Nothing Special   »   [go: up one dir, main page]

JPS61234072A - Solid-state image sensor - Google Patents

Solid-state image sensor

Info

Publication number
JPS61234072A
JPS61234072A JP60075862A JP7586285A JPS61234072A JP S61234072 A JPS61234072 A JP S61234072A JP 60075862 A JP60075862 A JP 60075862A JP 7586285 A JP7586285 A JP 7586285A JP S61234072 A JPS61234072 A JP S61234072A
Authority
JP
Japan
Prior art keywords
region
type
light
photodiode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60075862A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Hiroshima
広島 義光
Shigenori Matsumoto
松本 茂則
Toshihiro Kuriyama
俊寛 栗山
Eiji Fujii
英治 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60075862A priority Critical patent/JPS61234072A/en
Publication of JPS61234072A publication Critical patent/JPS61234072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To suppress the decrease in the sensitivity of each photodiode when coloring and the deteriorating in the spectral sensitivity characteristic by alternately varying the conductive types from the main surface of a semiconductor substrate in the depthwise direction of the substrate, and regularly arranging photodiode arrays of different regions. CONSTITUTION:Since an N-type region 27 for forming red (long wavelength light) diode is formed extremely thickly to 6 to 10mum, photoexcited most charge is detected in a diffused region to become a signal charge to remarkably reduce the charge absorbed to an N-type silicon substrate 1. In a green light photodiode, the width of an N-type region 17 is slightly smaller than a red light N-type region to the value (3 to 6mum) matched to the absorption coefficient. In other words, the light of an intermediate wavelength range is sufficiently detected, but long wavelength light range is excluded by the substrate 1. Thus, the spectral sensitivity characteristics of the photodiodes necessary to color can be controlled by regulating the width of the N-type diffused region layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はビデオカメラ等に用いることができるカラー用
固体撮像素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a color solid-state imaging device that can be used in video cameras and the like.

(従来の技術) 近年、固体撮像素子の性能向上は目ざましいものがあり
、とりわけ家庭用カラービデオカメラを中心として実用
段階に達しつつある。
(Prior Art) In recent years, the performance of solid-state image sensing devices has improved markedly, and they are reaching the stage of practical use, especially in home color video cameras.

第3図は、従来の固体撮像素子における画素の模式的断
面図を示すものである。それぞれの画素はカラー化した
ときの青色光、緑色光および赤色光に感度をもつものに
相当する。第3図において1はn型シリコン基板、2は
p型領域、3は二酸化シリコン膜、4.14.24はp
n接合フォトダイオードを形成するn型領域、5,15
.25は出力線につながるドレイン部を形成するn型領
域、6゜16.26は信号読み出しのためのスイッチン
グゲートを形成する多結晶シリコン膜である。なおp型
領域2は10”am−”オーダの不純物濃度を有し、数
μmの接合深さで素子内一様に形成されている。
FIG. 3 shows a schematic cross-sectional view of a pixel in a conventional solid-state image sensor. Each pixel corresponds to one that is sensitive to blue light, green light, and red light when colored. In FIG. 3, 1 is an n-type silicon substrate, 2 is a p-type region, 3 is a silicon dioxide film, and 4.14.24 is a p-type silicon substrate.
n-type region forming an n-junction photodiode, 5, 15
.. 25 is an n-type region forming a drain portion connected to an output line, and 6°16.26 is a polycrystalline silicon film forming a switching gate for signal readout. The p-type region 2 has an impurity concentration on the order of 10"am-" and is formed uniformly within the device with a junction depth of several micrometers.

以上のように構成された画素列の単位画素について、そ
の動作を説明する。
The operation of the unit pixel of the pixel array configured as described above will be explained.

第4図は、第3図に示すA−A’に沿って信号を読み出
した直後の電子ポテンシャルを示したものである。なお
図中の丸印は入射光により発生した電荷、また矢印は電
荷の動きを示している。n型基板1に正のバイアス電圧
Vmmhを印加した状態のもとでpn接合フォトダイオ
ードを形成する。
FIG. 4 shows the electron potential immediately after the signal is read out along the line AA' shown in FIG. Note that the circles in the figure indicate the charges generated by the incident light, and the arrows indicate the movement of the charges. A pn junction photodiode is formed in a state where a positive bias voltage Vmmh is applied to an n-type substrate 1.

n型領域4を通って入射した光は光電変換され電荷を発
生するが、その発生位置により2方向に分離される。す
なわち、第4図の電子ポテンシャルの最大値より表面側
で発生した電荷は矢印(イ)のように移動し、フォトダ
イオードに蓄積され信号電荷となるが、それより深部で
発生した電荷は矢印(ロ)のように移動し、n型基板1
へ吸収されてしまい信号電荷とはならない。矢印(イ)
のように移動した電荷はpn接合容量に一定期間蓄積さ
れたのち、スイッチングゲート6によりドレイン部5へ
と読み出され信号電流となる。ここでカラー素子として
用いられる場合は各フォトダイオード4.14および2
4はそれぞれ波長域の定まった光信号電流を検知するこ
とになる。
The light incident through the n-type region 4 is photoelectrically converted and generates charges, which are separated into two directions depending on the position where the charges are generated. In other words, the charges generated on the surface side of the maximum electron potential in Figure 4 move as shown by the arrow (A) and are accumulated in the photodiode, becoming signal charges, but the charges generated deeper than that move as shown by the arrow (A). b), and move the n-type substrate 1 as shown in
It will be absorbed into the cell and will not become a signal charge. Arrow (a)
The charges moved as shown in the figure are accumulated in the pn junction capacitance for a certain period of time, and then read out to the drain section 5 by the switching gate 6 and become a signal current. Here, when used as a color element, each photodiode 4.14 and 2
4 detects optical signal currents each having a predetermined wavelength range.

(発明が解決しようとする問題点) 上記のような構成では光電変換が行なわれる活性層の幅
が各フォトダイオードに対して同一であるため各波長域
の光に対して感度特性にアンバランスをもたらす欠点を
有していた。これはシリコン内での光吸収係数が波長依
存性をもっており。
(Problems to be Solved by the Invention) In the above configuration, the width of the active layer where photoelectric conversion is performed is the same for each photodiode, resulting in imbalance in sensitivity characteristics for light in each wavelength range. It had its drawbacks. This is because the optical absorption coefficient within silicon has wavelength dependence.

長波長光においては、シリコン基板深部で光電変換する
ため電荷の一部がシリコン基板に吸収され信号電流に寄
与しなくなるためである。
This is because in the case of long-wavelength light, photoelectric conversion occurs deep in the silicon substrate, so a portion of the charge is absorbed by the silicon substrate and does not contribute to the signal current.

本発明の目的は、従来の欠点を解消し、カラー化したと
きの各フォトダイオードの感度低下および分光感度特性
の劣化を抑制することのできるカラー用固体撮像素子を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a color solid-state image pickup device that can eliminate the conventional drawbacks and suppress a decrease in sensitivity of each photodiode and deterioration of spectral sensitivity characteristics when colorizing.

(問題点を解決するための手段) 本発明の固体撮像素子は、半導体基板の主表面から、こ
の半導体基板の深さ方向に導電型を交互に変えて、順次
第1の領域、第2の領域を有し、この第1の領域と第2
の領域とでフォトダイオードを構成し、領域の異なるフ
ォトダイオード列を規則的に配列されているものである
(Means for Solving the Problems) The solid-state image sensing device of the present invention alternately changes the conductivity type from the main surface of the semiconductor substrate in the depth direction of the semiconductor substrate, so that the conductivity types are sequentially changed from the main surface of the semiconductor substrate to the first region and the second region. the first region and the second region.
A photodiode is constituted by a region of , and photodiode rows of different regions are regularly arranged.

(作 用) 上記構成の固体撮像素子では各色相に割り当てられたフ
ォトダイオードに入射する光成分のほとんどが信号電荷
となるため、固体撮像素子全体としての感度低下および
分光感度特性の劣化に対して大幅な改善が可能となる。
(Function) In the solid-state image sensor with the above configuration, most of the light components incident on the photodiodes assigned to each hue become signal charges, so this reduces the sensitivity of the solid-state image sensor as a whole and the deterioration of the spectral sensitivity characteristics. Significant improvements are possible.

(実施例) 本発明の一実施例について、第1図および第2図に基づ
いて説明する。
(Example) An example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の固体撮像素子の3画素分の模式的断面
図を示すものである。同図において第3図と同一部分に
は同一符号を付し、その説明を省略する。
FIG. 1 shows a schematic cross-sectional view of three pixels of the solid-state image sensing device of the present invention. In this figure, the same parts as in FIG. 3 are given the same reference numerals, and their explanations will be omitted.

第3図においてn型領域4,14および24が、第1図
においては各フォトダイオードの割り当てられた分光特
性になるように厚さを調節して、それぞれ、7,17.
27となっている。
The thicknesses of n-type regions 4, 14 and 24 in FIG. 3 are adjusted to have the spectral characteristics assigned to each photodiode in FIG. 1, respectively.
27.

第2図(a)および(b)は、第1図に示すB−B’お
よびc−c’に沿って信号を読み出した直後のポテンシ
ャル分布を示したものである。図中の丸印および矢印は
、第4図の場合と同様に電荷の動きを示している。n型
領域7,17および27を通って入射した光は電荷を発
生するが、p型頭域で発生した電荷のうち1表面方向へ
移動した電荷だけが信号電荷となることは、第3図に示
す従来構成の場合と同じである。
FIGS. 2(a) and 2(b) show potential distributions immediately after signals are read out along lines BB' and cc' shown in FIG. 1. The circles and arrows in the figure indicate the movement of charges as in the case of FIG. 4. Although the light incident through the n-type regions 7, 17, and 27 generates charges, only the charges generated in the p-type head region that move toward one surface become signal charges, as shown in Figure 3. This is the same as the conventional configuration shown in .

しかし1本実施例においては赤色光(長波長光)用ダイ
オードを形成するn型領域27は6ないしl。
However, in this embodiment, the number of n-type regions 27 forming a diode for red light (long wavelength light) is 6 to 1.

μmと極めて厚く形成されているため、第2図(b)に
示すようなポテンシャル分布となっている。このため光
励磁された大部分の電荷は、拡散領域内で検出され信号
電荷となるためn型シリコン基板1へ吸収される電荷は
著しく減少する。緑色光用フォトダイオードではn型領
域17の幅は赤色光用n型領域よりやや小さくし、吸収
係数に合わせた値(3ないし6μm)をとっている。す
なわち、中間波長域の光は充分検知されるが、長波長光
成分はn型シリコン基板1に排除される。また、B−B
″で示す短波長用n型領域7のポテンシャル分布を第2
図(a)に示すが、これは従来構成の第4図の場合とほ
とんど同じもので、表面から浅い所にポテンシャル井戸
を形成し、中間波長域以上の長波長光によって励磁され
る電荷をn型シリコン基板へ拡散吸収させる形状となっ
ている。
Since it is formed extremely thick, .mu.m, it has a potential distribution as shown in FIG. 2(b). Therefore, most of the optically excited charges are detected within the diffusion region and become signal charges, so that the charges absorbed into the n-type silicon substrate 1 are significantly reduced. In the photodiode for green light, the width of the n-type region 17 is slightly smaller than that of the n-type region for red light, and has a value (3 to 6 μm) that matches the absorption coefficient. That is, although light in the intermediate wavelength range is sufficiently detected, long wavelength light components are excluded by the n-type silicon substrate 1. Also, B-B
The potential distribution of the short wavelength n-type region 7 indicated by
As shown in Figure (a), this is almost the same as the conventional configuration shown in Figure 4, in which a potential well is formed shallowly from the surface, and the charge excited by light with a long wavelength in the intermediate wavelength range or above is The shape is such that it is diffused and absorbed into the silicon substrate.

以上のように、本実施例によれば、カラー化の際に必要
な各フォトダイオードの光電変換特性が最大限に発揮さ
れ、素子全体として感度が高く、分光感度特性の優れた
ものとなる。
As described above, according to this embodiment, the photoelectric conversion characteristics of each photodiode necessary for colorization are maximized, and the overall device has high sensitivity and excellent spectral sensitivity characteristics.

なお1本実施例では、シリコン基板をn型としたが、P
型でもpnp構成とすることにより同様の効果が得られ
る。またフォトダイオードをシリコン基板内に形成した
pn接合としたが、アモルファスシリコンあるいは化合
物半導体による構成でも同様の効果が得られる。
In this example, the silicon substrate was of n type, but P
A similar effect can be obtained by using a pnp configuration. Further, although the photodiode is a pn junction formed in a silicon substrate, similar effects can be obtained with a structure made of amorphous silicon or a compound semiconductor.

また、深さ方向に厚さが変化したn型領域は、イオン注
入法、あるいはエピタキシャル法により容易に形成でき
る。
Further, the n-type region whose thickness changes in the depth direction can be easily formed by an ion implantation method or an epitaxial method.

(発明の効果) 本発明によれば、カラー化に必要な各フォトダイオード
の分光感度特性をn型拡散領域層の幅の調整によりコン
トロールすることができ、カラー素子用フィルタ構成が
容易となる効果がある。極端な場合にはフィルターレス
カラー素子としての可能性も十分期待できる。
(Effects of the Invention) According to the present invention, the spectral sensitivity characteristics of each photodiode necessary for colorization can be controlled by adjusting the width of the n-type diffusion region layer, and the filter configuration for color elements is facilitated. There is. In extreme cases, the possibility of using it as a filterless color element can be fully expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による固体撮像素子の3画素
分の模式的断面図、第2図(a)、(b)は同深さ方向
のポテンシャル分布図、第3図は従来の固体撮像素子の
画素列の模式的断面図、第4図は同深さ方向のポテンシ
ャル分布図である。 1 ・・・ n型シリコン基板、 2・・・ P型頭域
、3 ・・・シリコン膜、 4 、14,24.7 、
17.27・・・n型領域、  5,15.25・・・
 n型ドレイン領域。 6.16.26・・・多結晶シリコン膜。 特許出願人 松下電子工業株式会社 第1図 第2図 (a)(b) 第3図 A′ 第4図
Figure 1 is a schematic cross-sectional view of three pixels of a solid-state image sensor according to an embodiment of the present invention, Figures 2 (a) and (b) are potential distribution diagrams in the same depth direction, and Figure 3 is a diagram of the conventional FIG. 4 is a schematic cross-sectional view of a pixel row of a solid-state image sensor, and is a potential distribution diagram in the same depth direction. 1... N-type silicon substrate, 2... P-type head area, 3... Silicon film, 4, 14, 24.7,
17.27...n-type region, 5,15.25...
n-type drain region. 6.16.26...Polycrystalline silicon film. Patent applicant: Matsushita Electronics Co., Ltd. Figure 1 Figure 2 (a) (b) Figure 3 A' Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の主表面から、前記半導体基板の深さ方向に
導電型を交互に変えて、順次第1の領域、第2の領域を
有し、前記第1の領域と第2の領域とでフォトダイオー
ドを構成し、領域の厚さが異なるフォトダイオード列を
規則的に配列してなることを特徴とする固体撮像素子。
The semiconductor substrate has a first region and a second region whose conductivity types are alternately changed in the depth direction of the semiconductor substrate from the main surface of the semiconductor substrate, and the first region and the second region are photosensitive. A solid-state imaging device characterized by regularly arranging photodiode rows that constitute diodes and have regions with different thicknesses.
JP60075862A 1985-04-10 1985-04-10 Solid-state image sensor Pending JPS61234072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075862A JPS61234072A (en) 1985-04-10 1985-04-10 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075862A JPS61234072A (en) 1985-04-10 1985-04-10 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS61234072A true JPS61234072A (en) 1986-10-18

Family

ID=13588478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075862A Pending JPS61234072A (en) 1985-04-10 1985-04-10 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS61234072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036087A (en) * 2002-10-23 2004-04-30 주식회사 하이닉스반도체 CMOS image sensor having different depth of photodiode by Wavelength of light
KR100710207B1 (en) * 2005-09-22 2007-04-20 동부일렉트로닉스 주식회사 Method for manufacturing CMOS image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746616U (en) * 1980-08-26 1982-03-15
JPS5963778A (en) * 1982-10-01 1984-04-11 Hamamatsu Tv Kk Silicon photodiode device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746616U (en) * 1980-08-26 1982-03-15
JPS5963778A (en) * 1982-10-01 1984-04-11 Hamamatsu Tv Kk Silicon photodiode device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036087A (en) * 2002-10-23 2004-04-30 주식회사 하이닉스반도체 CMOS image sensor having different depth of photodiode by Wavelength of light
KR100710207B1 (en) * 2005-09-22 2007-04-20 동부일렉트로닉스 주식회사 Method for manufacturing CMOS image sensor

Similar Documents

Publication Publication Date Title
US5965875A (en) Color separation in an active pixel cell imaging array using a triple-well structure
US4613895A (en) Color responsive imaging device employing wavelength dependent semiconductor optical absorption
US6632702B2 (en) Color image sensor and method for fabricating the same
US4214264A (en) Hybrid color image sensing array
US8368787B2 (en) Image sensor, single-plate color image sensor, and electronic device
US6707080B2 (en) Method for making spectrally efficient photodiode structures for CMOS color imagers
US8350937B2 (en) Solid-state imaging device having pixels including avalanche photodiodes
US6956273B2 (en) Photoelectric conversion element and solid-state image sensing device, camera, and image input apparatus using the same
KR20010110738A (en) Multiple storage node full color active pixel sensors
US8395685B2 (en) Wide dynamic range imaging sensor and method
JPS6033340B2 (en) solid-state imaging device
JPS60143668A (en) Color image sensor
KR960002645B1 (en) Charge transferring device and solid state image picking-up device
US5614950A (en) CCD image sensor and method of preventing a smear phenomenon in the sensor
JPS61139061A (en) Semiconductor photodetector
US7176507B2 (en) Solid state image sensing device and method of manufacturing the same
JPS5814569A (en) Color image pickup device
US20100165165A1 (en) Method and device for a cmos image sensor
JPS6116580A (en) Optical detection semiconductor device
JPH0570946B2 (en)
JPS61234072A (en) Solid-state image sensor
JPS61141175A (en) Semiconductor photodetector
US7138289B2 (en) Technique for fabricating multilayer color sensing photodetectors
JPH0570945B2 (en)
JPS60245165A (en) Solid state image pick-up device