JPS61207567A - Formation of thermally sprayed ceramic film - Google Patents
Formation of thermally sprayed ceramic filmInfo
- Publication number
- JPS61207567A JPS61207567A JP60047401A JP4740185A JPS61207567A JP S61207567 A JPS61207567 A JP S61207567A JP 60047401 A JP60047401 A JP 60047401A JP 4740185 A JP4740185 A JP 4740185A JP S61207567 A JPS61207567 A JP S61207567A
- Authority
- JP
- Japan
- Prior art keywords
- base
- aluminum
- alloy
- ceramic
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 title 1
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 21
- 238000005507 spraying Methods 0.000 claims abstract description 20
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 12
- -1 nickel-chromium-aluminum Chemical compound 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims description 3
- 230000035939 shock Effects 0.000 abstract description 8
- 238000009413 insulation Methods 0.000 abstract description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 229910002061 Ni-Cr-Al alloy Inorganic materials 0.000 abstract 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000000956 alloy Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000007751 thermal spraying Methods 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- QRRWWGNBSQSBAM-UHFFFAOYSA-N alumane;chromium Chemical compound [AlH3].[Cr] QRRWWGNBSQSBAM-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はアルミニウムまたはアルミニウム合金基材の表
面にセラミックの溶射皮膜を形成する方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a ceramic thermal spray coating on the surface of an aluminum or aluminum alloy substrate.
アルミニウムまたはアルミニウム合金は軟量性や熱伝導
性に優れていることから、各種機械部品や方熱機械部品
、自動車部品等に広く使用されている。しかしながら最
近これらの部品については使用条件が一段と厳しくなり
、素材のままでは使用に嗣えない場合がしばしばヰして
いる。Aluminum or aluminum alloys have excellent flexibility and thermal conductivity, and are therefore widely used in various mechanical parts, thermomechanical parts, automobile parts, and the like. Recently, however, the usage conditions for these parts have become more severe, and the materials are often damaged and cannot be used as is.
アルミニウム系材料の特性を向上させるノ)法の一つと
しては、アルミニウム系基材の表面に各種セラミックを
溶射して表面皮膜を形成し、耐熱性、断熱性、高温耐食
性などの材料特性を改善する表面処理技術が採用されて
いる。One of the methods to improve the properties of aluminum-based materials is to thermally spray various ceramics on the surface of aluminum-based materials to form a surface film to improve material properties such as heat resistance, heat insulation, and high-temperature corrosion resistance. A surface treatment technology is used.
しかしながらアルミニウム系基材表面にセラミックの溶
射皮11りを形成して実用に供した場合、使用中に溶射
皮膜が環境温度によって加熱され、次いで常温まで冷却
されるような熱履歴を受けるような使用条件下で甫いら
れると、基材表面から溶射皮膜が剥離する現象が生じる
。However, when a ceramic sprayed coating 11 is formed on the surface of an aluminum base material and put into practical use, the thermal sprayed coating is heated by the environmental temperature during use and is then cooled to room temperature. When exposed under such conditions, a phenomenon occurs in which the thermal spray coating peels off from the surface of the base material.
セラミック溶射皮膜の剥離防+1=手段として、従来は
N1−A文(5〜20%) 、 N1−0丁(20%)
またはNi基出自溶性合金の金属を下地溶射し、次いで
目的とするセラミック溶射材料を溶射被覆する方法が一
般におこなわれている。しかしながらこれらの材料を下
地溶射に用いても、実用環境で熱履歴を受ける場合には
、溶射皮膜に亀裂を生じたり、剥離して脱落を起こし、
皮Hの寿命が短かい欠点がある。このような断熱あるい
は耐熱性が要求されるアルミニウム系基材表面に形成し
たセラミック溶射皮膜の剥離現象について検討した結果
、剥離の原因は主としてアルミニウム系基材、下地溶射
皮膜、セラミック表面溶射皮膜の熱膨張係数の差異及び
基材と下地溶射皮膜との密着性が劣るためであることが
明らかとなった。As a means to prevent peeling of ceramic spray coating +1 = conventionally N1-A (5 to 20%), N1-0 (20%)
Alternatively, a method is generally used in which a Ni-based self-fluxing alloy metal is thermally sprayed on the base, and then a desired ceramic thermal spraying material is thermally sprayed. However, even if these materials are used for base thermal spraying, if they are subjected to thermal history in a practical environment, the thermal sprayed coating may crack, peel, or fall off.
The disadvantage is that the lifespan of the skin H is short. As a result of investigating the peeling phenomenon of ceramic sprayed coatings formed on the surface of aluminum base materials that require heat insulation or heat resistance, we found that the main cause of peeling was the heat of the aluminum base material, base spray coating, and ceramic surface spray coating. It became clear that this was due to differences in expansion coefficients and poor adhesion between the base material and the base thermal spray coating.
本発明はアルミニウム系合金基材の表面に、密着性、耐
熱衝撃性に優れたセラミック溶射皮膜を形成せんとする
ものであり、下地溶射層としてニッケル−クロム−アル
ミニウム系合金を溶射することを特徴としている。さら
に断熱・耐熱性向上の為にセラミック材として安定化ジ
ルコニア材を用いることが最も好ましい。The present invention aims to form a ceramic sprayed coating with excellent adhesion and thermal shock resistance on the surface of an aluminum alloy base material, and is characterized by spraying a nickel-chromium-aluminum alloy as a base sprayed layer. It is said that Further, in order to improve heat insulation and heat resistance, it is most preferable to use stabilized zirconia material as the ceramic material.
本発明における基材は純アルミニウム、An−Cu系、
A11−Mg系、AJI−9i系、AM −31−Mg
系、 AM−5i−Cu系等の合金が含まれる。これら
のアルミニウム系合金基材の表面に耐熱性、断熱性、高
温耐食性の向上を目的として、セラミックを溶射被覆し
て使用する場合が多い。これらの目的で使用するセラミ
ック溶射材としては、アルミナ、チタニア、ジルコニア
等の酸化物およびこれらの酸化物を主成分とする複合酸
化物があり、特に断熱性及び耐熱衝撃性においては安定
化ジルコニアが優れている。The base material in the present invention is pure aluminum, An-Cu type,
A11-Mg series, AJI-9i series, AM-31-Mg
These include alloys such as AM-5i-Cu series and AM-5i-Cu series. The surface of these aluminum-based alloy base materials is often thermally spray coated with ceramic for the purpose of improving heat resistance, heat insulation, and high-temperature corrosion resistance. Ceramic spraying materials used for these purposes include oxides such as alumina, titania, and zirconia, and composite oxides containing these oxides as main components. In particular, stabilized zirconia is particularly effective in terms of heat insulation and thermal shock resistance. Are better.
アルミニウム系合金の熱膨張係数は18X 10 〜2
4 X 10−6/ ℃程度であり、一方表面に被覆す
るセラミ・ンクの熱膨張係数は5×10〜10X10−
8/”0−〇
程度であり、熱膨張係数の差異が表面溶射皮膜の耐熱衝
撃性に影響を与えている。アルミニウム基材と目的とす
るセラミ・ンク溶射皮膜との組合わせにおいて、下地溶
射層の熱膨張係数が、基材とセラミック皮膜の熱膨張係
数の中間値を有し、しかも下地層を構成する金属の少な
くとも1種の融点が基材の融点に近くしかも拡散結合し
やすく、さらに溶射皮膜自身の強度が高いものを下地溶
射材料として選択すれば、最も強固なセラミック溶射皮
膜が得られることが判明した。The thermal expansion coefficient of aluminum alloy is 18X 10 ~2
The coefficient of thermal expansion of the ceramic ink coated on the surface is about 4 x 10-6/°C, while the coefficient of thermal expansion is 5 x 10 to 10 x 10-
8/"0-0, and the difference in thermal expansion coefficient affects the thermal shock resistance of the surface sprayed coating. In the combination of the aluminum base material and the intended ceramic sprayed coating, The coefficient of thermal expansion of the layer is intermediate between the coefficients of thermal expansion of the base material and the ceramic coating, and the melting point of at least one of the metals constituting the base layer is close to the melting point of the base material, and diffusion bonding is easy. It has been found that the strongest ceramic sprayed coating can be obtained by selecting a material that has high strength as the base spraying material.
このような観点からアルミニウム系基材への下地溶射材
として各種材料について検討した結果、ニッケル−クロ
ム−アルミニウム系材料を下地溶射材として使用すると
優れた効果が得られることが判明した。即ち下地溶射層
として基材と同種のアルミニウムを含有する材料である
為、溶射時又は高温での使用中に基材との拡散結合が容
易となニッケルーアルミニウム合金又・はニッケルーク
ロム合金を用いた場合より高い。ざらにニッケル−クロ
ム−アルミニウム合金を用いた溶射皮膜の熱膨張係数は
基材のアルミニウム又はその合金より小さく、酸化物セ
ラミックより大きいことも耐剥離性を向上させている。From this point of view, as a result of studying various materials as base thermal spraying materials for aluminum base materials, it was found that excellent effects can be obtained when nickel-chromium-aluminum materials are used as base thermal spraying materials. In other words, a nickel-aluminum alloy or a nickel-chromium alloy is used as the base thermal spray layer because it is a material that contains the same type of aluminum as the base material, so it is easy to diffuse bond with the base material during thermal spraying or when used at high temperatures. higher than when used. The coefficient of thermal expansion of a thermally sprayed coating using a nickel-chromium-aluminum alloy is smaller than that of the base material aluminum or its alloy, but larger than that of an oxide ceramic, which also improves peeling resistance.
ニッケル−クロム−アルミニウム系合金は、クロム15
〜55%好ましくは15〜25%、アルミニウム4〜2
5%を含有し残りニッケルからなる合金で、少量のFe
、Mn、Si、Y等を含んだものでも何ら支障はない。Nickel-chromium-aluminum alloy is chromium-15
~55% preferably 15-25% aluminum 4-2
An alloy containing 5% nickel and a small amount of nickel.
, Mn, Si, Y, etc., there is no problem.
なおここにいうニッケル−クロム−アルミニウム合金と
は、その形態において、アルミニウムの被覆されたニッ
ケルークロム合金からなる複合粉末、ニッケルとクロム
とアルミニウム微粉を造粒して作られた複合粉末あるい
はこの3成分の金属結合合金のいずれであっても良い。The nickel-chromium-aluminum alloy referred to herein refers to a composite powder made of a nickel-chromium alloy coated with aluminum, a composite powder made by granulating nickel, chromium, and fine aluminum powder, or a composite powder made by granulating nickel, chromium, and fine aluminum powder, or a composite powder made of nickel, chromium, and aluminum fine powder, or a composite powder made by granulating fine powder of nickel, chromium, and aluminum. It may be any of the metallic bonding alloys of the components.
本発明によって得られた溶射皮膜は基材との密着性が良
く、耐久性にも優れたものであるので、過酷な条件下で
使用するアルミニウム合金材料の耐熱性、断熱性、高温
耐食性などの材料特性を向上させることが可能となる。The thermal spray coating obtained by the present invention has good adhesion to the base material and is highly durable, so it can improve the heat resistance, heat insulation, high temperature corrosion resistance, etc. of aluminum alloy materials used under harsh conditions. It becomes possible to improve material properties.
本発明により得られた溶射皮膜は燃焼装置などの機械部
品、熱交換器等の放熱機械部品、ピストン、シリンダー
ヘッド等の自動車部品等に広く利用でき特に内燃機用の
断熱・耐熱ピストンとしては非常に重要である。The sprayed coating obtained by the present invention can be widely used for mechanical parts such as combustion equipment, heat dissipating mechanical parts such as heat exchangers, and automobile parts such as pistons and cylinder heads, and is particularly useful as heat-insulating and heat-resistant pistons for internal combustion engines. is important.
次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.
実施例1
下地溶射層のアルミニウム基材への溶射密着性を調べる
為純AM及びAl1−13%Si 25mmφX10
0 mmのロッドの端面なブラスト後プラズマ溶射によ
り本発明のN1−Cr−A文系溶射材及び比較例として
市販のN1−5%A文、Ni−20%Cr合金を各々5
本づつ厚さ0.3mm#射した。これらの試験片の端面
溶射皮膜部と相手材純A文を接着材アラルダイ1−AT
−1にて接着後引張り試験を行なった。Example 1 Pure AM and Al1-13%Si 25mmφX10 to examine the thermal spraying adhesion of the base thermal sprayed layer to the aluminum base material
After blasting the end face of a 0 mm rod, the N1-Cr-A alloy thermal spray material of the present invention and commercially available N1-5%A alloy and Ni-20%Cr alloy as comparative examples were each coated with 5% of each.
Each book was shot to a thickness of 0.3 mm. The end surface sprayed coating of these test pieces and the mating material Pure A were bonded using the adhesive Araldye 1-AT.
-1, a tensile test was conducted after adhesion.
試験結果を表1に示す。The test results are shown in Table 1.
(以下余白)
表 1
表1から明らかなように本発明のNi−Cr−Ai系溶
射材を用いて形成した溶射皮膜のイ=IM強度は、従来
のN1−Ax (5)又はNi−0r(20)を用いた
ものより著しく向上している。(Leaving space below) Table 1 As is clear from Table 1, the i = IM strength of the sprayed coating formed using the Ni-Cr-Ai sprayed material of the present invention is higher than that of conventional N1-Ax (5) or Ni-0r. (20) is significantly improved.
実施例2
表1に示した各種アルミニウム系基材(50+nmφx
6mmt)の表面を#3Bアルミナでプラス)・処理
した後、表1に示す各種t″地溶射材をプラズマ溶射法
により厚さ0.1mmに下地溶射し、その」−に表1に
示す各種セラミックをプラズマ溶射法により厚さ (1
,3〜0.8 mmに溶射した。下地溶射材の粒度は4
4〜105 p−m 、仕」二溶用に使用したセラミ・
ンク溶射材の粒度は10〜44pmである。Example 2 Various aluminum base materials shown in Table 1 (50+nmφx
After treating the surface of 6mmt) with #3B alumina, the various types of t'' ground spraying materials shown in Table 1 were sprayed to a thickness of 0.1mm by plasma spraying, and then the various types of t'' ground spraying materials shown in Table 1 were Thickness (1
, 3 to 0.8 mm. The particle size of the base thermal spray material is 4
4 to 105 p-m, Ceramic used for dissolution
The particle size of the thermal spray material is 10 to 44 pm.
これらのセラミック溶射皮膜を有する試片について、
400°Cで20分間保持後水冷する熱処理操作を繰返
し、熱衝撃試験を実施した。セラミ・ンク皮膜が剥離す
るまでの熱処理回数をもって耐熱衝撃性を比較した。そ
の結果を表2に示す。Regarding these specimens with ceramic spray coating,
A thermal shock test was conducted by repeating the heat treatment operation of holding at 400°C for 20 minutes and then cooling with water. Thermal shock resistance was compared based on the number of heat treatments until the ceramic ink film peeled off. The results are shown in Table 2.
また比較のため従来のNi基合金を下地溶射した」−に
セラミック溶射をし、同様の熱衝撃試験を実施した。こ
れらの結果も表2に合わせて記す。For comparison, a similar thermal shock test was carried out by applying ceramic spraying to a base coated with a conventional Ni-based alloy. These results are also shown in Table 2.
表1の結果より、アルミニウム系基材−にに二・ンケル
ークロムーアルミニウム系合金を下地溶射し、次いでセ
ラミックを溶射したものは、従来のNi−Cr合金又は
N1−A交合金を下地溶射したものに比較して耐熱衝撃
性が著しく向上することが明らかである。From the results in Table 1, it can be seen that the aluminum base material was sprayed with a chromium-aluminum alloy and then ceramic was sprayed with a conventional Ni-Cr alloy or N1-A alloy. It is clear that the thermal shock resistance is significantly improved compared to the standard.
(以下余白)(Margin below)
Claims (1)
、下地層としてニッケル−クロム−アルミニウム系合金
を溶射し、次いでセラミック材料を溶射することを特徴
とするセラミック溶射皮膜の形成法。 2)セラミック材料が、安定化ジルコニア系材料である
ことを特徴とする特許請求の範囲第1項記載のセラミッ
ク溶射皮膜の形成法。[Scope of Claims] 1) A method for forming a ceramic sprayed coating, which comprises spraying a nickel-chromium-aluminum alloy as a base layer onto the surface of an aluminum or aluminum alloy base material, and then spraying a ceramic material. 2) The method for forming a ceramic thermal spray coating according to claim 1, wherein the ceramic material is a stabilized zirconia-based material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047401A JPS61207567A (en) | 1985-03-12 | 1985-03-12 | Formation of thermally sprayed ceramic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60047401A JPS61207567A (en) | 1985-03-12 | 1985-03-12 | Formation of thermally sprayed ceramic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61207567A true JPS61207567A (en) | 1986-09-13 |
Family
ID=12774087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60047401A Pending JPS61207567A (en) | 1985-03-12 | 1985-03-12 | Formation of thermally sprayed ceramic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61207567A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5204302A (en) * | 1991-09-05 | 1993-04-20 | Technalum Research, Inc. | Catalyst composition and a method for its preparation |
FR2763259A1 (en) * | 1997-05-16 | 1998-11-20 | Ecia Equip Composants Ind Auto | Catalyst-reinforced composite material for use in an automobile catalytic converter |
CN107190260A (en) * | 2017-05-24 | 2017-09-22 | 中国船舶重工集团公司第七二五研究所 | A kind of anti-corrosion heat insulating coat system and preparation method thereof |
CN112281102A (en) * | 2020-11-06 | 2021-01-29 | 中国兵器科学研究院宁波分院 | Preparation method of supersonic plasma spraying ceramic/metal thermal protection coating on aluminum alloy surface |
-
1985
- 1985-03-12 JP JP60047401A patent/JPS61207567A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5204302A (en) * | 1991-09-05 | 1993-04-20 | Technalum Research, Inc. | Catalyst composition and a method for its preparation |
FR2763259A1 (en) * | 1997-05-16 | 1998-11-20 | Ecia Equip Composants Ind Auto | Catalyst-reinforced composite material for use in an automobile catalytic converter |
CN107190260A (en) * | 2017-05-24 | 2017-09-22 | 中国船舶重工集团公司第七二五研究所 | A kind of anti-corrosion heat insulating coat system and preparation method thereof |
CN112281102A (en) * | 2020-11-06 | 2021-01-29 | 中国兵器科学研究院宁波分院 | Preparation method of supersonic plasma spraying ceramic/metal thermal protection coating on aluminum alloy surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3983323B2 (en) | Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer | |
JP4831381B2 (en) | Ceramic superalloy articles | |
US5496644A (en) | Plasma sprayed mullite coatings on silicon-base ceramics | |
JP3434504B2 (en) | Insulation method for metal substrate | |
WO1997002947A1 (en) | Method for bonding thermal barrier coatings to superalloy substrates | |
JPH0715141B2 (en) | Heat resistant parts | |
JPH0737674B2 (en) | Steel article with double protective coating and method of making same | |
JPH0251978B2 (en) | ||
JP2001295021A (en) | Method for depositing protective film on metallic substrate and article obtained thereby | |
JPS63118059A (en) | Adiabatic coating method and gas turbine combustor | |
JPS641551B2 (en) | ||
EP0508731B1 (en) | Use of an oxide coating to enhance the resistance to oxidation and corrosion of a silicon nitride based gas turbine blade | |
JPH0515781B2 (en) | ||
GB2159838A (en) | Surface strengthening of overlay coatings | |
US6485792B1 (en) | Endurance of NiA1 coatings by controlling thermal spray processing variables | |
US6670049B1 (en) | Metal/ceramic composite protective coating and its application | |
JPS61207567A (en) | Formation of thermally sprayed ceramic film | |
JP2005517815A (en) | Temperature-programmed oxidation protective coating for titanium alloy and its preparation method | |
JPS6187859A (en) | Formation of sprayed film | |
JP3372185B2 (en) | Heat resistant material | |
JPH04147957A (en) | Heat insulating aluminum-based member | |
JP3069462B2 (en) | Ceramic coating member and method of manufacturing the same | |
JPS61169241A (en) | Heat-insulating member | |
JP2747088B2 (en) | Thermal spray coating material and thermal spray coating heat resistant member | |
RU2214475C2 (en) | Method of applying coats |