JPS61187931A - Adsorbent of arsenic in aqueous solution - Google Patents
Adsorbent of arsenic in aqueous solutionInfo
- Publication number
- JPS61187931A JPS61187931A JP2821085A JP2821085A JPS61187931A JP S61187931 A JPS61187931 A JP S61187931A JP 2821085 A JP2821085 A JP 2821085A JP 2821085 A JP2821085 A JP 2821085A JP S61187931 A JPS61187931 A JP S61187931A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- adsorbent
- rare earth
- adsorption
- soln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Removal Of Specific Substances (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水溶液中に溶存する砒素を固定化する新規な
吸着剤に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a novel adsorbent that immobilizes arsenic dissolved in an aqueous solution.
(従来の技術)
砒素は、非鉄金属製練工業の排水や、地熱発電所の熱排
水中に含まれている。砒素、特に3価の砒素の毒性につ
いては、昔より知られており°、その存在は排水基準で
0.5ppm、環境基準で0.O5ppm以下の低レベ
ルに規制されている。このような砒素を含む排水の処理
方法としては、現在、カルシウム、マグネシウム、バリ
ウム、鉄、アルミニウムなどの金属水酸化物による凝集
沈澱法が広く用いられている。この方法では、比較的簡
単な処理操作により、砒素濃度を排水基準以下にできる
ものの、地熱発電所の熱水に代表される低濃度の排水を
処理する場合には、大量の薬品を必要とし、また、発生
する多量のスラッジを処理する必要があり、実用上問題
がある。このような金属水酸化物共沈法に代わる方法と
して、活性炭、活性アルミナ、チタン−活性炭複合吸着
剤などによる吸着法、陰イオン交換樹脂によるイオン交
換法、鉄(m)またはジルコニウム担持型カチオン交換
樹脂による配位子イオン交換法などが提案されているが
、これらの方法は、砒素に対する吸着量が小さく、選択
性が不充分であり、さらに、耐久性に乏しいため実用的
でない。(Prior Art) Arsenic is contained in wastewater from non-ferrous metal smelting industries and heat wastewater from geothermal power plants. The toxicity of arsenic, especially trivalent arsenic, has been known for a long time, and its presence is estimated at 0.5 ppm by wastewater standards and 0.5 ppm by environmental standards. O2 is regulated to a low level of 5ppm or less. Currently, as a method for treating wastewater containing arsenic, a coagulation-sedimentation method using metal hydroxides such as calcium, magnesium, barium, iron, and aluminum is widely used. Although this method can bring the arsenic concentration below the wastewater standard through relatively simple treatment operations, it requires a large amount of chemicals when treating low-concentration wastewater, such as hot water from geothermal power plants. Furthermore, it is necessary to dispose of a large amount of generated sludge, which poses a practical problem. As alternatives to such metal hydroxide coprecipitation methods, adsorption methods using activated carbon, activated alumina, titanium-activated carbon composite adsorbents, etc., ion exchange methods using anion exchange resins, iron (m) or zirconium supported cation exchange methods are available. Ligand ion exchange methods using resins have been proposed, but these methods are impractical because they have a small adsorption amount for arsenic, insufficient selectivity, and poor durability.
一方、無機イオン交換体として、各種の金属水酸化物ま
たは含水酸化物が知られており、希土類元素化合物もイ
オン交換作用を有することは周知である。On the other hand, various metal hydroxides or hydrous oxides are known as inorganic ion exchangers, and it is well known that rare earth element compounds also have ion exchange effects.
(発明が解決しようとする問題点)
前記のように、従来の砒素を含む排水の処理方法は、そ
れぞれ欠点があり実用的でなく、排水中に含まれる砒素
に対する実用的な吸着剤ないし処理方法の出現が望まれ
ていた。(Problems to be Solved by the Invention) As mentioned above, the conventional methods for treating wastewater containing arsenic each have their own drawbacks and are not practical. was expected to appear.
(問題点を解決するための手段)
本発明者らは、水溶液中に低濃度で溶存する砒素に対し
て高吸着能を有する実用的な吸着剤を提供することを目
的として、各種の金属水酸化物または含水酸化物(以後
、水和酸化物と総称する)の砒素に対する選択吸着能に
関して研究した結果、希土類元素の水和酸化物が、特に
低濃度においても驚くべき高吸着能を有することを発見
し、実用化のため鋭意研究を重ねた結果、本発明を完成
するに至った。(Means for Solving the Problem) The present inventors have developed various metal water solutions for the purpose of providing a practical adsorbent having high adsorption capacity for arsenic dissolved in a low concentration in an aqueous solution. As a result of research on the selective adsorption ability of oxides or hydrated oxides (hereinafter collectively referred to as hydrated oxides) for arsenic, we found that hydrated oxides of rare earth elements have surprisingly high adsorption ability, especially at low concentrations. As a result of the discovery and extensive research for practical application, the present invention was completed.
したがって、本発明の目的は、低濃度で溶存する砒素を
効率的に除去する吸着剤を提供することにあり、さらに
、砒素を規制値以上に溶存する水または排水から効率的
に砒素を除去し、砒素濃度が規制値以下の飲料水または
排水に処理すると共に、該吸着剤の吸着砒素を脱着、再
生することにより、循環使用を可能とする吸着剤を提供
することにある。Therefore, an object of the present invention is to provide an adsorbent that efficiently removes dissolved arsenic at a low concentration, and furthermore, to provide an adsorbent that can efficiently remove arsenic from water or wastewater containing dissolved arsenic at a level exceeding the regulation value. An object of the present invention is to provide an adsorbent that can be used repeatedly by treating drinking water or wastewater with an arsenic concentration below a regulatory value, and desorbing and regenerating the arsenic adsorbed in the adsorbent.
すなわち、本発明の吸着剤は、希土類元素の水和酸化物
からなり、好ましくは該水和酸化物が有機高分子材料で
多孔質担体に担持されていることを特徴とする水溶液中
の砒素の吸着剤である。That is, the adsorbent of the present invention is composed of a hydrated oxide of a rare earth element, and preferably the hydrated oxide is supported on a porous carrier using an organic polymer material. It is an adsorbent.
以下、本発明の吸着剤について詳細に説明する。Hereinafter, the adsorbent of the present invention will be explained in detail.
本発明の希土類元素の水和酸化物とは、希土類元素、す
なわち、Y SL a s Ce −、P r SN
d 。The hydrated oxide of a rare earth element of the present invention refers to a rare earth element, that is, Y SL a s Ce −, P r SN
d.
Pm、Sm、Eu、Gd、’l’b、Dy、Ho、E
r −。Pm, Sm, Eu, Gd, 'l'b, Dy, Ho, E
r-.
Tm、Yb、Luの酸化物および塩類の水酸化によって
得られる化合物である。希土類元素の種類としては、L
a、Ce、Yが吸着量が大きいため好ましく、特にCe
は溶解度が最小のため好ましい。It is a compound obtained by hydroxylation of oxides and salts of Tm, Yb, and Lu. As for the types of rare earth elements, L
a, Ce, and Y are preferable because they have a large adsorption amount, and in particular Ce
is preferred due to its minimal solubility.
これらの希土類元素の水和酸化物は、単独で用いてもよ
いし、二種類以上の混合物として用いてもよい。また、
他の吸着剤、例えば、活性炭、含水酸化アルミニウム、
含水酸化ジルコニウム、炭酸ジルコニウム、リン酸ジル
コニウム、水酸化マグネシウム、有機のイオン交換樹脂
等と共に用いてもよい。These hydrated oxides of rare earth elements may be used alone or as a mixture of two or more. Also,
Other adsorbents such as activated carbon, hydrous aluminum oxide,
It may be used together with hydrous zirconium oxide, zirconium carbonate, zirconium phosphate, magnesium hydroxide, organic ion exchange resin, etc.
本発明の該希土類水和酸化物は、例えば、塩酸塩、硫酸
塩、硝酸塩等の塩類水溶液中にアルカリ溶液を添加し、
上記塩類水溶液のpHを調整することによって、容易に
沈澱物として得られる。調製に当って、金属およびその
塩の種類と溶液濃度、アルカリの種類と濃度、金属塩水
溶液とアルカリ溶液の混合法と混合速度、および反応温
度等の沈澱の生成条件を選択することによって、含水酸
化物または水酸化物が生成できる。The rare earth hydrated oxide of the present invention can be obtained by adding an alkaline solution to an aqueous salt solution such as hydrochloride, sulfate, nitrate, etc.
By adjusting the pH of the aqueous salt solution, it can be easily obtained as a precipitate. In the preparation, by selecting the type and solution concentration of the metal and its salt, the type and concentration of the alkali, the mixing method and mixing speed of the metal salt aqueous solution and the alkaline solution, and the reaction temperature, the precipitate formation conditions can be selected. Oxides or hydroxides can be produced.
また、上記調製法によって該希土類水和酸化物を調製す
るに際し、各種の金属イオンを共存させて生成される複
合金属水和酸化物であってもよい。Further, when the rare earth hydrated oxide is prepared by the above-mentioned preparation method, it may be a composite metal hydrated oxide produced by coexisting various metal ions.
共存できる金属元素の例としては、Al5Zr、Cr
1Co −G a % F e −、M n % N
t % T t % V %Sn、Ge、Nb、Ta等
が挙げられる。これらの共存できる金属元素の共存量は
、本発明の金属元素に対し、40 mo1%以下、さら
に好ましくは20mo1%以下である。Examples of metal elements that can coexist are Al5Zr, Cr
1Co-G a % Fe-, M n % N
t % T t % V % Sn, Ge, Nb, Ta, etc. are mentioned. The amount of these metal elements that can coexist is 40 mo1% or less, more preferably 20 mo1% or less, based on the metal element of the present invention.
また、上記の調整に使用する陽イオンおよび陰イオンが
、本発明の水和酸化物の構造の一部として存在してもよ
い。これらの共存できる陽イオンおよび陰イオンは、例
えば、NH,s Nas K、CaおよびS Oa、N
O3、CZ等である。Furthermore, the cations and anions used in the above preparation may be present as part of the structure of the hydrated oxide of the present invention. These coexisting cations and anions are, for example, NH,s Nas K, Ca and SOa, N
O3, CZ, etc.
上記製法によって調製された該希土類水和酸化物は、含
水酸化物または水酸化物のいずれかの構造を有し、これ
らの構造的特徴を以下に詳細に説明する。The rare earth hydrated oxide prepared by the above production method has either a hydrous oxide or a hydroxide structure, and the structural characteristics thereof will be explained in detail below.
水和酸化物のうち含水酸化物とは、X線回折では、第2
a図に例を示す如り、該当する金属酸化物と同じ回折パ
ターンを示すが、結晶性が悪いため回折線幅が広い。熱
的には特定の転移点を持たず、温度上昇と共に徐々に熱
減量を生じ、最終的には結晶性のよい酸化物となるもの
であり、その時の熱減量は5〜30重量%を有する。赤
外吸収スペクトルでは、第2b図に例を示す如< 、3
400cm−’付近に水酸基の伸縮振動に基づく幅広い
吸収帯、および1700〜1300cm−’に水酸基の
変角振動に基づく2〜3本の吸収帯を示す。Among hydrated oxides, hydrated oxides are defined as
As shown in Figure a, it shows the same diffraction pattern as the corresponding metal oxide, but the diffraction line width is wide due to poor crystallinity. It does not have a specific thermal transition point, and as the temperature rises, it gradually loses heat and eventually becomes an oxide with good crystallinity, with a heat loss of 5 to 30% by weight. . In the infrared absorption spectrum, as shown in Figure 2b, < , 3
It shows a broad absorption band near 400 cm-' based on the stretching vibration of the hydroxyl group, and two to three absorption bands based on the bending vibration of the hydroxyl group at 1700-1300 cm-'.
また、水酸化物とは、X線回折では、第3a図に例を示
す如く、該当する金属水酸化物の回折バターンを示し、
熱的には特定の温度で酸化物への転移を生じる。赤外吸
収スペクトルでは、第3b図に例を示す如く、金属水酸
化物特有の3500〜3700cm−’に水酸基の伸縮
振動に基づく鋭い吸収帯と、3400cm−’付近に水
酸基の伸縮振動に基づく幅広い吸収帯、および1700
〜1300cm−’に水酸基の変角振動に基づく2〜3
本の吸収帯を示す。In addition, hydroxide indicates the diffraction pattern of the corresponding metal hydroxide in X-ray diffraction, as shown in Figure 3a.
Thermally, it undergoes a transition to an oxide at a certain temperature. In the infrared absorption spectrum, as shown in Figure 3b, there is a sharp absorption band at 3500 to 3700 cm-', which is characteristic of metal hydroxides, based on the stretching vibration of the hydroxyl group, and a broad band around 3400 cm-' due to the stretching vibration of the hydroxyl group. absorption band, and 1700
2-3 based on the bending vibration of the hydroxyl group at ~1300 cm-'
Shows the absorption bands of books.
上記の如く、本発明の希土類水和酸化物は、X線回折、
赤外吸収スペクトル、熱的性質において、各々固有の特
性を有するが、特に吸着性能に関係する共通的特徴は、
赤外吸収スペクトルにおける1500cm−’付近と1
350cm−’付近に吸収帯を有することであり、該吸
収帯を有する構造が、本発明の効果を奏する上で極めて
重要である。As mentioned above, the rare earth hydrated oxide of the present invention can be used for X-ray diffraction,
Each has its own unique characteristics in terms of infrared absorption spectra and thermal properties, but the common characteristics especially related to adsorption performance are:
Around 1500 cm-' in the infrared absorption spectrum and 1
It is important to have an absorption band around 350 cm-', and the structure having this absorption band is extremely important for achieving the effects of the present invention.
該吸収帯は、本発明の吸着に作用する水酸基に基づくも
のであり、硫酸イオン等水酸基以外の陰イオンと該水酸
基が交換した場合には、該吸収帯は減少あるいは消失す
る特徴を有する。The absorption band is based on the hydroxyl group that acts on the adsorption of the present invention, and is characterized by decreasing or disappearing when the hydroxyl group is exchanged with an anion other than the hydroxyl group, such as a sulfate ion.
なお、本発明で云う熱減量とは、試料を室温から水和酸
化物の場合800℃まで、10℃/minの速度で加熱
した時の元の重量に対する減少百分率である。The heat loss referred to in the present invention is the percentage decrease in the original weight when a sample is heated from room temperature to 800° C. in the case of a hydrated oxide at a rate of 10° C./min.
また、希土類水和酸化物の粒子の性状および表面状態が
、本発明の効果を奏する上で極めて重要であり、該粒子
の構造水または付着水量および粒子の粒子径、凝集度を
調整することが好ましく、粒子径については、可能な限
り微粒子であることが好ましく、平均粒子径として一次
粒子径は0.01〜1μ、特に好ましくは0.01〜0
.5μであり、かつ凝集度の低い凝集粒子として0.0
5〜5μ程度の微粒子であることが好ましい。In addition, the properties and surface condition of the rare earth hydrated oxide particles are extremely important in achieving the effects of the present invention, and it is possible to adjust the structural water or adhering water amount of the particles, the particle size, and the degree of aggregation. Preferably, the particle size is preferably as fine as possible, and the primary particle size as an average particle size is 0.01 to 1μ, particularly preferably 0.01 to 0.
.. 5μ and 0.0 as agglomerated particles with a low degree of aggregation.
Fine particles of about 5 to 5 microns are preferable.
本発明の吸着剤は、前述の調製法等による該金属水和酸
化物または該金属水和弗化物を濾過して得られるケーキ
、または乾燥した粉体およびこれを適当な多孔質担体に
担持させる等の方法で粒状、糸状、紐状、帯状、板状等
任意の形状に成形された成形体である。該成形体は吸着
操作の実用性を高める上で極めて有効である。The adsorbent of the present invention is a cake obtained by filtering the metal hydrated oxide or the metal hydrated fluoride by the above-mentioned preparation method, or a dried powder, and the cake is supported on a suitable porous carrier. It is a molded article formed into any shape such as granules, threads, strings, strips, plates, etc. by the above method. The molded body is extremely effective in increasing the practicality of adsorption operations.
該成形体の形状は、粒状、糸状、中空糸状等、使用方法
に適した任意の形状が選択できる。The shape of the molded body can be selected from any shape suitable for the method of use, such as granule, filament, and hollow fiber.
担体に用いる材料は、本発明の効果を奏しうる無機、有
機の種々の材料が使用できるが、担持加工性、担持体強
度、化学的耐久性等の面から公知の有機高分子材料が好
ましい。Various inorganic and organic materials that can produce the effects of the present invention can be used as the material for the carrier, but known organic polymeric materials are preferred from the viewpoints of supporting processability, carrier strength, chemical durability, and the like.
有機高分子材料としては、アルギン酸、キチン、カゼイ
ン、コラーゲン、ゼラチン、セルロース等の天然高分子
およびこれらの誘導体、フェノール樹脂、ユリア樹脂、
メラニン樹脂、ポリエステル樹脂、ジアリルフタレート
樹脂、キシレン樹脂、アルキルベンゼン樹脂、エポキシ
樹脂、エポキシアクリレート樹脂、ケイ素樹脂、ウレタ
ン樹脂、フン素樹脂、塩化ビニル樹脂、塩化ビニリデン
樹脂、ポリエチレン、塩素化ポリオレフィン、ポリプロ
ピレン、ポリスチレン、ABS樹脂、ポリアミド、メタ
クリル樹脂、ポリアセタール、ポリカーボネート、ポリ
ビニルアルコール、ポリイミド、ポリスルホン、ポリア
クリロニトリル等および上記の共重合体が使用できるが
、適当な耐水性をもち、かつ親水性が大きく、多孔質な
構造を形成できるものが好ましく、上記の多糖類または
蛋白系の変性樹脂、ポリアミド、セルロース系樹脂、ポ
リスルホン、ポリアクリロニトリル、エチレン−ビニル
アルコール共重合体等が特に好ましい。Examples of organic polymer materials include natural polymers such as alginic acid, chitin, casein, collagen, gelatin, cellulose, and derivatives thereof, phenolic resin, urea resin,
Melanin resin, polyester resin, diallyl phthalate resin, xylene resin, alkylbenzene resin, epoxy resin, epoxy acrylate resin, silicon resin, urethane resin, fluorine resin, vinyl chloride resin, vinylidene chloride resin, polyethylene, chlorinated polyolefin, polypropylene, polystyrene , ABS resin, polyamide, methacrylic resin, polyacetal, polycarbonate, polyvinyl alcohol, polyimide, polysulfone, polyacrylonitrile, etc., and copolymers of the above can be used. Those that can form a structure are preferred, and the above-mentioned polysaccharide or protein-based modified resins, polyamides, cellulose resins, polysulfones, polyacrylonitrile, ethylene-vinyl alcohol copolymers, and the like are particularly preferred.
上記の有機高分子材料による担持方法は、公知の種々の
方法が適用できる。例えば、適当な高分子重合体を溶解
した溶液に、該金属水和酸化物の粒子を懸濁分散させ、
粒状、糸状、中空糸状、紐状、帯状に成形する方法、ま
たは適当な高分子単量体を、該金属水和酸化物の粒子の
存在下で、乳化または懸濁重合法で重合させて粒状に成
形する方法、あるいは適当な高分子重合体と該金属水和
酸化物および種々の抽出剤を混練し成形した後、適当な
溶媒で抽出剤を抽出し多孔化する等の方法が採用できる
。いずれの場合も多孔質な構造を持ち、該金属水和酸化
物が成形体に十分量担持され、漏失し難い構造体である
必要があり、このような目的が達成できる方法であれば
、いかなる方法であってもよい。Various known methods can be applied to the method of supporting the above-mentioned organic polymer material. For example, particles of the metal hydrated oxide are suspended and dispersed in a solution containing a suitable polymer,
A method of forming particles into granules, filaments, hollow fibers, strings, or strips, or polymerizing a suitable polymer monomer by an emulsion or suspension polymerization method in the presence of the metal hydrated oxide particles to form granules. Alternatively, a method may be adopted in which a suitable high molecular weight polymer, the metal hydrated oxide, and various extractants are kneaded and molded, and then the extractant is extracted with an appropriate solvent to make the material porous. In either case, it is necessary to have a porous structure, a sufficient amount of the metal hydrated oxide is supported on the molded body, and the structure must be difficult to leak, and any method that can achieve this purpose is used. It may be a method.
これらのうち特に好ましい方法は、上記の多糖類または
蛋白質系変性樹脂、セルロース系樹脂、ポリアクリロニ
トリル、エチレン−ビニルアルコール共重合体等の親水
性重合体を適当な溶媒に溶解し、これに該金属水和酸化
物を懸濁させ、凝固浴中で粒子状に成形する方法である
。Among these, a particularly preferred method is to dissolve a hydrophilic polymer such as the polysaccharide or protein-based modified resin, cellulose resin, polyacrylonitrile, or ethylene-vinyl alcohol copolymer in an appropriate solvent, and then add the metal to the solution. This is a method in which a hydrated oxide is suspended and formed into particles in a coagulation bath.
この方法により得られる粒状体は、多孔質な構造をもち
、十分な吸着速度と難溶解性を有し、希土類水和酸化物
粉末を固定化できる。The granules obtained by this method have a porous structure, sufficient adsorption rate and low solubility, and can immobilize rare earth hydrated oxide powder.
特に、重合体の使用に際して使用する重合体の量は、希
土類水和酸化物の5〜50重量%、特に好ましくは10
〜30重量%である。5重量%以下では十分な担持効果
が発揮されず、一方、50重量%以上では吸着性能が低
下す゛るので好ましくない。In particular, when using the polymer, the amount of polymer used is 5 to 50% by weight of the rare earth hydrated oxide, particularly preferably 10% by weight of the rare earth hydrated oxide.
~30% by weight. If it is less than 5% by weight, a sufficient supporting effect will not be exhibited, while if it is more than 50% by weight, the adsorption performance will decrease, which is not preferable.
本発明の砒素の吸着剤である希土類元素の水和酸化物は
、各種のイオンに対してイオン交換吸着性を示すが、そ
の吸着特性は、処理液OpH値おびイオンの種類および
濃度によって異なる。水溶液のpHが低い場合には陰イ
オン交換性を示し、溶存する各種陰イオン、例えば、塩
素イオン、硫酸イオン、硝酸イオン等と交換し、また、
pHが高い場合には陽イオン交換性を示して、例えば、
マグネシウムイオン、カルシウムイオン等の陽イオンと
交換する。The hydrated oxide of a rare earth element, which is the arsenic adsorbent of the present invention, exhibits ion-exchange adsorption properties for various ions, but its adsorption characteristics vary depending on the OpH value of the treatment solution and the type and concentration of ions. When the pH of the aqueous solution is low, it exhibits anion exchange properties and exchanges with various dissolved anions, such as chloride ions, sulfate ions, nitrate ions, etc.
When the pH is high, it exhibits cation exchange properties, for example,
Exchange with cations such as magnesium ions and calcium ions.
例えば、含水酸化セリウムを用いて、該吸着体の塩素イ
オン、硫酸イオン、カルシウムイオンに対する吸着性能
、および亜砒酸イオンあるいは亜砒酸に対する吸着性能
と、吸着時における水溶液のpHの関係は第1図のとお
りである。For example, using hydrous cerium oxide, the relationship between the adsorption performance of the adsorbent for chloride ions, sulfate ions, calcium ions, arsenite ions or arsenous acid, and the pH of the aqueous solution during adsorption is as shown in Figure 1. be.
本発明の吸着剤を用いて水溶液中の砒素を分離除去する
場合には、第1図より、pHを3〜12、より好ましく
は5〜9の範囲に調整することにより、選択的かつ高吸
着量で吸着除去することが可能である。該吸着剤が砒素
を吸着する場合には、他のイオンを吸着する場合と異な
り、pHの変化をほとんど起こさないため、予め被処理
液のpHを調整するだけで、上記の条件を満足すること
ができる。When separating and removing arsenic in an aqueous solution using the adsorbent of the present invention, as shown in Figure 1, by adjusting the pH to a range of 3 to 12, more preferably 5 to 9, it is possible to selectively and highly adsorb arsenic. It is possible to adsorb and remove in small quantities. When the adsorbent adsorbs arsenic, unlike when adsorbing other ions, there is almost no change in pH, so the above conditions can be satisfied simply by adjusting the pH of the liquid to be treated in advance. I can do it.
本発明の吸着剤の吸着能力と水溶液中の砒素濃度との関
係は第4図のとおりであり、特に低濃度域においても、
他の金属水和酸化物に比べて、極めて高い吸着能力を示
し、地熱発電所の排水のように低濃度の排水の処理に特
に有効であることが判る。The relationship between the adsorption capacity of the adsorbent of the present invention and the arsenic concentration in the aqueous solution is shown in Figure 4, and even in the low concentration range,
It shows an extremely high adsorption capacity compared to other metal hydrated oxides, and is found to be particularly effective in treating low-concentration wastewater such as wastewater from geothermal power plants.
本発明の吸着剤による吸着方法は、該水和酸化物と砒素
を含有する水溶液とを接触させる方法であればどのよう
な方法を用いてもよいが、特に、該水和酸化物を有機高
分子材料で粒状に成形した成形体を用いて、吸着塔に充
填して接触させる方法が好ましい。Any method of adsorption using the adsorbent of the present invention may be used as long as the hydrated oxide is brought into contact with an arsenic-containing aqueous solution. A preferred method is to use a molded article made of a molecular material into particles and fill it in an adsorption tower and bring it into contact.
また、本発明の吸着剤は、前述のようにして砒素を吸着
させた後に、適当な脱着液と接触させることにより脱着
することが可能であり、繰り返し使用することができる
。上記の脱着操作では、該吸着剤に吸着されている砒素
の量、脱着液の種類と濃度、吸着剤と脱着液の混合比お
よび温度が、脱着率および脱着液中の砒素濃度に影響を
及ぼす。Further, the adsorbent of the present invention can be desorbed by adsorbing arsenic as described above and then brought into contact with an appropriate desorption liquid, and can be used repeatedly. In the above desorption operation, the amount of arsenic adsorbed on the adsorbent, the type and concentration of the desorption liquid, the mixing ratio of the adsorbent and desorption liquid, and the temperature affect the desorption rate and the arsenic concentration in the desorption liquid. .
脱着液としては、塩酸、硫酸、硝酸またはアルカリ金属
の水酸化物が使用できる。特に、アルカリ金属の水酸化
物は、該吸着剤を全く溶解しないので好ましく、さらに
水酸化ナトリウムおよび水酸化カリウムは、脱着効率が
大きく特に好ましい。As the desorption liquid, hydrochloric acid, sulfuric acid, nitric acid or alkali metal hydroxide can be used. In particular, alkali metal hydroxides are preferred because they do not dissolve the adsorbent at all, and sodium hydroxide and potassium hydroxide are particularly preferred because of their high desorption efficiency.
該アルカリ溶液濃度は0.1 mol/ 1以上、好ま
しくは1mol/1以上である。The concentration of the alkaline solution is 0.1 mol/1 or more, preferably 1 mol/1 or more.
上記の脱着操作の温度は、脱着速度および脱着平衡に影
響を与え、加温することは効果があり、40℃以上、よ
り好ましくは60℃以上とするのがよい。また、接触時
間は、接触時の方法、温度、該吸着剤の種類によって左
右されるが、通常、平衡に達するのには1分〜3日程度
であり、実用的には1〜60分でよい。脱着させる方法
は、該吸着剤を脱着液と接触させる方法であれば、どの
ような方法でもよく、前述の吸着方法と同様の方法が採
用される。The temperature of the above-mentioned desorption operation affects the desorption rate and desorption equilibrium, and heating is effective, and it is preferably 40°C or higher, more preferably 60°C or higher. The contact time depends on the contact method, temperature, and type of adsorbent, but it usually takes about 1 minute to 3 days to reach equilibrium, and in practical terms it takes 1 to 60 minutes. good. The desorption method may be any method as long as the adsorbent is brought into contact with a desorption liquid, and the same method as the above-mentioned adsorption method may be employed.
(発明の効果)
次に、本発明の砒素吸着剤の効果について述べると、次
のとおりである。(Effects of the Invention) Next, the effects of the arsenic adsorbent of the present invention will be described as follows.
(l] p H3〜12という広い範囲において優れた
吸着性能を示す。(l) Shows excellent adsorption performance in a wide pH range of 3 to 12.
(2)砒素の液相中の濃度が低い場合においても平衡吸
着量が大きく、例えば、液相中砒素濃度が0.1pp−
の時に、吸着量は38n+g/g−吸着剤にもなり、処
理水中の砒素濃度を低くすることができる。(2) Even when the concentration of arsenic in the liquid phase is low, the equilibrium adsorption amount is large; for example, when the arsenic concentration in the liquid phase is 0.1 pp-
At this time, the amount of adsorption becomes 38n+g/g-adsorbent, and the arsenic concentration in the treated water can be lowered.
(3)アルカリ水溶液によって吸着している砒素を脱着
することができ、繰り返し使用することができる。(3) Adsorbed arsenic can be desorbed by an alkaline aqueous solution, and it can be used repeatedly.
上記のように、本発明の吸着剤が、水溶液中に溶存する
砒素に対して、特に低濃度においても極めて大きな吸着
能をもち、かつ繰り返し使用でき、取い扱い性にも優れ
ていることは、後記実施例からも明らかである。したが
って、非鉄金属製練工業の排水や、地熱発電所の熱排水
に含有している砒素を固定化、除去するのに有効である
。As mentioned above, the adsorbent of the present invention has extremely high adsorption capacity for arsenic dissolved in an aqueous solution, especially at low concentrations, can be used repeatedly, and has excellent handling properties. This is also clear from the Examples described below. Therefore, it is effective for fixing and removing arsenic contained in wastewater from nonferrous metal smelting industries and thermal wastewater from geothermal power plants.
(実施例) 以下、実施例により詳細に説明する。(Example) Hereinafter, this will be explained in detail using examples.
なお、本文中の吸着量、除去率は、下記式により求めた
。In addition, the adsorption amount and removal rate in the text were determined by the following formula.
実施例1
本発明の含水酸化セリウムの亜砒酸に対する吸着性能の
pH依存性について例を示す。Example 1 An example will be shown regarding the pH dependence of the adsorption performance of hydrous cerium oxide of the present invention for arsenous acid.
含水酸化セリウムの調製
市11Ji99.9%の塩化セリウムを蒸留水に溶解し
、セリウムと等モル量の過酸化水素水を添加して攪拌し
た後、アンモニア水を添加してpH10に調整した。そ
の後、85℃に加熱して過剰の過酸化水素水を分解し、
1晩熟成して濾過し、そのケークをCit 、 N H
a等のイオンが検出されなくなるまで水洗し、続いて脱
水、50℃温風乾燥機で乾燥した。Preparation of Hydrous Cerium Oxide 11 Ji 99.9% cerium chloride was dissolved in distilled water, and an equimolar amount of hydrogen peroxide was added to the solution, followed by stirring, and then aqueous ammonia was added to adjust the pH to 10. Thereafter, the excess hydrogen peroxide was decomposed by heating to 85°C.
Aged overnight, filtered and the cake was dried in Cit, N.H.
It was washed with water until ions such as a were no longer detected, then dehydrated and dried in a hot air dryer at 50°C.
得られた粉末は、熱減量15.6%、−成粒子の平均粒
径0.08μ、凝集粒子の平均粒径0.4μ、X線回折
図(第2a図)、赤外吸収スペクトル図(第2b図)に
示されるものであった。The obtained powder had a thermal loss of 15.6%, an average particle size of formed particles of 0.08μ, an average particle size of aggregated particles of 0.4μ, an X-ray diffraction pattern (Figure 2a), an infrared absorption spectrum ( Figure 2b).
吸着実験
砒素の濃度が1 mmol/ It (75mg −A
s / l )になるように、0.lN−NaOH水
溶液に三酸化二砒素を溶解して砒素含有水溶液を調製し
、HClを添加して種々のpHに調整した後、該水溶液
に該含水酸化セリウムを1 g / lの割合で添加し
た。Adsorption experiment The concentration of arsenic was 1 mmol/It (75mg-A
s/l), 0. An arsenic-containing aqueous solution was prepared by dissolving diarsenic trioxide in a 1N-NaOH aqueous solution, and after adjusting to various pHs by adding HCl, the hydrous cerium oxide was added to the aqueous solution at a rate of 1 g / l. .
室温で2時間攪拌した後、濾過し、その濾液中の砒素濃
度をJ I S KO102に準じて測定した。この結
果を、溶液のpHと砒素の吸着量の関係として第1図に
示す。After stirring at room temperature for 2 hours, it was filtered, and the arsenic concentration in the filtrate was measured according to JIS KO102. The results are shown in FIG. 1 as the relationship between the pH of the solution and the amount of arsenic adsorbed.
なお、参考例として塩素イオン、硫酸イオン、カルシウ
ムイオンについて、初濃度10m+aol/1として同
様の実験を行った結果を第1図に示す。As a reference example, FIG. 1 shows the results of a similar experiment conducted with chlorine ions, sulfate ions, and calcium ions at an initial concentration of 10 m+aol/1.
実施例2〜6
希土類元素として、イツトリウム、ランタン、サマリウ
ム、ジスプロシウム、ツリウムを使用した例を示す。Examples 2 to 6 Examples using yttrium, lanthanum, samarium, dysprosium, and thulium as rare earth elements will be shown.
水和酸化物の調製法
各希土類元素の硝酸塩(99,9%、試薬)を蒸留水に
溶解し、水酸化ナトリウム水溶液を添加し、pHl0に
調整した。−晩熟成後、蒸留水により硝酸イオン、Na
イオンの溶出が検知されなくなるまで洗浄し、50℃で
乾燥した。Preparation method of hydrated oxide Nitrate (99.9%, reagent) of each rare earth element was dissolved in distilled water, and an aqueous sodium hydroxide solution was added to adjust the pH to 10. - After late ripening, nitrate ions and Na
It was washed until no ion elution was detected and dried at 50°C.
得られた水和酸化物は、表1に示されるものであった。The obtained hydrated oxides were as shown in Table 1.
なお、X線回折図および赤外吸収スペクトル図を、イツ
トリウムの例について、第3a図、第3b図に示す。Note that the X-ray diffraction diagram and the infrared absorption spectrum diagram for the example of yttrium are shown in Figures 3a and 3b.
吸着実験
該粉末について、pi(を8に調整した他は、実施例1
と同様に吸着量を求めた。結果を表1に示す。Adsorption experiment Regarding the powder, Example 1 was carried out except that pi was adjusted to 8.
The amount of adsorption was determined in the same manner. The results are shown in Table 1.
表1
実施例7
含水酸化セリウムについて、添加量を変えて砒素濃度と
吸着量との関係を求めた。Table 1 Example 7 Regarding hydrous cerium oxide, the relationship between arsenic concentration and adsorption amount was determined by changing the amount added.
水溶液のpHを5に調整し、添加量を種々変えた他は、
実施例1と同様にして吸着量を求めた。Other than adjusting the pH of the aqueous solution to 5 and varying the amount added,
The amount of adsorption was determined in the same manner as in Example 1.
なお、比較例として、無定形含水酸化鉄、含水酸化ジル
コニウム、α型含水酸化チタンについて同様に吸着量を
求めた。上記各金属の含水酸化物の調製は、阿部らの方
法(日本化学雑誌 Vo186、患8&12)に準じた
。As a comparative example, the adsorption amounts of amorphous hydrated iron oxide, hydrated zirconium oxide, and α-type hydrated titanium oxide were determined in the same manner. The hydrous oxides of each of the metals mentioned above were prepared according to the method of Abe et al. (Japanese Chemical Journal Vol. 186, No. 8 & 12).
この結果を、溶液中の砒素濃度と吸着量の関係として第
4図に示す。The results are shown in FIG. 4 as the relationship between the arsenic concentration in the solution and the amount of adsorption.
実施例8
含水III 化セリウムをエチレン−ビニルアルコール
共重合体で粒状に成形し、カラムに充填、吸着実験を行
なった例を示す。Example 8 An example in which hydrated cerium III oxide was molded into particles using an ethylene-vinyl alcohol copolymer, filled in a column, and an adsorption experiment was conducted.
粒状成形体の調製
エチレン−ビニルアルコール共重合体(日本合成化学■
製、ソアノールE、エチレン共重合比38mo1%〕を
ジメチルスルフオキシドに10重重景の濃度で溶解し、
該溶液に含水酸化セリウム(実施例1と同一物質)を重
合体量の5重量倍添加し、充分攪拌分散させた。該混合
物を凝固浴として水を用い、粒状に成形した。該成形体
を洗浄水に溶媒の溶出が検出されなくなるまで水洗した
。得られた成形体は平均粒径0.5+IImφ、該含水
酸化セリウムの保持量0.36 g /成形体mlであ
った。Preparation of granular molded bodies Ethylene-vinyl alcohol copolymer (Nippon Gosei Chemical Co., Ltd.)
manufactured by Soarnol E, ethylene copolymerization ratio 38 mo1%] was dissolved in dimethyl sulfoxide at a concentration of 10 mol.
Hydrous cerium oxide (the same substance as in Example 1) was added to the solution by 5 times the weight of the polymer, and the mixture was thoroughly stirred and dispersed. The mixture was shaped into granules using water as a coagulation bath. The molded body was washed with washing water until no elution of the solvent was detected. The obtained molded body had an average particle size of 0.5+IImφ and a retained amount of the hydrous cerium oxide of 0.36 g/ml of the molded body.
カラム吸着実験
上記造粒体IQm6を、内径10mm、長さ150mm
のガラスカラムに充填し、砒素5ppm、NaCf25
00ppm、 N a z S O4200ppmを含
有する水溶液(p H5に調整したもの)を、5V10
hr−’の速度で通水した。カラム溜出液中の砒素の濃
度を測定し、溜出濃度0.2ppmに達した時を終点と
し、それまでの処理液量および平均濃度より、砒素の総
吸着量を求めた。比較例として、市販の含水酸化ジルコ
ニウムZr0(OH)tを同様にして、エチレン−ビニ
ールアルコール共重合体で担持させて調製した吸着剤を
使用した結果と対比して、前記実施例の結果を表2に示
す。Column adsorption experiment The above granules IQm6 were prepared with an inner diameter of 10 mm and a length of 150 mm.
packed in a glass column with 5 ppm arsenic, NaCf25
An aqueous solution (adjusted to pH 5) containing 00 ppm and 200 ppm of N az SO was heated to 5V10.
Water was passed at a rate of hr-'. The concentration of arsenic in the column distillate was measured, and the end point was when the distillate concentration reached 0.2 ppm, and the total amount of arsenic adsorbed was determined from the amount of treated solution and the average concentration. As a comparative example, the results of the above example are compared with the results of using an adsorbent prepared by supporting commercially available hydrated zirconium oxide Zr0(OH)t on an ethylene-vinyl alcohol copolymer in the same manner. Shown in 2.
表2
実施例9
本発明の吸着剤の脱着操作において、脱着液種および濃
度を変えた例を示す。Table 2 Example 9 An example in which the type and concentration of the desorption liquid were changed in the desorption operation of the adsorbent of the present invention is shown.
予め砒素5mg/mj!−吸着剤を吸着した含水酸化セ
リウムの粒状成形体(実施例日と同様にして製造した)
を、表3に示す種々の溶液と10mj!−吸着材/Il
の割合で混合、攪拌し、24時間後のの砒素濃度を測定
した。結果を表3に示す。Arsenic 5mg/mj in advance! - Granular molded body of hydrous cerium oxide adsorbed with adsorbent (manufactured in the same manner as on the day of the example)
with various solutions shown in Table 3 and 10 mj! -Adsorbent/Il
The arsenic concentration was measured after 24 hours. The results are shown in Table 3.
表3 実施例10 本発明の脱着操作において、温度を変えた例を示す。Table 3 Example 10 An example in which the temperature is changed in the desorption operation of the present invention will be shown.
油浴により、30℃、60℃、80℃に維持し、実施例
5−cと同様に混合攪拌し、5時間後の溶液中の砒素濃
度を測定した。その結果、30℃、60℃、80℃にお
ける脱着率は、各々、56%、74%、95%であった
。The mixture was maintained at 30°C, 60°C, and 80°C in an oil bath, mixed and stirred in the same manner as in Example 5-c, and the arsenic concentration in the solution was measured after 5 hours. As a result, the desorption rates at 30°C, 60°C, and 80°C were 56%, 74%, and 95%, respectively.
実施例11
本発明の吸着剤を用いて、吸着、脱着の繰り返し操作を
行った例を示す。Example 11 An example in which repeated operations of adsorption and desorption were performed using the adsorbent of the present invention is shown.
粒状成形体の調製
ポリスルホン樹脂をジメチルホルムアミドに10重量%
の濃度で溶解し、該溶液に含水酸化セリウム(実施例1
と同一物質)を樹脂量の4重量倍添加し、充分攪拌分散
させた。該混合物を凝固浴として水を用いて粒状に成形
した。該成形体を洗浄水に溶媒の溶出が検出されなくな
るまで水洗した。Preparation of granular moldings 10% by weight of polysulfone resin in dimethylformamide
Hydrous cerium oxide (Example 1) is dissolved in the solution at a concentration of
4 times the weight of the resin was added and thoroughly stirred and dispersed. The mixture was granulated using water as a coagulation bath. The molded body was washed with washing water until no elution of the solvent was detected.
得られた成形体は、平均粒径0.5n+a+φ、該含水
酸化セリウムの保持量0.31 g /成形体mIlで
あった。The obtained molded body had an average particle size of 0.5n+a+φ and a retained amount of the hydrous cerium oxide of 0.31 g/ml of molded body.
吸着操作
20ppmの濃度で砒素を含有する水溶液(p H5)
1Nに、上記成形体2mlを添加し、15時間攪拌しな
がら80℃に維持した。15時間後の液中の砒素濃度を
測定した。Adsorption operation Aqueous solution containing arsenic at a concentration of 20 ppm (pH 5)
2 ml of the above molded body was added to 1N and maintained at 80° C. with stirring for 15 hours. The arsenic concentration in the liquid was measured after 15 hours.
脱着操作
吸着操作を終了した成形体を5N−NaOH200ml
に添加し、5時間攪拌しながら80℃に維持した。5時
間後の脱着液中の砒素濃度を測定した。脱着操作後の成
形体は50m1!の水で2回水洗し、HCl1を添加し
て成形体中のNaOHを中和した後、再び吸着操作に供
した。After desorption operation and adsorption operation, the molded body is washed with 200ml of 5N-NaOH.
and maintained at 80° C. with stirring for 5 hours. After 5 hours, the arsenic concentration in the desorption solution was measured. The molded body after attachment and detachment is 50m1! The molded product was washed twice with water, 1 HCl was added to neutralize the NaOH in the molded product, and then the molded product was subjected to an adsorption operation again.
上記吸着、脱着操作を5回繰り返した。結果を表4に示
す。The above adsorption and desorption operations were repeated five times. The results are shown in Table 4.
表4Table 4
第1図は、本発明の含水酸化セリウムによる亜砒酸ある
いは亜砒酸イオン、塩素イオン、硫酸イオンおよびカル
シウムイオンの吸着量のpH依存性を示す図表、第2a
図は、本発明の含水酸化セリウムのCuKα線によるX
線回折図、第2b図は、本発明の含水酸化セリウムの赤
外吸収スペクトル、第3a図は、本発明の水酸化インド
リウムのCuKα線によるX線回折図、第3b図は、本
発明の水酸化イツトリウムの赤外吸収スペクトル、第4
図は、液相中の砒素濃度に対する本発明の含水酸化セリ
ウムの吸着量の関係を示す図表である。
第1図
2θ(Cu施)
Ce (b ・nHzOXaEJ折
第2折回
2b
ひ岱・nHzo IRスペクトル
2θ CCuKa)
Y(OH)sX*rjM
第3b図
Y(OH)3 IRス公クトルFIG. 1 is a diagram showing the pH dependence of the adsorption amount of arsenous acid or arsenite ions, chloride ions, sulfate ions, and calcium ions by hydrous cerium oxide of the present invention, and FIG.
The figure shows X of the hydrous cerium oxide of the present invention by CuKα radiation
Figure 2b is an infrared absorption spectrum of the hydrous cerium oxide of the present invention, Figure 3a is an X-ray diffraction diagram of indium hydroxide of the present invention using CuKα rays, and Figure 3b is an infrared absorption spectrum of the hydrous cerium oxide of the present invention. Infrared absorption spectrum of yttrium hydroxide, 4th
The figure is a chart showing the relationship between the adsorption amount of hydrous cerium oxide of the present invention and the arsenic concentration in the liquid phase. Fig. 1 2θ (Cu) Ce (b ・nHzOXaEJ fold 2nd fold 2b Hidai・nHzo IR spectrum 2θ CCuKa) Y(OH)sX*rjM Fig. 3b Y(OH)3 IR spectrum
Claims (1)
剤。Adsorbent for arsenic in aqueous solution consisting of hydrated oxides of rare earth elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2821085A JPS61187931A (en) | 1985-02-18 | 1985-02-18 | Adsorbent of arsenic in aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2821085A JPS61187931A (en) | 1985-02-18 | 1985-02-18 | Adsorbent of arsenic in aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61187931A true JPS61187931A (en) | 1986-08-21 |
JPH0445213B2 JPH0445213B2 (en) | 1992-07-24 |
Family
ID=12242287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2821085A Granted JPS61187931A (en) | 1985-02-18 | 1985-02-18 | Adsorbent of arsenic in aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61187931A (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128287A (en) * | 1996-10-25 | 1998-05-19 | Miyoshi Oil & Fat Co Ltd | Treatment of solid waste |
WO2004078374A1 (en) * | 2003-03-03 | 2004-09-16 | Nippon Sheet Glass Company, Limited | Soil conditioner |
WO2004096433A1 (en) * | 2003-05-01 | 2004-11-11 | Nihon Kaisui Co., Ltd. | Adsorbent and process for producing the same |
WO2004110623A1 (en) * | 2003-06-13 | 2004-12-23 | Lanxess Deutschland Gmbh | Arsenic-adsorbing ion exchanger |
WO2005058482A1 (en) * | 2003-12-16 | 2005-06-30 | Calgon Carbon Corporation | Adsorbents for removing heavy metals and methods for producing and using the same |
WO2005061099A1 (en) * | 2003-12-16 | 2005-07-07 | Calgon Carbon Corporation | Adsorbents for removing heavy metals and methods for producing and using the same |
JP2005205368A (en) * | 2004-01-26 | 2005-08-04 | Kurita Water Ind Ltd | Adsorbent and water treatment method |
JP2006000778A (en) * | 2004-06-18 | 2006-01-05 | Miyoshi Oil & Fat Co Ltd | Waste treatment method |
WO2006011191A1 (en) * | 2004-07-26 | 2006-02-02 | Kurita Water Industries Ltd. | Anion adsorbent, process for producing the same and method of water treatment |
JP2007167756A (en) * | 2005-12-21 | 2007-07-05 | Nippon Sheet Glass Co Ltd | Method for regenerating adsorbent |
JP2007268429A (en) * | 2006-03-31 | 2007-10-18 | Nihon Kaisui:Kk | Method of suppressing elution of arsenic from soil contaminated by arsenic |
CN100352541C (en) * | 2005-11-10 | 2007-12-05 | 上海自来水市北科技有限公司 | Preparation method of iron carrying active carbon dearsenic adsorber |
CN100386141C (en) * | 2005-07-20 | 2008-05-07 | 上海自来水市北科技有限公司 | Composite absorption material for removing arsenic from water and its prepn. method |
WO2008108085A1 (en) * | 2007-03-01 | 2008-09-12 | Nippon Sheet Glass Company, Limited | Method for separating organic metal compound from inorganic compound |
WO2008111682A1 (en) * | 2007-03-12 | 2008-09-18 | Nippon Sheet Glass Company, Limited | Method for treatment of selenium in solution containing sulfur oxide |
US7429330B2 (en) | 2001-08-27 | 2008-09-30 | Calgon Carbon Corporation | Method for removing contaminants from fluid streams |
US7429551B2 (en) | 2001-08-27 | 2008-09-30 | Calgon Carbon Corporation | Adsorbents for removing heavy metals |
JP2009150399A (en) * | 2001-01-24 | 2009-07-09 | Basri Oezdamar Hasan | Motor with rotary connecting rod bolt |
JP2011502045A (en) * | 2007-10-31 | 2011-01-20 | モリーコープ ミネラルズ エルエルシー | Agglomerated composition for treating fluids containing contaminants |
WO2011052008A1 (en) * | 2009-10-29 | 2011-05-05 | 株式会社Nhvコーポレーション | Adsorbent, method for producing same, and use of same |
US20140360292A1 (en) | 2012-01-24 | 2014-12-11 | Joannes Jacobus Josephus SLEPER | Reciprocating piston mechanism |
WO2015132860A1 (en) * | 2014-03-03 | 2015-09-11 | 株式会社マエダマテリアル | Water treatment adsorbing agent, manufacturing method therefor, water treatment apparatus, cartridge for water treatment apparatus, and water treatment method |
JP5793230B1 (en) * | 2014-09-05 | 2015-10-14 | 日本化学工業株式会社 | Iodate ion adsorbent and method for producing the same |
JP5793231B1 (en) * | 2014-09-05 | 2015-10-14 | 日本化学工業株式会社 | Iodate ion adsorbent and method for producing the same |
JP2015181972A (en) * | 2014-03-20 | 2015-10-22 | 株式会社化研 | Iodine removal agent, removal device, and removal method for removing iodine from aqueous solution |
US9279363B2 (en) | 2009-07-15 | 2016-03-08 | Gomecsys B.V. | Reciprocating piston mechanism |
JP2016137412A (en) * | 2015-01-26 | 2016-08-04 | 日本化学工業株式会社 | Adsorbent and production method thereof |
WO2017110485A1 (en) | 2015-12-24 | 2017-06-29 | 株式会社荏原製作所 | Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and method of processing radioactive waste liquid using said adsorbent |
US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
US10145299B2 (en) | 2014-04-08 | 2018-12-04 | Gomecsys B.V. | Internal combustion engine including variable compression ratio |
US10233966B2 (en) | 2013-11-13 | 2019-03-19 | Gomecsys B.V. | Method of assembling and an assembly of a crankshaft and a crank member |
CN109731548A (en) * | 2019-02-23 | 2019-05-10 | 华南理工大学 | A kind of active carbon/zirconium-manganese oxide composite material and the preparation method and application thereof |
US10557409B2 (en) | 2015-10-22 | 2020-02-11 | Gomecsys B.V. | Heat engine comprising a system for varying the compression ratio |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2576234Y2 (en) * | 1991-07-24 | 1998-07-09 | 東罐興業株式会社 | Simple container |
CN100415360C (en) * | 2006-01-17 | 2008-09-03 | 昆明理工大学 | Production of sewage dephosphor adsorbent by adsorptive ion rare earth |
-
1985
- 1985-02-18 JP JP2821085A patent/JPS61187931A/en active Granted
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128287A (en) * | 1996-10-25 | 1998-05-19 | Miyoshi Oil & Fat Co Ltd | Treatment of solid waste |
JP2009150399A (en) * | 2001-01-24 | 2009-07-09 | Basri Oezdamar Hasan | Motor with rotary connecting rod bolt |
US7429330B2 (en) | 2001-08-27 | 2008-09-30 | Calgon Carbon Corporation | Method for removing contaminants from fluid streams |
US7429551B2 (en) | 2001-08-27 | 2008-09-30 | Calgon Carbon Corporation | Adsorbents for removing heavy metals |
WO2004078374A1 (en) * | 2003-03-03 | 2004-09-16 | Nippon Sheet Glass Company, Limited | Soil conditioner |
US7666814B2 (en) | 2003-03-03 | 2010-02-23 | Nippon Sheet Glass Company, Limited | Soil conditioner |
JPWO2004078374A1 (en) * | 2003-03-03 | 2006-06-08 | 日本板硝子株式会社 | Soil conditioner |
WO2004096433A1 (en) * | 2003-05-01 | 2004-11-11 | Nihon Kaisui Co., Ltd. | Adsorbent and process for producing the same |
WO2004110623A1 (en) * | 2003-06-13 | 2004-12-23 | Lanxess Deutschland Gmbh | Arsenic-adsorbing ion exchanger |
WO2005061099A1 (en) * | 2003-12-16 | 2005-07-07 | Calgon Carbon Corporation | Adsorbents for removing heavy metals and methods for producing and using the same |
WO2005058482A1 (en) * | 2003-12-16 | 2005-06-30 | Calgon Carbon Corporation | Adsorbents for removing heavy metals and methods for producing and using the same |
JP2005205368A (en) * | 2004-01-26 | 2005-08-04 | Kurita Water Ind Ltd | Adsorbent and water treatment method |
JP2006000778A (en) * | 2004-06-18 | 2006-01-05 | Miyoshi Oil & Fat Co Ltd | Waste treatment method |
WO2006011191A1 (en) * | 2004-07-26 | 2006-02-02 | Kurita Water Industries Ltd. | Anion adsorbent, process for producing the same and method of water treatment |
CN100386141C (en) * | 2005-07-20 | 2008-05-07 | 上海自来水市北科技有限公司 | Composite absorption material for removing arsenic from water and its prepn. method |
CN100352541C (en) * | 2005-11-10 | 2007-12-05 | 上海自来水市北科技有限公司 | Preparation method of iron carrying active carbon dearsenic adsorber |
JP2007167756A (en) * | 2005-12-21 | 2007-07-05 | Nippon Sheet Glass Co Ltd | Method for regenerating adsorbent |
JP2007268429A (en) * | 2006-03-31 | 2007-10-18 | Nihon Kaisui:Kk | Method of suppressing elution of arsenic from soil contaminated by arsenic |
WO2008108085A1 (en) * | 2007-03-01 | 2008-09-12 | Nippon Sheet Glass Company, Limited | Method for separating organic metal compound from inorganic compound |
WO2008111682A1 (en) * | 2007-03-12 | 2008-09-18 | Nippon Sheet Glass Company, Limited | Method for treatment of selenium in solution containing sulfur oxide |
JP2011502045A (en) * | 2007-10-31 | 2011-01-20 | モリーコープ ミネラルズ エルエルシー | Agglomerated composition for treating fluids containing contaminants |
JP2014111256A (en) * | 2007-10-31 | 2014-06-19 | Molycorp Minerals Llc | Aggregate composition for treating fluid containing contaminant |
US9279363B2 (en) | 2009-07-15 | 2016-03-08 | Gomecsys B.V. | Reciprocating piston mechanism |
CN102481547A (en) * | 2009-10-29 | 2012-05-30 | 日新高电压工程公司 | Adsorbent, method for producing same, and use thereof |
JP5316645B2 (en) * | 2009-10-29 | 2013-10-16 | 株式会社Nhvコーポレーション | Adsorbent manufacturing method |
WO2011052008A1 (en) * | 2009-10-29 | 2011-05-05 | 株式会社Nhvコーポレーション | Adsorbent, method for producing same, and use of same |
US20140360292A1 (en) | 2012-01-24 | 2014-12-11 | Joannes Jacobus Josephus SLEPER | Reciprocating piston mechanism |
US10234006B2 (en) | 2012-01-24 | 2019-03-19 | Gomecsys B.V. | Reciprocating piston mechanism |
US10233966B2 (en) | 2013-11-13 | 2019-03-19 | Gomecsys B.V. | Method of assembling and an assembly of a crankshaft and a crank member |
WO2015132860A1 (en) * | 2014-03-03 | 2015-09-11 | 株式会社マエダマテリアル | Water treatment adsorbing agent, manufacturing method therefor, water treatment apparatus, cartridge for water treatment apparatus, and water treatment method |
US10577259B2 (en) | 2014-03-07 | 2020-03-03 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
US9975787B2 (en) | 2014-03-07 | 2018-05-22 | Secure Natural Resources Llc | Removal of arsenic from aqueous streams with cerium (IV) oxide compositions |
JP2015181972A (en) * | 2014-03-20 | 2015-10-22 | 株式会社化研 | Iodine removal agent, removal device, and removal method for removing iodine from aqueous solution |
US10145299B2 (en) | 2014-04-08 | 2018-12-04 | Gomecsys B.V. | Internal combustion engine including variable compression ratio |
JP5793231B1 (en) * | 2014-09-05 | 2015-10-14 | 日本化学工業株式会社 | Iodate ion adsorbent and method for producing the same |
WO2016035839A1 (en) * | 2014-09-05 | 2016-03-10 | 日本化学工業株式会社 | Iodate ion adsorbent and method for producing same |
JP5793230B1 (en) * | 2014-09-05 | 2015-10-14 | 日本化学工業株式会社 | Iodate ion adsorbent and method for producing the same |
WO2016121497A1 (en) * | 2015-01-26 | 2016-08-04 | 日本化学工業株式会社 | Adsorbent and method for producing same |
JP2016137412A (en) * | 2015-01-26 | 2016-08-04 | 日本化学工業株式会社 | Adsorbent and production method thereof |
US10557409B2 (en) | 2015-10-22 | 2020-02-11 | Gomecsys B.V. | Heat engine comprising a system for varying the compression ratio |
WO2017110485A1 (en) | 2015-12-24 | 2017-06-29 | 株式会社荏原製作所 | Adsorbent for radioactive antimony, radioactive iodine, and radioactive ruthenium, and method of processing radioactive waste liquid using said adsorbent |
US11213799B2 (en) | 2015-12-24 | 2022-01-04 | Ebara Corporation | Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent |
CN109731548A (en) * | 2019-02-23 | 2019-05-10 | 华南理工大学 | A kind of active carbon/zirconium-manganese oxide composite material and the preparation method and application thereof |
CN109731548B (en) * | 2019-02-23 | 2021-01-19 | 华南理工大学 | Activated carbon/zirconium-manganese oxide composite material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0445213B2 (en) | 1992-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61187931A (en) | Adsorbent of arsenic in aqueous solution | |
EP0191893B1 (en) | Process for adsorption treatment of dissolved fluorine | |
US4752397A (en) | Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite | |
US4461714A (en) | Method of making crystalline 2-layer lithium aluminates in ion exchange resins | |
JP4159355B2 (en) | Sodium zirconium carbonate, basic zirconium carbonate and process for producing them | |
US4472362A (en) | Regeneration of crystalline lithium aluminates | |
BRPI0608868A2 (en) | products and methods for removing substances from an aqueous solution | |
US4477367A (en) | Crystalline 2-layer lithium-hydroxy aluminates | |
JP5062974B2 (en) | Ion processing apparatus and method | |
KR100857352B1 (en) | Preparation method of iron-coated zeolite and water treatment utilizing the same | |
RU2009714C1 (en) | Process of manufacturing pelletized sorbing material for lithium recovery from salt brines | |
US4596659A (en) | Selective separation of borate ions in water | |
AU2017278084A1 (en) | Porous decontamination removal composition | |
Ghosh et al. | Studies on management of chromium (VI)–contaminated industrial waste effluent using hydrous titanium oxide (HTO) | |
US4481087A (en) | Process for removing chromate from solution | |
JPH022612B2 (en) | ||
JPS614529A (en) | Adsorbent of phosphoric acid ion | |
JP2004066161A (en) | Water treatment method | |
JPH0217220B2 (en) | ||
KR880000582B1 (en) | Separating method for borate ion in water | |
JPS61192385A (en) | Treatment of fluorine-containing waste solution | |
WO2004096433A1 (en) | Adsorbent and process for producing the same | |
RU2050184C1 (en) | Method to produce granulated sorbent for lithium extraction from brines | |
JPS63287547A (en) | Adsorbent for fluoride ion | |
RU2665439C1 (en) | Hybrid sorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |