JPS6158937B2 - - Google Patents
Info
- Publication number
- JPS6158937B2 JPS6158937B2 JP14677376A JP14677376A JPS6158937B2 JP S6158937 B2 JPS6158937 B2 JP S6158937B2 JP 14677376 A JP14677376 A JP 14677376A JP 14677376 A JP14677376 A JP 14677376A JP S6158937 B2 JPS6158937 B2 JP S6158937B2
- Authority
- JP
- Japan
- Prior art keywords
- collector
- electron beam
- collectors
- heat
- frequency circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010894 electron beam technology Methods 0.000 claims description 37
- 239000004575 stone Substances 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 4
- 230000017525 heat dissipation Effects 0.000 claims description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000010292 electrical insulation Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Landscapes
- Microwave Tubes (AREA)
Description
本発明は、増幅作用に寄与した電子ビームを最
終的に捕獲するコレクタを有する電子ビーム管の
うち、能率改善のため、前記コレクタを多段に構
成した多段コレクタ形電子ビーム管に関する。
進行波管などの電子ビーム管において、電子銃
から発せられた電子ビームは、高周波回路部で高
周波の増幅作用を行なつた後コレクタに捕獲され
る。この際、電子ビームをしてコレクタに衝突す
るエネルギーが小さくなるような状態でコレクタ
に到達させると電子ビーム管の能率は大となる。
このような能率改善のため、コレクタ電圧を高周
波回路部電圧より下げる方法が一般に用いられて
来た。しかし、高周波の増幅作用に関与した電子
ビームの速度にはバラツキがあるから、これら速
度のバラツキを有する電子ビームを単一コレクタ
で捕獲するには、最も速度が遅い電子がコレクタ
に到達し得る電圧をコレクタ電圧としなければな
らず、能率の大幅な改善は難しい。このため、さ
らに能率を改善する目的で、コレクタを複数個に
分割した種々の電子ビーム管が考えられている。
たしかに、コレクタの分割数を増し、高周波回路
部より離れるに従つて高周波回路電圧より順次低
い電圧を各コレクタに個々に印加すれば、高周波
の増幅作用に関与した電子ビームはコレクタに速
度選別されて捕獲される。すなわち、速度の遅い
電子ビームは高い電位のコレクタに、また、速度
の速い電子ビームは低い電位のコレクタに捕獲さ
れるので能率が改善される。しかしながら、コレ
クタを複数個に分割するには各コレクタ間を電気
的に絶縁する必要があると共に、各コレクタの冷
却のため、個々のコレクタ外周部には接地点より
電気的に絶縁された放熱体を装着する必要があ
り、コレクタ部の構造が複雑化し、放熱体などを
含めたコレクタ部の大形化、重量増などの欠点が
あつた。また、個々のコレクタの冷却のため各コ
レクタ間または各コレクタと接地点間の電気的絶
縁を十分とりにくい欠点もあつた。特にコレクタ
を3段以上に分割した場合前記の欠点が顕著に現
われる。
本発明は、複数個に分割したコレクタを有し、
複数個のコレクタが接地点から電気的に絶縁され
ている電子ビーム管において、コレクタに発生す
る熱を簡単な構造でもつて外部に効果的に伝達さ
せることにより、十分な冷却効果を得るようにし
て、加えて接地点よりコレクタの絶縁を容易とし
た多段コレクタ形電子ビーム管を提供することに
ある。本発明によれば、電子ビームを発生する電
子銃と高周波の相互作用が行なわれる高周波回路
部と電子ビームを集束するための磁界集束装置と
前記高周波回路部より低電位にある複数個のコレ
クタとを具備する電子ビーム管において、複数個
のコレクタに発生する熱をコレクタの支持及び電
気的絶縁のためにコレクタ間に介在された絶縁石
を熱伝導路として一つのコレクタに伝導させて複
数個のコレクタの冷却を行なう多段コレクタ形電
子ビーム管が得られる。つぎに図面を参照して本
発明を詳細に説明する。第1図は本発明を実施し
た進行波管を示し、この進行波管は、電子銃1、
高周波回路部(遅波回路)2、高周波入力部3、
高周波出力部4、磁界集束装置5、コレクタ11
および放熱体13などを含み、電子銃側は支持台
14、コレクタ側は支持台15を介して保持板6
の上に載置固定されている。しかして、コレクタ
11は、第1コレクタ7、第2コレクタ8、第3
コレクタ9、第4コレクタ10と軸方向に分割さ
れ、それらは円筒状絶縁石17を介してそれぞれ
電気的に絶縁されている。また第1コレクタ7と
高周波回路部2は円筒状絶縁石12を介して電気
的に絶縁されている。コレクタの材料には熱伝導
率がよく溶融点温度が高い銅、モリブデン、また
はニツケルなどが使用され、円筒状絶縁石17は
絶縁石類の中で熱伝導率が良く、緻密質のベリリ
アセラミツク、またはアルミナセラミツクからな
り、円筒状絶縁石17の両端面にメタライズ加工
が施され第1〜第4コレクタとはろう付で接着さ
れている。このような電子ビーム管において、電
子銃1から発せられた電子ビームは磁界集束装置
5により集束され、高周波回路部2の中心軸部を
通過し、この間に高周波入力部3から印加された
高周波と相互作用による増幅作用が行なわれて高
周波出力は高周波出力部4から取り出される。し
かして、高周波増幅作用を行なつた電子ビームの
速度にはバラツキがあるので、電子ビームの速度
に応じて電子ビームは第1〜第4コレクタ7,
8,9,10のいずれかに捕獲される。この場
合、第1〜第3コレクタ7,8,9で発生する熱
を円筒状絶縁石17を熱伝導路として第4コレク
タ10に伝達させ、第4コレクタ10の外周に配
設された放熱体13から電気絶縁の絶縁板16を
介して接地電位にある保持板6へ放熱し第1〜第
4コレクタ7,8,9,10を冷却している。絶
縁板16は熱伝導のよいベリリアセラミツク板な
どからなり、放熱体13と絶縁板16と支持台1
5の間は半田付などで接着固定されている。
このような構造にすれば、第1〜第3コレクタ
7,8,9で発生する熱は放熱体13をもつ第4
コレクタ10へ十分伝導され、さらに放熱体13
の熱は熱流し場を形成する保持板に速やかに放熱
されるので、第1〜第3コレクタ7,8,9に
各々放熱体を直接取付けて冷却する必要がなくコ
レクタの分割数には関係なく、熱流し場へ通ずる
放熱体への熱伝導路は一系統だけでよく、コレク
タ部構造が簡単化されると共にコレクタ部の小形
化、軽量化に対して極めて有利となる。またコレ
クタは接地点に対して円筒状絶縁石17及び絶縁
板16により十分絶縁することが出来る。各コレ
クタ間の熱抵抗は円筒状絶縁石17の熱伝導率及
び寸法で決まり、各コレクタに消費される電力及
びコレクタに許容される温度を考慮して円筒状絶
縁石17の寸法を選定することで前記絶縁石17
は熱伝導径路としての役目を十分はたすことが出
来る。
次に第1図の実施例における具体的数値例を示
す。第1〜第4コレクタ7,8,9,10を厚さ
1mmの銅板で製作し、円筒状絶縁石17の寸法を
外径50mm×内径40mm×長さ5mmとした場合の各コ
レクタ間の熱抵抗RTはコレクタの熱抵抗が小さ
いのでほぼ円筒状絶縁石17の熱抵抗に等しくR
T=/λ×S(℃/W)で表わされる。ここ
で、λ,S,は各々円筒状絶縁石17の熱伝導
率、断面積、長さであり、λは約1.25W/℃×cm
(ベリリアセラミツク)約0.2W/℃×cm(アルミ
ナセラミツク)である。上記数値をRTの式に代
入すると、RTは0.6℃/W(ベリリアセラミツク
の場合)、3.5℃/W(アルミナセラミツクの場
合)となる。
各コレクタに10Wの電力が消費された場合の各
コレクタの温度上昇を、放熱体13が配設される
第4コレクタ10の温度をT4℃として求めると
第1表の結果が得られる。
The present invention relates to a multistage collector type electron beam tube in which the collector is configured in multiple stages in order to improve efficiency, among electron beam tubes having a collector that ultimately captures an electron beam that has contributed to an amplification effect. In an electron beam tube such as a traveling wave tube, an electron beam emitted from an electron gun undergoes high frequency amplification in a high frequency circuit section and is then captured by a collector. At this time, the efficiency of the electron beam tube increases if the electron beam reaches the collector in a state in which the energy of collision with the collector is reduced.
In order to improve efficiency, a method has generally been used in which the collector voltage is lowered than the high frequency circuit voltage. However, since there are variations in the speed of the electron beams involved in the high-frequency amplification effect, in order to capture electron beams with these variations in speed with a single collector, it is necessary to apply a voltage that allows the slowest electrons to reach the collector. collector voltage, making it difficult to significantly improve efficiency. For this reason, various electron beam tubes in which the collector is divided into a plurality of pieces have been considered in order to further improve efficiency.
It is true that if the number of collector divisions is increased and voltages that are sequentially lower than the high-frequency circuit voltage are applied to each collector individually as the distance from the high-frequency circuit increases, the electron beams involved in the high-frequency amplification effect will be speed-sorted by the collector. be captured. That is, a slow electron beam is captured by a collector with a high potential, and a fast electron beam is captured by a collector with a low potential, improving efficiency. However, in order to divide the collector into multiple pieces, it is necessary to electrically insulate each collector, and in order to cool each collector, a heat sink is installed on the outer periphery of each collector, which is electrically insulated from the ground point. It was necessary to attach the collector part, which complicated the structure of the collector part, and there were drawbacks such as an increase in the size and weight of the collector part including the heat sink. Furthermore, in order to cool the individual collectors, it is difficult to provide sufficient electrical insulation between the collectors or between each collector and the ground point. In particular, when the collector is divided into three or more stages, the above-mentioned drawbacks become noticeable. The present invention has a collector divided into a plurality of pieces,
In an electron beam tube in which multiple collectors are electrically insulated from the ground point, sufficient cooling effect is obtained by effectively transmitting the heat generated in the collectors to the outside with a simple structure. In addition, it is an object of the present invention to provide a multi-stage collector type electron beam tube in which the collector can be easily insulated from the ground point. According to the present invention, an electron gun that generates an electron beam, a high frequency circuit section in which high frequency interaction is performed, a magnetic field focusing device for focusing the electron beam, and a plurality of collectors that are at a lower potential than the high frequency circuit section. In an electron beam tube equipped with A multi-stage collector type electron beam tube with collector cooling is obtained. Next, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows a traveling wave tube embodying the present invention, and this traveling wave tube includes an electron gun 1,
High frequency circuit section (slow wave circuit) 2, high frequency input section 3,
High frequency output section 4, magnetic field focusing device 5, collector 11
and a heat radiator 13, etc., and a support plate 14 on the electron gun side and a holding plate 6 on the collector side via a support plate 15.
It is placed and fixed on top. Thus, the collector 11 includes the first collector 7, the second collector 8, and the third collector 7.
It is divided into a collector 9 and a fourth collector 10 in the axial direction, and these are electrically insulated via a cylindrical insulating stone 17. Further, the first collector 7 and the high frequency circuit section 2 are electrically insulated via a cylindrical insulating stone 12. The material used for the collector is copper, molybdenum, or nickel, which has good thermal conductivity and a high melting point temperature, and the cylindrical insulating stone 17 is made of beryllia ceramic, which is dense and has good thermal conductivity among insulating stones. or alumina ceramic, both end surfaces of the cylindrical insulating stone 17 are metallized and bonded to the first to fourth collectors by brazing. In such an electron beam tube, the electron beam emitted from the electron gun 1 is focused by the magnetic field focusing device 5 and passes through the central axis of the high frequency circuit section 2, during which time it is combined with the high frequency applied from the high frequency input section 3. An amplification effect is performed by the interaction, and high frequency output is extracted from the high frequency output section 4. However, since there are variations in the speed of the electron beam that has undergone high-frequency amplification, the electron beam is transferred to the first to fourth collectors 7, 7,
Captured on either 8, 9, or 10. In this case, the heat generated in the first to third collectors 7, 8, and 9 is transferred to the fourth collector 10 using the cylindrical insulating stone 17 as a heat conduction path, and a heat dissipation body disposed on the outer periphery of the fourth collector 10 is used. 13 to the holding plate 6 at ground potential via an electrically insulating plate 16 to cool the first to fourth collectors 7, 8, 9, and 10. The insulating plate 16 is made of a beryllia ceramic plate or the like with good heat conduction, and includes the heat sink 13, the insulating plate 16, and the support base 1.
The space between 5 and 5 is fixed with adhesive such as soldering. With such a structure, the heat generated in the first to third collectors 7, 8, and 9 is transferred to the fourth collector with the heat sink 13.
It is sufficiently conducted to the collector 10, and furthermore, the heat sink 13
Since the heat is quickly radiated to the holding plate that forms the heat flow field, there is no need to directly attach a heat radiator to each of the first to third collectors 7, 8, and 9 for cooling, and the number of divided collectors is independent. Therefore, only one heat conduction path to the heat sink leading to the heat flow field is required, which simplifies the structure of the collector part and is extremely advantageous in reducing the size and weight of the collector part. Further, the collector can be sufficiently insulated from the ground point by the cylindrical insulating stone 17 and the insulating plate 16. The thermal resistance between each collector is determined by the thermal conductivity and dimensions of the cylindrical insulating stone 17, and the dimensions of the cylindrical insulating stone 17 are selected in consideration of the power consumed by each collector and the temperature allowed for the collector. Insulating stone 17
can fully fulfill its role as a heat conduction path. Next, specific numerical examples in the embodiment shown in FIG. 1 will be shown. The heat between each collector when the first to fourth collectors 7, 8, 9, and 10 are made of copper plates with a thickness of 1 mm, and the dimensions of the cylindrical insulating stone 17 are 50 mm in outer diameter x 40 mm in inner diameter x 5 mm in length. Since the thermal resistance of the collector is small, the resistance R T is approximately equal to the thermal resistance of the cylindrical insulating stone 17.
It is expressed as T =/λ×S(°C/W). Here, λ and S are the thermal conductivity, cross-sectional area, and length of the cylindrical insulating stone 17, respectively, and λ is approximately 1.25W/℃×cm
(Beryllium ceramic) approximately 0.2W/℃×cm (Alumina ceramic). When the above values are substituted into the formula for R T , R T becomes 0.6°C/W (in the case of beryllia ceramic) and 3.5°C/W (in the case of alumina ceramic). When the temperature rise of each collector when 10 W of power is consumed in each collector is determined by assuming that the temperature of the fourth collector 10 where the heat sink 13 is disposed is T 4 °C, the results shown in Table 1 are obtained.
【表】
第1表から明らかなように、第1〜第4コレク
タ7,8,9,10の中で最も高温となるコレク
タは第1コレクタ7であるが、第4コレクタ10
の温度T4は放熱体13により100℃以下に容易に
冷却することが出来るので、円筒状絶縁石17の
材料にアルミナセラミツクを用いた場合でも、第
1コレクタ7の温度は高々300℃程度であり、コ
レクタ温度の許容値(400〜600℃)からみて十分
実用に供することが出来る。また、円筒状絶縁石
17の材料をベリリアセラミツクとすれば、各コ
レクタに50Wの消費電力を与えても、第1コレク
タの温度を300℃以下にすることが可能で、大電
力の電子ビーム管の製作が可能となる。また、円
筒状絶縁石17の内外径を波形とすれば、各コレ
クタ間の熱抵抗を変えることなく各コレクタ間の
電気的絶縁はさらに改善される。
第2図、第3図は本発明による電子ビーム管の
他の実施例のコレクタ部の軸方向断面図を示し、
第1図と同一あるいは相当部分は同一番号を付し
ている。第2図においては、第2〜第4コレクタ
8,9,10で発生する熱を円筒状絶縁石17を
熱伝導路として第1コレクタ7に伝達させ、第1
コレクタ7の外部延長金属体周囲に最短距離で接
地保持板6に通じる放熱体13を配設している。
第2図の実施例によれば、第1図の実施例に比較
して第1、第2コレクタ7,8の冷却が容易とな
ると共に、放熱体13から保持板6への放熱面積
を大きくすることが可能で、第1、第2コレクタ
7,8の消費電力が大きい電子ビーム管に適して
いる。
第3図においては、第2〜第4コレクタ8,
9,10で発生する熱を円筒状絶縁石17を熱伝
導路として第1コレクタに伝達させ、さらに第1
コレクタに集められた熱を第1コレクタ7に発生
する熱と共に円筒状絶縁石12を介して高周波回
路部の端部18に伝達させ、高周波回路部端部の
外周囲に延在させた真空容器の一部となる外周筒
19に放熱羽根付の放熱体20を配設し、第1〜
第4コレクタ7,8,9,10を冷却している。
円筒状絶縁石12は円筒状絶縁石17の材料と同
じくベリリアセラミツクあるいはアルミナセラミ
ツクから作られる。外周筒19の端部にろう付な
どで固定されたセラミツク22には高圧リード線
(図示せず)が設けられ、そのリード線を介して
第1〜第4コレクタ7,8,9,10に電圧が供
給される。
第3図の実施例によれば、第1図の実施例に比
較して放熱体20と嵌合する外周筒19は接地点
となるため放熱体20は第1図、第2図に示され
る放熱体13のように電気絶縁板上に配設する必
要がなく、放熱体20には放熱翼を直接取付ける
ことも可能となる。また、外周筒19は真空容器
の一部を構成するので、第1〜第4コレクタ7,
8,9,10と円筒状絶縁石12,17とは真空
封止のためにかならずしもろう付などで接着固定
する必要はなく、ねじ止めなどで固定することも
出来るし、加えて円筒状絶縁石12,17には第
1〜第4コレクタ7,8,9,10の外径とほぼ
等しい円筒状のものでなく、前記外径の数分の一
の外径を持つ棒状のものを用い、コレクタ外周に
そつて各コレクタ間に複数個ずつ配設することも
可能である。
第3図の実施例では、コレクタの接地点に対す
る電気的絶縁は主に円筒状絶縁石12の寸法で決
まるが、円筒状絶縁石12の内径、外径部を直線
状ではなく波形にすれば、第1コレクタと高周波
回路端部18間が実質的に長くなるので、接地点
に対するコレクタの電気的絶縁の改善が可能とな
る。さらに、第4コレクタ10と円周筒19の間
に点線で示す21の絶縁環を入れれば、機械的補
強および熱伝導の向上に役立つ。
なお上記実施例においては、電子ビーム管とし
てコレクタを4段に分割した同軸結合形の進行波
管を用いた場合について言及したけれども、本発
明はこれに限定されることなく、コレクタを2段
以上に分割した導波管結合形のクライストロンな
どの電子ビーム管に適用出来ることはもちろんで
ある。
本発明によれば、コレクタの分割数に関係なく
コレクタに発生する熱を各コレクタ間の電気的絶
縁及び各コレクタと接地点間の電気的絶縁を劣化
させることなく、外部に効果的に伝達させること
が出来、能率を改善する目的でコレクタを分割し
てもコレクタ部の大形化、垂量増を防止すること
が可能となる。特に3〜5段以上にコレクタを分
割した電子ビーム管に本発明を適用した場合に大
なる効果が得られる。[Table] As is clear from Table 1, the first collector 7 has the highest temperature among the first to fourth collectors 7, 8, 9, and 10, but the fourth collector 10 has the highest temperature.
The temperature T 4 of the first collector 7 can be easily cooled down to 100°C or less by the heat sink 13, so even if alumina ceramic is used as the material for the cylindrical insulating stone 17, the temperature of the first collector 7 will be around 300°C at most. Therefore, considering the permissible collector temperature (400 to 600°C), it can be put to practical use. Furthermore, if the material of the cylindrical insulating stone 17 is beryllium ceramic, the temperature of the first collector can be kept below 300°C even if 50W of power consumption is given to each collector, and the high-power electron beam It becomes possible to manufacture pipes. Furthermore, if the inner and outer diameters of the cylindrical insulating stone 17 are wave-shaped, the electrical insulation between the collectors can be further improved without changing the thermal resistance between the collectors. 2 and 3 show axial cross-sectional views of the collector portion of another embodiment of the electron beam tube according to the present invention,
The same or corresponding parts as in FIG. 1 are given the same numbers. In FIG. 2, the heat generated in the second to fourth collectors 8, 9, and 10 is transferred to the first collector 7 using the cylindrical insulating stone 17 as a heat conduction path.
A heat radiator 13 is disposed around the externally extending metal body of the collector 7 and communicates with the ground holding plate 6 at the shortest distance.
According to the embodiment shown in FIG. 2, cooling of the first and second collectors 7 and 8 becomes easier compared to the embodiment shown in FIG. Therefore, it is suitable for an electron beam tube in which the first and second collectors 7 and 8 consume a large amount of power. In FIG. 3, the second to fourth collectors 8,
9 and 10 is transferred to the first collector using the cylindrical insulating stone 17 as a heat conduction path.
The heat collected in the collector is transmitted together with the heat generated in the first collector 7 to the end 18 of the high frequency circuit section via the cylindrical insulating stone 12, and the vacuum container extends around the outer periphery of the end of the high frequency circuit section. A heat dissipating body 20 with heat dissipating blades is disposed in the outer circumferential cylinder 19 which becomes a part of the first to
The fourth collectors 7, 8, 9, and 10 are cooled.
The cylindrical insulating stone 12 is made of beryllia ceramic or alumina ceramic, the same as the material of the cylindrical insulating stone 17. A high-voltage lead wire (not shown) is provided on the ceramic 22 fixed to the end of the outer cylinder 19 by brazing or the like, and the first to fourth collectors 7, 8, 9, and 10 are connected via the lead wire. Voltage is supplied. According to the embodiment shown in FIG. 3, compared to the embodiment shown in FIG. 1, the outer circumferential cylinder 19 that fits into the heat sink 20 serves as a grounding point, so the heat sink 20 is different from that shown in FIGS. 1 and 2. Unlike the heat radiator 13, it is not necessary to arrange the heat radiator blades on an electrically insulating plate, and the heat radiator blades can be directly attached to the heat radiator 20. Further, since the outer cylinder 19 constitutes a part of the vacuum container, the first to fourth collectors 7,
8, 9, 10 and the cylindrical insulating stones 12, 17 do not necessarily need to be adhesively fixed by brazing or the like for vacuum sealing, but can also be fixed with screws, etc. 12 and 17 are not cylindrical ones that are approximately equal to the outer diameters of the first to fourth collectors 7, 8, 9, and 10, but are rod-shaped ones that have outer diameters that are a fraction of the outer diameters, It is also possible to arrange a plurality of them between each collector along the outer circumference of the collector. In the embodiment shown in FIG. 3, electrical insulation with respect to the ground point of the collector is mainly determined by the dimensions of the cylindrical insulating stone 12, but if the inner and outer diameters of the cylindrical insulating stone 12 are made waveform instead of straight. , since the distance between the first collector and the high frequency circuit end 18 is substantially longer, it is possible to improve the electrical isolation of the collector with respect to the ground point. Furthermore, if 21 insulating rings shown by dotted lines are inserted between the fourth collector 10 and the circumferential cylinder 19, mechanical reinforcement and heat conduction will be improved. Although in the above embodiment, a coaxially coupled traveling wave tube with a collector divided into four stages is used as the electron beam tube, the present invention is not limited to this, and the collector can be divided into two or more stages. Of course, it can be applied to an electron beam tube such as a waveguide-coupled klystron that is divided into two. According to the present invention, regardless of the number of collector divisions, heat generated in the collector is effectively transmitted to the outside without deteriorating the electrical insulation between each collector and the electrical insulation between each collector and a ground point. Even if the collector is divided for the purpose of improving efficiency, it is possible to prevent the collector portion from increasing in size and drooping amount. In particular, great effects can be obtained when the present invention is applied to an electron beam tube in which the collector is divided into three to five stages or more.
第1図は本発明による多段コレクタ形電子ビー
ム管の一実施例を示す軸方向断面図、第2図、第
3図は本発明による多段コレクタ形電子ビーム管
の他の実施例のコレクタ部の軸方向断面図であ
る。
なお図において、1は電子銃、2は高周波回路
部、5は磁界集束装置、6は保持板、7,8,
9,10は各々第1、第2、第3、第4コレク
タ、11は第1〜第4コレクタを含めたコレク
タ、12は円筒状絶縁石、13は放熱体、16は
絶縁板、17は円筒状絶縁石、18は高周波回路
部端部、19は外周筒、20は放熱羽根付の放熱
体、21は絶縁環を示す。
FIG. 1 is an axial sectional view showing one embodiment of the multi-stage collector type electron beam tube according to the present invention, and FIGS. 2 and 3 show the collector section of another embodiment of the multi-stage collector type electron beam tube according to the present invention. FIG. 3 is an axial cross-sectional view. In the figure, 1 is an electron gun, 2 is a high-frequency circuit section, 5 is a magnetic field focusing device, 6 is a holding plate, 7, 8,
9 and 10 are first, second, third, and fourth collectors, respectively; 11 is a collector including the first to fourth collectors; 12 is a cylindrical insulating stone; 13 is a heat sink; 16 is an insulating plate; 17 is a A cylindrical insulating stone, 18 an end of a high frequency circuit, 19 an outer cylinder, 20 a heat radiator with heat radiating vanes, and 21 an insulating ring.
Claims (1)
作用が行なわれる高周波回路部と電子ビームを集
束するための磁界集束装置と前記相互作用が行な
われた電子ビームを捕獲するコレクタとを具備
し、かつ前記コレクタは前記高周波回路部の一端
部から複数個の絶縁石を介して互いに絶縁された
複数個のコレクタからなる多段コレクタ形電子ビ
ーム管において、前記高周波回路部の一端部また
は複数個のコレクタのうち一個のコレクタの外端
部に軸方向に伸延する金属製筒状体を設け、この
金属製筒状体の外周に放熱体を密着させて取り付
け、前記コレクタで発生した熱を前記絶縁石およ
び金属製筒状体を介して放熱体に伝導し放散する
ようにしたことを特徴とする多段コレクタ形電子
ビーム管。1.Equipped with an electron gun that generates an electron beam, a high-frequency circuit unit that performs high-frequency interaction, a magnetic field focusing device that focuses the electron beam, and a collector that captures the electron beam that has undergone the interaction, and In a multi-stage collector type electron beam tube consisting of a plurality of collectors insulated from one end of the high frequency circuit section through a plurality of insulating stones, the collector is located at one end of the high frequency circuit section or of the plurality of collectors. A metal cylindrical body extending in the axial direction is provided at the outer end of one of the collectors, and a heat dissipation body is closely attached to the outer periphery of this metal cylindrical body, so that the heat generated in the collector is transferred to the insulating stone and the metal cylindrical body. A multi-stage collector type electron beam tube characterized in that the electron beam tube conducts heat to a heat dissipation body through a metal cylindrical body and dissipates the heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14677376A JPS5370659A (en) | 1976-12-06 | 1976-12-06 | Multi stage collector type electron beam tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14677376A JPS5370659A (en) | 1976-12-06 | 1976-12-06 | Multi stage collector type electron beam tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5370659A JPS5370659A (en) | 1978-06-23 |
JPS6158937B2 true JPS6158937B2 (en) | 1986-12-13 |
Family
ID=15415210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14677376A Granted JPS5370659A (en) | 1976-12-06 | 1976-12-06 | Multi stage collector type electron beam tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5370659A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55139740A (en) * | 1979-04-19 | 1980-10-31 | Nec Corp | Multistage collector type electron beam tube |
JPS5652840A (en) * | 1979-10-01 | 1981-05-12 | Nec Corp | Multistage collector type electron beam tube |
JPS6217970Y2 (en) * | 1980-04-22 | 1987-05-08 | ||
JPS5782938A (en) * | 1980-11-12 | 1982-05-24 | Nec Corp | Microwave tube |
-
1976
- 1976-12-06 JP JP14677376A patent/JPS5370659A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5370659A (en) | 1978-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3662212A (en) | Depressed electron beam collector | |
WO2003077273A3 (en) | High power density collector | |
JPS6158937B2 (en) | ||
US6670760B2 (en) | Collector structure of traveling wave tube having a lossy ceramic member | |
JP3038830B2 (en) | Conduction-cooled multistage collector | |
US3717787A (en) | Compact depressed electron beam collector | |
JPS5835340B2 (en) | Sokudohenchiyoukanyoutadanshiyudenkiyoku | |
US3824425A (en) | Suppressor electrode for depressed electron beam collector | |
JP2003123999A (en) | X-ray tube device | |
US3666983A (en) | Wave propagating structure for crossed field devices | |
US4358707A (en) | Insulated collector assembly for power electronic tubes and a tube comprising such a collector | |
JPS6255259B2 (en) | ||
US3383551A (en) | Coaxial magnetron with improved thermal dissipation | |
JPS6055949B2 (en) | Multistage collector type electron beam tube | |
US3368084A (en) | Cascaded thermionic energy converter tube | |
US3250945A (en) | Interdigital wave structure having fingers connected to side walls by insulation means | |
JPS5816123Y2 (en) | Multistage collector type electron beam tube | |
JPS624814B2 (en) | ||
JPS6217971Y2 (en) | ||
US3612932A (en) | Crossed-field microwave tube having a fluid cooled cathode and control electrode | |
JPS6157650B2 (en) | ||
JP3334694B2 (en) | Traveling wave tube | |
JP3036414B2 (en) | Electron gun using cold cathode | |
JPH04277446A (en) | Heat emitting structure of collector of electron tube | |
CN109755084A (en) | X-band bimodulus multiple-beam klystron |