JPS61279028A - Overcurrent tripper for circuit breaker - Google Patents
Overcurrent tripper for circuit breakerInfo
- Publication number
- JPS61279028A JPS61279028A JP12087085A JP12087085A JPS61279028A JP S61279028 A JPS61279028 A JP S61279028A JP 12087085 A JP12087085 A JP 12087085A JP 12087085 A JP12087085 A JP 12087085A JP S61279028 A JPS61279028 A JP S61279028A
- Authority
- JP
- Japan
- Prior art keywords
- bimetal
- fixed
- core
- circuit
- overcurrent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Breakers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
この発明は回路遮断器の特に熱動を離形の過電流引外し
装置に関する。The present invention relates to overcurrent tripping devices for circuit breakers, particularly for thermal release.
回路遮断器の過電流に対する動作時間は、たとえば第1
表に示すJIS−C8370により規定されている。
第1表
そして第1表で明らかのように定格電流の200%通電
の引外し動作時間は、定格電流が小さくなるにしたがっ
て短くなっている。このようなことから定格電流の小さ
な回路遮断器は規格の動作時間を満足させるために、過
電流用外し装置として次の2種類が用いられている。そ
れはまず過負荷領域を保護するものとして電路電流を直
接バイメタルに流す部分、短絡領域を保護するものとし
てバイメタルに流れた大きな電路電流で動作する電磁石
でなる熱動電磁形と、つぎのオイルダッシュポットと電
磁石とを併用した完全電磁形とである。
ところが完全電磁形の場合は、構造が複雑であることに
ともなう価格低減の困難さと、油漏れ防止の管理が面倒
なことなどから採用が減少傾向にある。
熱動電磁形で電路電流を直接バイメタルに流す方式のも
のには、その−例として第7図に示すものが知られてい
る0図において絶縁ケースlおよび絶縁カバー2内には
一部しか図示されていない遮断極の負荷側に過電流用外
し装置が設置され、過電流用外し装置は遮断極に挿入さ
れ電路電流が直接に流れるバイメタル3と、バイメタル
3を囲み電源側(図で左側)が開口されコ字状になる固
定鉄心4および固定鉄心4の開口側に揺動自在に支承さ
れた可動鉄心5でなる。電磁石6と、バイメタル3の湾
曲および可動鉄心5の吸引動作により係合し動作する引
外し機構7とを主構成要素として備えている。バイメタ
ル3はその一端が接続板8および接続線9を介して図示
されていない可動接触子に接続され、その他端は接続線
10および端子導体11を負荷側端子12に接続されて
いる。そしてバイメタル3の他端には引外し機構7との
係合点の調整ねじ13が進退自在に螺着されている。
電磁石6の可動鉄心5はばね14により反吸引側に付勢
されるとともに引外し機構7と保合可能なレバー15が
延長されている。接続板8および端子導体11はそれぞ
れねじ16および17により絶縁ケース1に固着されて
いる。なお可動接−触子と接離する図示されていない固
定接触子は端子導体18を介して電源側端子19に接続
されている。
以上の構成において過電流用外し装置の動作は、直接に
流れるバイメタル3と、バイメタル3を囲み電源側(図
で左側)が開口されコ字状になる固定鉄心4および固定
鉄心4の開口側に揺動自在に支承された可動鉄心5でな
る。電磁石6と、バイメタル3の湾曲および可動鉄心5
の吸引動作により係合し動作する引外し機構7とを主構
成要素として備えている。バイメタル3はその一端が接
続板8および接続&19を介して図示されていない可動
接触子に接続され、その他端は接続線lOおよび端子導
体11を負荷側端子12に接続されている。そしてバイ
メタル3の他端には引外し機構7との係合点の調整ねじ
13が進退自在に螺着されている。
電磁石6の可動鉄心5はばね14により反吸引側に付勢
されるとともに引外し機構7と保合可能なレバー15が
延長されている。接続板8および端子導体11はそれぞ
れねじ16および17により絶縁ケースlに固着されて
いる。なお可動接触子と接離する図示されていない固定
接触子は端子導体18を介して電源側端子19に接続さ
れている。
以上の構成において過電流用外し装置の動作は、いま遮
断極に過負荷領域の過電流が流れたとすると、バイメタ
ル3には自体の持つ抵抗と流れた過電流とによりそれに
見合うジュール熱が発生し、バイメタル3の自由端が反
時計方向に湾曲して調整ねじ13の先端が引外し機構7
を反時計方向に回動し、図示されていない開閉機構との
保合をはずすことで遮断動作するようになっている。ま
た遮断極に短絡領域の大きな事故電流が流れるとバイメ
タル3も当然発熱して湾曲することになるが、それより
前に固定鉄心4に発生した磁束がばね14の力に抗して
可動鉄心5を吸引し、レバー15の先端が過負荷領域の
場合と同様に引外し機構7および開閉機構を介して遮断
動作するようになっている。ところがこの構成の場合に
一部前述したように事故電流のような大きな電流が遮断
完了までの間バイメ、タル3に流れると、バイメタル3
の永久変形や溶断が起こり、短絡容量の大きな電路には
使用できないという欠点があった。The operating time of the circuit breaker against overcurrent is, for example, the first
It is defined by JIS-C8370 shown in the table. As is clear from Tables 1 and 1, the tripping operation time when energizing at 200% of the rated current becomes shorter as the rated current becomes smaller. For this reason, the following two types of overcurrent release devices are used for circuit breakers with small rated currents in order to satisfy the standard operating time. Firstly, there is a part that protects the overload area where the circuit current flows directly through the bimetal, a thermal electromagnetic type that is made up of an electromagnet that operates with the large current that flows through the bimetal as a part that protects the short circuit area, and the next part is the oil dash pot. This is a completely electromagnetic type that uses both an electromagnet and an electromagnet. However, in the case of fully electromagnetic types, their use is decreasing due to the difficulty of reducing the price due to their complicated structure and the troublesome management of preventing oil leakage. An example of a thermal electromagnetic type in which the circuit current is passed directly through the bimetal is shown in Figure 7. An overcurrent release device is installed on the load side of the cutoff pole that is not connected to the cutoff pole. It consists of a fixed iron core 4 that is open and has a U-shape, and a movable iron core 5 that is swingably supported on the open side of the fixed iron core 4. The main components include an electromagnet 6 and a tripping mechanism 7 that is engaged and operated by the bending of the bimetal 3 and the suction action of the movable iron core 5. One end of the bimetal 3 is connected to a movable contact (not shown) via a connecting plate 8 and a connecting wire 9, and the other end is connected to a connecting wire 10 and a terminal conductor 11 to a load-side terminal 12. An adjusting screw 13 at the engagement point with the tripping mechanism 7 is screwed onto the other end of the bimetal 3 so that it can move forward and backward. The movable core 5 of the electromagnet 6 is biased toward the anti-attraction side by a spring 14, and a lever 15 that can be engaged with the tripping mechanism 7 is extended. Connection plate 8 and terminal conductor 11 are fixed to insulating case 1 by screws 16 and 17, respectively. A fixed contact (not shown) that comes into contact with and separates from the movable contact is connected to a power supply terminal 19 via a terminal conductor 18. In the above configuration, the overcurrent disconnection device operates between the bimetal 3 that flows directly, the fixed core 4 that surrounds the bimetal 3 and has a U-shaped opening on the power supply side (left side in the figure), and the open side of the fixed core 4. It consists of a movable iron core 5 that is swingably supported. Electromagnet 6 and bimetal 3 curved and movable core 5
The main component includes a tripping mechanism 7 that is engaged and operated by the suction operation of the holder. One end of the bimetal 3 is connected to a movable contact (not shown) via the connection plate 8 and the connection &19, and the other end is connected to the connection wire 10 and the terminal conductor 11 to the load side terminal 12. An adjusting screw 13 at the engagement point with the tripping mechanism 7 is screwed onto the other end of the bimetal 3 so that it can move forward and backward. The movable core 5 of the electromagnet 6 is biased toward the anti-attraction side by a spring 14, and a lever 15 that can be engaged with the tripping mechanism 7 is extended. The connecting plate 8 and the terminal conductor 11 are fixed to the insulating case l by screws 16 and 17, respectively. Note that a fixed contact (not shown) that comes into contact with and separates from the movable contact is connected to a power supply side terminal 19 via a terminal conductor 18 . In the above configuration, the operation of the overcurrent disconnection device is such that if an overcurrent in the overload region flows to the cutoff electrode, a corresponding amount of Joule heat will be generated in the bimetal 3 due to its own resistance and the flowing overcurrent. , the free end of the bimetal 3 is bent counterclockwise, and the tip of the adjustment screw 13 is connected to the tripping mechanism 7.
The shutoff operation is performed by rotating the switch counterclockwise to disengage it from an opening/closing mechanism (not shown). Furthermore, if a large fault current in the short-circuit region flows through the breaking pole, the bimetal 3 will naturally heat up and bend, but before that, the magnetic flux generated in the fixed core 4 will resist the force of the spring 14 and move the movable core 3. is sucked, and the tip of the lever 15 performs a shutoff operation via the tripping mechanism 7 and the opening/closing mechanism in the same way as in the case of an overload area. However, in the case of this configuration, if a large current such as an accident current flows through the bimetal 3 until the interruption is completed, as described above, the bimetal 3
This has the disadvantage that permanent deformation and melting occur, making it unsuitable for use in electrical circuits with large short-circuit capacity.
この発明の目的は上述した従来の欠点を除去し、短絡容
量の大きな電路にも使用できる直熱式熱動電磁形の回路
遮断器の過電流4外し装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an overcurrent 4 disconnection device for a direct heating type thermal electromagnetic circuit breaker which eliminates the above-mentioned conventional drawbacks and can be used in electrical circuits with large short circuit capacities.
この発明の要点は上述の目的を達成するために、直接に
電路電流が流され過電流になると湾曲するバイメタルを
囲むように配置され、−側が開口する固定鉄心と、該固
定鉄心の開口側に揺動自在に支承され前記電路電流が事
故電流になると復帰ばねに抗して固定鉄心に吸引される
可動鉄心と、該可動鉄心の吸引時および前記バイメタル
の湾曲時にそれぞれによって操作される引外し機構と、
前記固定鉄心の開口側に設置され前記バイメタルの一端
に接続された固定接点と、該固定接点と接離可能に前記
可動鉄心に取付けられ前記バイメタルの他端に接続され
た可動接点とを備え、事故電流が流れることにともなう
可動鉄心の吸引によりバイメタルの分流回路を形成して
損傷を防止することにある。The gist of this invention is to achieve the above-mentioned object by providing a fixed iron core that is arranged so as to surround a bimetal that bends when an overcurrent occurs when a current is directly passed through it, and that is open on the negative side; A movable core that is swingably supported and is attracted to the fixed core against a return spring when the circuit current becomes a fault current, and a tripping mechanism that is operated by the movable core when the movable core is attracted and when the bimetal is bent. and,
A fixed contact installed on the opening side of the fixed iron core and connected to one end of the bimetal, and a movable contact attached to the movable iron core so as to be able to come into contact with and separate from the fixed contact and connected to the other end of the bimetal, The purpose is to prevent damage by forming a bimetallic shunt circuit by attracting the movable iron core due to the flow of fault current.
第1図および第2図はこの発明による回路遮断器の過電
流4外し装置の一実施例を示す図で、図において前述し
た第7図の従来装置と同一部分には同一符号を付すこと
により重複説明を避は相違点について説明する。この実
施例の従来装置との相違する点は、電磁石6の固定鉄心
4と可動鉄心5との間に可動鉄心5の吸引動作時に閉成
し、バイメタル3の両端間を短絡する分流回路を設けた
ことである6分流回路は固定鉄心4の一側脚片の内壁に
鋲20により固着され両側片の端面に沿うように折曲げ
られた支持片21と、支持片21の可動鉄心5の対向側
にろう付けなどにより一体化され負荷側端子12の端子
導体11に接M線22を介して接続された固定接点23
と、固定接点23と対向し接離可能に可動鉄心5にろう
付けなどにより一体化され接続板8に接続線24を介し
て接続された可動接点25により構成されている。この
ことで可動接点25は接続線24および接続板8を介し
てバイメタル3の一端(図で下側)に接続され、固定接
点23は接続線22.端子導体11および接続線10を
介してバイメタル3の他端(図で上側)に接続されてお
り、したがって可動接点25と固定接点23との開成で
バイメタル3の分流回路は形成される。そして分流回路
はその抵抗が少な(ともバイメタル3の抵抗よりは小さ
いことが必要で、望ましいこととしては可能な限り小さ
いことがよく、その手段としては、たとえば支持片21
の材質を導電材とするなどがある。
以上の構成において動作につき説明すると、まず過負荷
領域において前述した第7図の従来装置と同様である。
そして短絡領域ではバイメタル3に事故電流が流れると
、直ちに可動鉄心5が固定鉄心4に吸引されることから
、可動接点25と固定接点23とが閉成してバイメタル
3の両端を短絡すると同時に、レバー15が引外し機構
7を介して開閉機構を動作され遮断器を開離させる。こ
のような過程から短絡領域での遮断動作は可動鉄心5が
吸引されてから遮断完了までの分流回路が形成されてい
ることからバイメタル3の電流は短絡されると同時に大
幅に小さくなる。したがってバイメタル3が永久変形し
たり溶断することはない。
次に第3図、第4図ならびに第5図、第6図によりこの
発明による回路遮断器の過電流4外し装置のそれぞれ異
なる実施例について説明する。まず第3図、第4図の実
施例において、この実施例の前述した第1図の実施例と
の相違する点は分流回路を構成する固定接点23の取付
けを電磁石6の固定鉄心4の一側の脚片に支持脚4aを
折曲げ延長し、支持脚4aに固定接点23をろう付けな
どにより取付けたことである。したがってこの実施例で
は前述の実施例よりも加工上においてコスト削減が可能
になる利点があるものの、分流回路の抵抗値低減に限定
があることから使用電路の短絡容量の大きさに対する制
約が残る。つぎに第5図、第6図の実施例において、こ
の実施例の前述の第1図および第3図の両実施例との相
違点は、固定接点23と端子導体11との間の接続線2
6を固定鉄心4にコイル状に巻回することにより、分流
回路閉成後の電磁石6のアンペアターン減少にともなう
吸引力低下を補うようにしたものである。そしてこのこ
とは吸引後から遮断完了までの間吸引開始時と同様な分
流回路の抵抗すなわち固定、可動の両接点23 、25
間の接触圧力を遮断完了直前まで保つようにしたもので
ある。なおこの実施例では接続線26が固定鉄心4をI
Z回巻きとなっているがこれに限ることのないことはい
うまでもない。
以上のことからこの実施例においても分流回路の抵抗が
接点間の接触抵抗を含めて安定することになり、したが
って短絡容量のおおきな電路における使用が可能となる
。1 and 2 are diagrams showing an embodiment of the overcurrent 4 disconnection device for a circuit breaker according to the present invention. In the figures, the same parts as those of the conventional device shown in FIG. I will explain the differences to avoid redundant explanations. The difference between this embodiment and the conventional device is that a shunt circuit is provided between the fixed core 4 and the movable core 5 of the electromagnet 6, which is closed during the suction operation of the movable core 5 and short-circuits both ends of the bimetal 3. The six branch circuits have a supporting piece 21 fixed to the inner wall of one leg of the fixed iron core 4 with rivets 20 and bent along the end faces of both side pieces, and a movable iron core 5 of the supporting piece 21 facing each other. A fixed contact 23 is integrated with the side by brazing or the like and connected to the terminal conductor 11 of the load side terminal 12 via a tangential M wire 22.
The movable contact 25 faces the fixed contact 23 and is integrally integrated with the movable iron core 5 by brazing or the like so as to be able to come into contact with and separate from it, and is connected to the connection plate 8 via a connection wire 24. As a result, the movable contact 25 is connected to one end (lower side in the figure) of the bimetal 3 via the connecting wire 24 and the connecting plate 8, and the fixed contact 23 is connected to the connecting wire 22. It is connected to the other end (upper side in the figure) of the bimetal 3 via the terminal conductor 11 and the connecting wire 10, and therefore, a shunt circuit of the bimetal 3 is formed by opening the movable contact 25 and the fixed contact 23. The resistance of the shunt circuit must be small (it must be lower than the resistance of the bimetal 3, and preferably it is as small as possible.
For example, the material may be a conductive material. The operation of the above-mentioned configuration will be explained. First, in the overload region, the operation is similar to that of the conventional device shown in FIG. 7 described above. In the short-circuit region, when a fault current flows through the bimetal 3, the movable core 5 is immediately attracted to the fixed core 4, so the movable contact 25 and the fixed contact 23 are closed, short-circuiting both ends of the bimetal 3. The lever 15 operates the opening/closing mechanism via the tripping mechanism 7 to open the circuit breaker. Due to this process, the current in the bimetal 3 becomes significantly smaller at the same time as the short circuit occurs because a shunt circuit is formed from when the movable core 5 is attracted to when the cutoff is completed in the short-circuit region. Therefore, the bimetal 3 will not be permanently deformed or fused. Next, different embodiments of the overcurrent 4 disconnecting device for a circuit breaker according to the present invention will be explained with reference to FIGS. 3, 4, 5, and 6. First, in the embodiment shown in FIGS. 3 and 4, the difference between this embodiment and the embodiment shown in FIG. The support leg 4a is bent and extended to the side leg piece, and the fixed contact 23 is attached to the support leg 4a by brazing or the like. Therefore, although this embodiment has the advantage of being able to reduce manufacturing costs over the previous embodiments, there is a limit to the reduction in the resistance value of the shunt circuit, so there remains a restriction on the size of the short circuit capacity of the electrical circuit used. Next, in the embodiment shown in FIGS. 5 and 6, the difference between this embodiment and the embodiments shown in FIGS. 1 and 3 is that the connecting wire between the fixed contact 23 and the terminal conductor 11 2
By winding the magnet 6 around the fixed iron core 4 in the form of a coil, it is possible to compensate for a decrease in the attractive force due to a decrease in ampere turns of the electromagnet 6 after the shunt circuit is closed. This means that the resistance of the shunt circuit is the same as that at the start of suction from the end of suction to the completion of shutoff, that is, both the fixed and movable contacts 23 and 25
The contact pressure between the two is maintained until just before the shutoff is completed. In this embodiment, the connecting wire 26 connects the fixed iron core 4 to I.
Although the winding is Z-turn, it goes without saying that the winding is not limited to this. From the above, in this embodiment as well, the resistance of the shunt circuit, including the contact resistance between the contacts, is stabilized, making it possible to use it in an electrical circuit with a large short-circuit capacity.
この発明によれば過負荷領域保護の直熱形バイメタルの
両端に短絡領域保護の電磁石動作で閉成される分流回路
を設けたことにより、またこの分流回路を電磁石の固定
鉄心に巻回し励磁することとの併用構成とすることによ
り、小電流で短絡容量の大きな電路に使用できる回路遮
断器の過電流用外し装置の提供ができる。According to this invention, a shunt circuit is provided at both ends of the directly heated bimetal for overload region protection, which is closed by electromagnetic operation for short circuit region protection, and this shunt circuit is wound around the fixed core of the electromagnet to excite it. By using this configuration in combination with this, it is possible to provide an overcurrent release device for a circuit breaker that can be used for small current and large short-circuit capacity electrical circuits.
第1図および第2図はこの発明による回路遮断器の回路
遮断器の過電流用外し装置の第1の実施例を示し、第1
図は要部拡大斜視図、第2図は要部断面を示す回路遮断
器の側面図、第3図および第4図はこの発明による回路
遮断器の過電流用外し装置の第2の実施例を示し、第3
図は要部拡大斜視図、第4図は要部断面を示す回路遮断
器の側面図、第5図および第6図はこの発明による回路
遮断器の過電流用外し装置の第3の実施・例を示し、第
5図は要部拡大斜視図、第6図は要部断面を示す回路遮
断器の側面図、第7図は従来の回路遮断器の過電流用外
し装置の一例の要部断面を示す側面図である。
3:バイメタル、4:固定鉄心、5:可動鉄心、7;引
外し機構、22,24,26 :接続線、23:固定接
第1図
第2図
第5図
第6図1 and 2 show a first embodiment of an overcurrent disconnection device for a circuit breaker according to the present invention;
The figure is an enlarged perspective view of the main parts, FIG. 2 is a side view of the circuit breaker showing a cross section of the main parts, and FIGS. 3 and 4 are a second embodiment of the overcurrent release device for a circuit breaker according to the present invention. and the third
FIG. 4 is a side view of the circuit breaker showing a cross section of the main part, and FIGS. 5 and 6 show a third embodiment of the overcurrent release device for a circuit breaker according to the present invention. For example, Fig. 5 is an enlarged perspective view of the main part, Fig. 6 is a side view of the circuit breaker showing a cross section of the main part, and Fig. 7 is the main part of an example of a conventional overcurrent release device for a circuit breaker. FIG. 3 is a side view showing a cross section. 3: Bimetal, 4: Fixed core, 5: Movable core, 7: Tripping mechanism, 22, 24, 26: Connection wire, 23: Fixed connection Figure 1 Figure 2 Figure 5 Figure 6
Claims (1)
イメタルを囲むように配置され一側が開口する固定鉄心
と、該固定鉄心の開口側に揺動自在に支承され、前記電
路電流が事故電流になると復帰ばねに抗して固定鉄心に
吸引される可動鉄心と、該可動鉄心の吸引時および前記
バイメタルの湾曲時にそれぞれによって操作される引外
し機構と、前記固定鉄心の開口側に設置され前記バイメ
タルの一端に接続された固定接点と、該固定接点と接離
可能に前記可動鉄心に取付けられ前記バイメタルの他端
に接続された可動接点とを備えてなることを特徴とする
回路遮断器の過電流引外し装置。 2)特許請求の範囲第1項記載の回路遮断器の過電流引
外し装置において、バイメタルの一端と固定接点との接
続導体を固定鉄心に任意回数巻回させたことを特徴とす
る回路遮断器の過電流引外し装置。[Scope of Claims] 1) A fixed core that is arranged to surround a bimetal that bends when an overcurrent occurs when a current is directly passed through the circuit, and is open on one side, and a fixed core that is swingably supported on the open side of the fixed core; a movable core that is attracted to the fixed core against a return spring when the circuit current becomes a fault current, a tripping mechanism that is operated by the movable core when it is attracted and when the bimetal is bent, and the fixed core. A fixed contact installed on the opening side and connected to one end of the bimetal, and a movable contact attached to the movable core so as to be able to come into contact with and separate from the fixed contact and connected to the other end of the bimetal. Overcurrent tripping device for circuit breakers. 2) In the overcurrent tripping device for a circuit breaker according to claim 1, the circuit breaker is characterized in that the connecting conductor between one end of the bimetal and the fixed contact is wound around a fixed core an arbitrary number of times. overcurrent trip device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12087085A JPS61279028A (en) | 1985-06-04 | 1985-06-04 | Overcurrent tripper for circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12087085A JPS61279028A (en) | 1985-06-04 | 1985-06-04 | Overcurrent tripper for circuit breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61279028A true JPS61279028A (en) | 1986-12-09 |
Family
ID=14796989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12087085A Pending JPS61279028A (en) | 1985-06-04 | 1985-06-04 | Overcurrent tripper for circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61279028A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010251049A (en) * | 2009-04-14 | 2010-11-04 | Tempearl Ind Co Ltd | Electromagnet structure of instantaneous tripping device in circuit breaker |
-
1985
- 1985-06-04 JP JP12087085A patent/JPS61279028A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010251049A (en) * | 2009-04-14 | 2010-11-04 | Tempearl Ind Co Ltd | Electromagnet structure of instantaneous tripping device in circuit breaker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4019097A (en) | Circuit breaker with solid state passive overcurrent sensing device | |
AU2004201267B2 (en) | Remotely controllable circuit breaker including bypass magnet circuit | |
US20110248815A1 (en) | Method For Expanding The Adjustment Range of Overload Protection Devices, Associated Overload Protection Devices, and Their Use | |
US6515569B2 (en) | Circuit breaker with bypass conductor commutating current out of the bimetal during short circuit interruption and method of commutating current out of bimetal | |
US6469600B1 (en) | Remote control circuit breaker with a by-pass lead | |
US3179767A (en) | Circuit breaker with improved electromagnetic tripping device | |
KR910008011B1 (en) | Circuit breaker over current tripping devices | |
US2329053A (en) | Circuit breaker | |
US5684443A (en) | False-trip-resistant circuit breaker | |
JPS61279028A (en) | Overcurrent tripper for circuit breaker | |
US3023288A (en) | Circuit breaker bimetal heater | |
US3703691A (en) | Shunt trip with load terminal | |
US6483408B1 (en) | Circuit breaker with bypass for redirecting high transient current and associated method | |
US2937251A (en) | Circuit breaker | |
JPH0329873Y2 (en) | ||
KR100487408B1 (en) | trip portion structure of MCCB | |
US4419649A (en) | Circuit breaker for use on AC and DC circuits | |
US6560085B1 (en) | Circuit breaker including positive temperature coefficient resistivity element and current limiting element | |
KR200333228Y1 (en) | Trip Device of Circuit Breaker | |
JPS6245658B2 (en) | ||
AU2002212566A1 (en) | Circuit breaker with bypass for redirecting high transient current and associated method | |
JP3790051B2 (en) | Circuit breaker | |
JPH0215308Y2 (en) | ||
KR20240000676U (en) | Adjustable Trip Device of Molded Case Circuit Breaker | |
JP2552518Y2 (en) | Earth leakage breaker |