbidity for each item in a multi-item biochemical analysis.
(ト)発明の効果
この発明の方法によれば、従来のごとぎ特殊な濁りの基
準液を用いることなく、しかも多数のブランクチャンネ
ルを必要ともせず、エンドポイント法による多項目生化
学分析を濁りによる誤差を生じることなく行なうことが
できる。従って、ことに犬山の検体を扱う生化学自動分
析方法や装置に極めて有用な方法である。(G) Effects of the Invention According to the method of the present invention, multi-item biochemical analysis using the end point method can be performed without using a special turbid standard solution as in the past, and without requiring a large number of blank channels. This can be done without causing errors due to turbidity. Therefore, it is an extremely useful method especially for biochemical automatic analysis methods and devices that handle Inuyama specimens.
第1図は、この発明の方法における波長−吸光度回帰関
数の決定についての説明図、第2図は、この発明の方法
を実施する装置を例示する構成説明図、第3図は実施例
における波長と吸光度との関係を示すグラフ図である。
(4)・・・・・・測定液、 (4A)・・・・・・
検体ブランク液、(6) [7・・・・・・反応試薬、
(8)・・・・・・ブランク反応用試薬、01)・・・
・・・多波長測光可能な光学11測系、OJ・・・・・
・補正演算部。
第 2図
+1A
第 3 !二1
適長(nm)FIG. 1 is an explanatory diagram for determining the wavelength-absorbance regression function in the method of the present invention, FIG. 2 is a configuration explanatory diagram illustrating an apparatus for carrying out the method of the present invention, and FIG. 3 is a diagram for explaining the wavelength-absorbance regression function in the embodiment. It is a graph figure showing the relationship between and absorbance. (4)...Measurement liquid, (4A)...
Sample blank solution, (6) [7...Reaction reagent,
(8)...Blank reaction reagent, 01)...
...Optical 11 measuring system capable of multi-wavelength photometry, OJ...
・Correction calculation section. Figure 2 + 1A 3rd! 21 Appropriate length (nm)
Claims (1)
うに際し、各項目毎に分割された検体に各々の項目測定
用の反応試薬を混合して測定液とし、これら各測定液の
所定波長における吸光度を各々計測しこれらの各吸光度
に基づいて複数項目の定量を行なうことからなり、 さらに検体にブランク反応用試薬を混合した一つの検体
ブランク液を調製し、このブランク液の吸光度を少なく
とも二種の波長により計測して波長−吸光度の回帰関数
を求め、この回帰関数から上記各項目についての計測波
長におけるブランク吸光度を算出し、この各ブランク吸
光度により上記各測定液の吸光度を補正することを特徴
とする多項目生化学分析方法。 2、懸濁物質が混在する検体が、乳び血清である特許請
求の範囲第1項記載の分析法。[Scope of Claims] 1. When performing multi-item biochemical analysis of a sample containing suspended solids, a sample divided into each item is mixed with a reaction reagent for measuring each item to form a measurement solution, The absorbance of each measurement solution at a predetermined wavelength is measured, and multiple items are quantified based on each absorbance.Furthermore, one sample blank solution is prepared by mixing the sample with a blank reaction reagent, and this The absorbance of the blank liquid is measured at at least two wavelengths to obtain a wavelength-absorbance regression function, and from this regression function, the blank absorbance at the measurement wavelength for each of the above items is calculated. A multi-item biochemical analysis method characterized by correcting the absorbance of. 2. The analytical method according to claim 1, wherein the sample containing suspended solids is chyle serum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021060A JPH0723871B2 (en) | 1986-01-31 | 1986-01-31 | Multi-item biochemical analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61021060A JPH0723871B2 (en) | 1986-01-31 | 1986-01-31 | Multi-item biochemical analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62179639A true JPS62179639A (en) | 1987-08-06 |
JPH0723871B2 JPH0723871B2 (en) | 1995-03-15 |
Family
ID=12044355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61021060A Expired - Lifetime JPH0723871B2 (en) | 1986-01-31 | 1986-01-31 | Multi-item biochemical analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723871B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243745A (en) * | 2001-02-15 | 2002-08-28 | Tosoh Corp | Lipoprotein analyzer |
WO2010055890A1 (en) * | 2008-11-17 | 2010-05-20 | 株式会社日立ハイテクノロジーズ | Automatic analysis device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5463785A (en) * | 1977-10-31 | 1979-05-22 | Hitachi Ltd | Colorimetric analysis method |
JPS5946554A (en) * | 1982-09-09 | 1984-03-15 | Jeol Ltd | Evaluation of serum information |
JPS60125542A (en) * | 1983-12-13 | 1985-07-04 | Olympus Optical Co Ltd | Measured data correcting method |
-
1986
- 1986-01-31 JP JP61021060A patent/JPH0723871B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5463785A (en) * | 1977-10-31 | 1979-05-22 | Hitachi Ltd | Colorimetric analysis method |
JPS5946554A (en) * | 1982-09-09 | 1984-03-15 | Jeol Ltd | Evaluation of serum information |
JPS60125542A (en) * | 1983-12-13 | 1985-07-04 | Olympus Optical Co Ltd | Measured data correcting method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243745A (en) * | 2001-02-15 | 2002-08-28 | Tosoh Corp | Lipoprotein analyzer |
WO2010055890A1 (en) * | 2008-11-17 | 2010-05-20 | 株式会社日立ハイテクノロジーズ | Automatic analysis device |
JP5319696B2 (en) * | 2008-11-17 | 2013-10-16 | 株式会社日立ハイテクノロジーズ | Automatic analyzer |
US8936754B2 (en) | 2008-11-17 | 2015-01-20 | Hitachi High-Technologies Corporation | Automatic analysis device |
Also Published As
Publication number | Publication date |
---|---|
JPH0723871B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kemp | Theoretical aspects of one-point calibration: causes and effects of some potential errors, and their dependence on concentration. | |
US4263512A (en) | Colorimetric method for liquid sampler including disturbing chromogens | |
EP3008449B1 (en) | Calibration method for photometry and associated analysis system | |
JPH0619351B2 (en) | Latex agglutination reaction measuring device | |
JP3203798B2 (en) | How to measure chromogen | |
CA2283154C (en) | Method and apparatus for measurement of blood substitutes | |
JP3212779B2 (en) | Method for compensating for differences in the spectrometer of an optical analyzer | |
JPS5852550A (en) | Dissolution method for ghost peak of flow injection analysis | |
JPS6332132B2 (en) | ||
JPS62179639A (en) | Multi-item biochemical analysis | |
JP3168633B2 (en) | Prozone determination method and analysis method in antigen-antibody reaction | |
JP3223097B2 (en) | Method for analyzing the concentration of multiple components contained in a solution | |
JPH0514855B2 (en) | ||
JP2934653B2 (en) | Automatic analyzer | |
JPS6118982B2 (en) | ||
JPH07318564A (en) | Blood analyzer | |
US7198955B1 (en) | Method and apparatus for measurement of blood substitutes | |
JPH0576571B2 (en) | ||
JP2000121562A (en) | Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance | |
JPS63101758A (en) | Automatic chemical analyzer | |
JPH0257863B2 (en) | ||
JPH0290041A (en) | Method and apparatus for spectrochemical analysis | |
JPS6060558A (en) | Analyzing method for plural measurements | |
JPS63103945A (en) | Method for measuring information in serum | |
JPS6229016B2 (en) |