Nothing Special   »   [go: up one dir, main page]

JPS61177123A - Feeder circuit for refrigerating container - Google Patents

Feeder circuit for refrigerating container

Info

Publication number
JPS61177123A
JPS61177123A JP60016803A JP1680385A JPS61177123A JP S61177123 A JPS61177123 A JP S61177123A JP 60016803 A JP60016803 A JP 60016803A JP 1680385 A JP1680385 A JP 1680385A JP S61177123 A JPS61177123 A JP S61177123A
Authority
JP
Japan
Prior art keywords
phase
power supply
transformer
refrigerated
isolation transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60016803A
Other languages
Japanese (ja)
Inventor
辻 正成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60016803A priority Critical patent/JPS61177123A/en
Publication of JPS61177123A publication Critical patent/JPS61177123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば複数個の冷凍コンテナが接続され、各
冷凍コンテナに設けられた2種類の異種電圧レセプタク
ルにそれぞれ電力を供給する冷凍コンテナ用給電回路に
係り、特に回路の簡易化及び効率向上を図ったものに関
する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a power supply for refrigerated containers in which, for example, a plurality of refrigerated containers are connected and each refrigerated container is supplied with electric power to two types of different voltage receptacles provided in each refrigerated container. The present invention relates to circuits, and particularly to circuits that are simplified and improved in efficiency.

[従来の技術] 一般に冷凍コンテナは異種電圧(以下ここでは440V
及び220■の2種として説明する)のレセプタクルで
使用可能く同一の冷凍コンテナでは2種電圧を同時に使
用しないものとする)となされている。このような冷凍
コンテナを複数台同時に稼働する場合、各コンテナに4
40V、220Vの電力を供給することのできる給電回
路が用いられる。第3図に従来の冷凍コンテナ用給電回
路の一例を示す。
[Prior art] In general, refrigerated containers operate at different voltages (hereinafter 440V).
It can be used with receptacles of two types (explained as two types, 1 and 220), and two types of voltages should not be used at the same time in the same refrigerated container). When operating multiple such refrigerated containers at the same time, each container has 4
A power supply circuit capable of supplying power of 40V and 220V is used. FIG. 3 shows an example of a conventional power supply circuit for refrigerated containers.

まず、図中11は主配電盤で、この主配電盤11は3相
主母線12に印加されているAC440V、60 H2
の電圧を気中遮断器13を介して給電するもので、その
出力は第1の絶縁変圧器14の1次側に印加される。こ
の第1の3相絶縁変圧器14は1次側440V、2次側
440Vの60 Hz用のもので、その2次側出力は補
助給電盤15の3相母線16に印加される。この補助給
電盤15は上記3相母線16h1ら遮断器群17を介し
て440V、60 Hzの電圧を複数路に給電可能とな
されており、その一つの出力は440V系ボツクス18
〜21にそれぞれ並列に印加されると共に、第2の3相
絶縁変圧器22の1次側に印加される。この第2の3相
絶縁変圧器22は1次側440■、2次側220■の6
0 H2用のもので、その2次側出力は220V分電箱
23の3相母線24に印加される。この分電箱23は3
相母線24から遮断器群25を介して220V、60 
Hzの電圧を3系統に分電可能となされており、その各
出力は22OV系ボツクス26〜28にそれぞれ印加さ
れ、さらにボックス28を介してボックス29にも印加
される。尚、上記ボックス18.19,26.27には
4個の遮断器付冷凍コンテナレセプタクル、20゜28
には2個の遮断器付冷凍コンテナレセプタクル、21、
29には1個の遮断器付冷凍コンテナレセプタクルが組
込まれている。
First, 11 in the figure is the main switchboard, and this main switchboard 11 has AC440V, 60H2 applied to the 3-phase main bus 12.
The voltage is supplied via the air circuit breaker 13, and its output is applied to the primary side of the first isolation transformer 14. This first three-phase isolation transformer 14 is for 60 Hz with a primary side of 440V and a secondary side of 440V, and its secondary side output is applied to the three-phase bus 16 of the auxiliary power supply board 15. This auxiliary power supply panel 15 is capable of supplying 440V, 60Hz voltage to multiple paths from the three-phase bus 16h1 through the circuit breaker group 17, and one output is supplied to the 440V system box 18.
21 in parallel, and is applied to the primary side of the second three-phase isolation transformer 22. This second three-phase isolation transformer 22 has 6 parts on the primary side 440■ and the secondary side 220■
0H2, and its secondary output is applied to the three-phase bus 24 of the 220V distribution box 23. This distribution box 23 is 3
220V, 60V from the phase bus 24 through the circuit breaker group 25
A voltage of Hz can be divided into three systems, and each output is applied to 22OV system boxes 26 to 28, respectively, and further applied to box 29 via box 28. In addition, the boxes 18, 19 and 26, 27 have four refrigerated container receptacles with circuit breakers, 20° 28
has two refrigerated container receptacles with circuit breakers, 21,
29 incorporates one refrigerated container receptacle with a circuit breaker.

すなわち、この給電回路は各冷凍コンテナ(図示せず)
に220V及び440Vのいずれも給電可能としたもの
であるが、同一冷凍コンテナおける220V及び440
Vの各レセプタクルは同時に使用しないので、各ボック
ス18〜21.22〜29に組込まれた計22個のレセ
プタクルに対して接続可能な冷凍コンテナ数は11台(
レセプタクル22個の半数)である。このため、上記給
電回路には11個の冷凍コンテナ用に220V及び44
0Vのレセプタタルが各1個づつ設けられている。[発
明が解決しようとする問題点コところで、上記のような
従来の冷凍コンテナ用給電回路では、上記第1の3相絶
縁変圧器14は積載可能な全ての冷凍コンテナにおける
電力需要に合うように選定するので、非常に大きな容@
(上記例では冷凍コンテナ40フイートXi 50台用
に1080KVAx2台)のものを使用しなければなら
ない。一方、上記第2の3相絶縁変圧器22は、一般に
は冷凍コンテナ9個乃至15個に対して1台設けるので
、小容量の変圧器を多数接続して使用しなければならな
い(上記例では40フイ一ト×10〜11台に対して1
50KVAx1台の計14台)。つまり、第1の3相絶
縁変圧器14は440V系として使用し、第2の3相絶
縁変圧器22は22OV系として使用されるが、この場
合第1及び第2の3相絶縁変圧器14.22は共に1次
側及び2次側を共にデルタ結線とする。このため、従来
の給電回路では、第1の絶縁変圧器14の2次側及び第
2の絶縁変圧器22の2次側の各相のインピーダンスが
一致しなければ、第1及び第2の絶縁変圧器14.22
の間に3相母線16及び遮断器群11を介して循環電流
が流れるので発熱等の恐れがあり、また440V及び2
20Vの2系統に対してそれぞれ絶縁変圧器を設ける必
要がある。
In other words, this power supply circuit is connected to each refrigerated container (not shown).
It is possible to supply both 220V and 440V power to the same refrigerated container.
Since each receptacle of V is not used at the same time, the number of refrigerated containers that can be connected to a total of 22 receptacles built into each box 18-21, 22-29 is 11 (
half of the 22 receptacles). Therefore, the above power supply circuit has 220V and 44V for 11 refrigerated containers.
One 0V receptor is provided for each. [Problems to be Solved by the Invention] By the way, in the conventional power supply circuit for refrigerated containers as described above, the first three-phase isolation transformer 14 is designed to meet the power demand of all refrigerated containers that can be loaded. Because it is selected, it has a very large capacity @
(In the above example, 1080KVA x 2 units for 50 40 foot Xi refrigerated containers) must be used. On the other hand, since the second three-phase isolation transformer 22 is generally provided for every 9 to 15 refrigerated containers, it is necessary to connect and use a large number of small capacity transformers (in the above example, 1 for 40 feet x 10 to 11 units
14 units (50KVA x 1 unit). That is, the first three-phase isolation transformer 14 is used as a 440V system, and the second three-phase isolation transformer 22 is used as a 22OV system, but in this case, the first and second three-phase isolation transformers 14 .22 both have delta connections on the primary and secondary sides. Therefore, in the conventional power supply circuit, if the impedance of each phase on the secondary side of the first isolation transformer 14 and the secondary side of the second isolation transformer 22 do not match, the first and second insulation Transformer 14.22
Since circulating current flows through the 3-phase bus 16 and the circuit breaker group 11 between 440 V and 2
It is necessary to provide an isolation transformer for each of the two 20V systems.

この発明は上記のような問題を改善するためになされた
もので、複数の系に対して絶縁変圧器を兼用することに
より、発熱の恐れがなく簡易な回路構成でかつ高効率な
冷凍コンテナ用給電回路を提供することを目的とする。
This invention was made to improve the above-mentioned problems, and by using an isolation transformer for multiple systems, it is possible to create a highly efficient refrigerated container with a simple circuit configuration without the risk of heat generation. The purpose is to provide a power supply circuit.

[問題点を解決するための手段] すなわち、この発明に係る冷凍コンテナ用給電回路は、
第1または第2の3相電圧で駆動可能な冷凍コンテナが
複数個接続され前記第1の3相電圧系及び第2の3相電
圧系の各冷凍コンテナレセプタブルに電源電圧を変圧し
て給電するものにおいて、単相変圧器3台の各1次側を
デルタ結線し各2次側をスター結線してなり前記第1の
3相電圧に等しい電源電圧を入力して前記第1及び第2
の3相電圧をそれぞれ出力する絶縁変圧器を用いて前記
第1の3相電圧系及び第2の3相電圧系の各冷凍コンテ
ナレセプタブルに給電するようにしたことを特徴とする
ものである。
[Means for solving the problem] That is, the power supply circuit for a refrigerated container according to the present invention has the following features:
A plurality of refrigerated containers that can be driven by a first or second three-phase voltage are connected, and power is supplied by transforming the power supply voltage to each refrigerated container receptacle of the first three-phase voltage system and the second three-phase voltage system. in which the primary sides of three single-phase transformers are connected in delta and the secondary sides are connected in star, and a power supply voltage equal to the first three-phase voltage is inputted to the first and second three-phase transformers.
The invention is characterized in that power is supplied to each of the refrigerated container receptacles of the first three-phase voltage system and the second three-phase voltage system using isolation transformers that output three-phase voltages respectively. .

[作用] つまり、上記のように構成した冷凍コンテナ用給電回路
は、1個の絶縁変圧器で異種電圧を冷凍コンテナの各レ
セプタクルに給電することができるので、発振の恐れが
なく回路構成が簡易なものとなり、また従来のように大
容量の絶縁変圧器を使用せずに済むので効率が向上する
ものである。
[Function] In other words, the refrigerated container power supply circuit configured as described above can feed different voltages to each receptacle of the refrigerated container using one isolation transformer, so there is no fear of oscillation and the circuit configuration is simple. In addition, efficiency is improved because there is no need to use a large-capacity isolation transformer as in the conventional method.

[実施例] 以下、第1図及び第2図を参照してこの発明の一実施例
を詳細に説明する。但し、第1図において第3図と同一
部分には同一符号を付して示し、ここでは異なる部分に
ついてのみ述べる。
[Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. However, in FIG. 1, the same parts as in FIG. 3 are denoted by the same reference numerals, and only the different parts will be described here.

第1図はその構成を示すもので、前記主給電盤11の出
力は直接補助給電盤15の3相母線16に印加される。
FIG. 1 shows the configuration, and the output of the main power supply board 11 is directly applied to the three-phase bus 16 of the auxiliary power supply board 15.

また、補助配電盤15の一つの3相出力各相をU、V、
Wとする)は3相給電線30を通じて二重定格出力を持
つ二重給電用3相絶縁変圧器31に印加される。
In addition, one three-phase output of the auxiliary switchboard 15 is connected to U, V,
W) is applied through a three-phase power supply line 30 to a three-phase isolation transformer 31 for dual power supply having a dual rated output.

この二重給電用絶縁変圧器31は、第2図(a)に取出
して示すように、第1乃至第3の入力端子U〜W及び第
1乃至第6の出力端子u1〜wl 。
As shown in FIG. 2(a), this double power supply insulating transformer 31 has first to third input terminals UW and first to sixth output terminals u1 to wl.

u2〜W2を有しており、第1及び第2の入力端子(J
、Vを第1の単相変圧器Aの1次側巻線A1に接続し、
第2及び第3の入力端子v、Wを第2の単相変圧器Bの
1次側巻線B1に接続し、第3及び第1の入力端子W、
Uを第2の単相変圧器Cの1次側巻線C1に接続し、各
単相変圧器A−Cの2次側巻線A2〜C2の各一端を共
通接続し、多端をそれぞれ出力端子u1〜W1に接続し
、中間タップをそれぞれ出力端子u2〜W2に接続した
ものである。つまり、第1乃至第3の単相変圧器A〜C
の各1次側はデルタ結線、各2次側はスター結線となさ
れており、上記入力端子Ll−Wはそれぞれ上記3相給
電線31の各相U〜Wに接続され、出力端子u1〜W1
は3相給電線32を通じて440V系の各ボックス18
〜21に接続され、出力端子u2〜W2は3相給電線3
3を通じて前記220V分電器23の3相母線24に接
続される。尚、上記第1乃至第3の単相変圧器A−Cの
巻線比は2次巻線A2−C2の両端で1:1、中間タッ
プ位置で2:1である。
u2 to W2, and has first and second input terminals (J
, V to the primary winding A1 of the first single-phase transformer A,
The second and third input terminals v, W are connected to the primary winding B1 of the second single-phase transformer B, and the third and first input terminals W,
Connect U to the primary winding C1 of the second single-phase transformer C, connect one end of each of the secondary windings A2 to C2 of each single-phase transformer A-C in common, and output the other end, respectively. It is connected to terminals u1 to W1, and the intermediate taps are connected to output terminals u2 to W2, respectively. In other words, the first to third single-phase transformers A to C
Each primary side is connected in a delta connection, and each secondary side is connected in a star connection, and the input terminals Ll-W are connected to each phase U to W of the three-phase power supply line 31, and the output terminals u1 to W1 are connected to each other.
is connected to each box 18 of the 440V system through the 3-phase feeder line 32.
~21, and the output terminals u2~W2 are connected to the three-phase feeder line 3.
3 to the three-phase bus 24 of the 220V power divider 23. The turns ratio of the first to third single-phase transformers A-C is 1:1 at both ends of the secondary windings A2-C2, and 2:1 at the intermediate tap position.

ここで、上記二重給電用3相絶縁変圧器31の動作につ
いて、第2図(b)を参照して説明する。
Here, the operation of the three-phase isolation transformer 31 for dual power feeding will be explained with reference to FIG. 2(b).

第2図(b)は上記第1の単相変圧器Aを取出して示す
もので、この変圧器Aの入力端U、■間に交流電源Eを
接続して出力EO−AC440V、60 thを印加す
ると、出力端u−v2111に現われる電圧E1は巻線
比が2:1であるのでAC220V、60H2となり、
出力端u−vI間に現われる電圧E2は巻線比が1:1
であるのでAC440V、601h (−EO)となる
。このことは第2及び第3の単相変圧器B、Cについて
も同様であり、これによって上記二重給電用3相絶縁変
圧器31の出力端子u1〜w1には補助配電盤15ノ出
力と同等(7)AC440V、60Hzの3相電圧が現
われ、出力端子u2〜w2には補助配置fl115の出
力の半分のAC220V、60 Hzの3相電圧が現わ
れる。
Fig. 2(b) shows the first single-phase transformer A taken out, and an AC power supply E is connected between the input terminal U and When applied, the voltage E1 appearing at the output terminal u-v2111 is AC220V, 60H2 because the winding ratio is 2:1,
The voltage E2 appearing between the output terminals u and vI has a turns ratio of 1:1.
Therefore, AC440V, 601h (-EO). The same applies to the second and third single-phase transformers B and C, so that the output terminals u1 to w1 of the three-phase insulating transformer 31 for double power supply are equivalent to the output of the auxiliary switchboard 15. (7) A three-phase voltage of 440 VAC and 60 Hz appears, and a three-phase voltage of 220 VAC and 60 Hz, which is half of the output of the auxiliary arrangement fl115, appears at the output terminals u2 to w2.

すなわち、上記冷凍コンテナ用給電回路では、上記の二
重定格出力を有する絶縁変圧器31を用いて、前記第1
及び第2の絶縁変圧器14.22の機能を兼用している
。このため、変圧器31は各ボックス18〜21.26
〜29の22個のレセプタクルに接続される11個の冷
凍コンテナコンテナへ供給可能な給電能力を持つように
設定される。そして、440V系の各ボックス18〜2
9へは上記絶縁変圧器31から3相給電線32を通じて
並列的に給電され、22OV系のボックス26〜29へ
は上記絶縁変圧器31の出力を3相給電線33を通じて
一端分電器24に印加した後、この分電器24により直
列的に給電される(但し28と29は並列)。このよう
な接続は給電容量の大小により総合的なコストが最も安
価となるように決定される。
That is, in the refrigerated container power supply circuit, the insulation transformer 31 having the dual rated output is used to
It also has the functions of the second isolation transformer 14.22. For this reason, the transformer 31 is connected to each box 18 to 21.26.
It is set to have power supply capacity capable of supplying power to 11 refrigerated containers connected to 22 receptacles of ~29. And each box 18-2 of 440V system
9 is supplied with power in parallel from the isolation transformer 31 through the three-phase power supply line 32, and the output of the isolation transformer 31 is applied to the boxes 26 to 29 of the 22OV system through the three-phase power supply line 33 to the power divider 24 at one end. After that, power is supplied in series by this power divider 24 (however, 28 and 29 are connected in parallel). Such a connection is determined depending on the power supply capacity so that the overall cost is the lowest.

ここで、第2図(b)に示した単相変圧器Aの容量につ
いて考えてみると、2次側の等価容量KV、lは、 KVA1稔KVA2 +KVA2 /2  ・・・(イ
)(但しKVA2は冷凍コンテナが要求する最大入力よ
り決まる電力[KVAコ) となり、2巻線の等価容量KVA3は、KVA3− (
KVA2 +KVA1 )/2・・・(ロ) となる。つまり、デルタ及びスター結線で1次側440
V、2次(l1440Vで150KVA。
Now, if we consider the capacity of the single-phase transformer A shown in Fig. 2(b), the equivalent capacity KV,l on the secondary side is KVA1 KVA2 + KVA2 /2 (A) (However, KVA2 is the electric power [KVAko] determined by the maximum input required by the refrigerated container, and the equivalent capacity KVA3 of two windings is KVA3- (
KVA2 +KVA1 )/2...(b). That is, the primary side 440 with delta and star connections.
V, secondary (150KVA at 1440V.

220Vt’150KVAとり、、rl大150KVA
(440V、220■混用)まで使用可能とすれば、2
次側の等価容量はVl−v2間220V、25KVAの
ため50+25−75KVAとなる。
220Vt'150KVA, RL large 150KVA
(440V, 220■ mixed use), if it is possible to use up to 2
The equivalent capacity on the next side is 50+25-75KVA because Vl-v2 is 220V and 25KVA.

したがって、2巻線の等価容量は (50+75>/2−62.5KVA、!:なる。これ
は他の単相変圧器8.0についても同様である。
Therefore, the equivalent capacity of the two windings is (50+75>/2-62.5KVA,!).This is also true for the other single-phase transformers 8.0.

したがって、3相絶縁変圧器31は上記単相変圧器A−
Cの1次側のデルタ結線、2次側をスター結線して3相
にしたものであるから、その定格出力は440V及び2
20■に対してそれぞれ150KVAとなり、全体の定
格は 62.5KVAx3−187.5KVAとなる。
Therefore, the three-phase isolation transformer 31 is replaced by the single-phase transformer A-
Since the primary side of C is delta connected and the secondary side is star connected to form 3 phases, its rated output is 440V and 2
20 ■, respectively 150KVA, and the overall rating is 62.5KVAx3-187.5KVA.

次に、給電回路全体の容量について考えてみる。Next, let's consider the capacity of the entire power supply circuit.

第3図に示した従来の給電回路では、前述したように、
第1の絶縁変圧器14が1080KVAX1台−(44
0V/440V)rあり、第2の絶縁変圧器22が15
0KVAx14台・ (440V/220V)であると
すれば合計4260KVAとなるが、第1図に示したこ
の発明に係る給電回路テハ、187.5KVAx14台
・ (440V/440V/220V)で済むので合計
2625KVAとなる。これをコスト比較すると、通常
で容量1080KVA17)変圧器が270万円、15
0KVAの変圧器が44.8万円、第2図(a)に示し
た187.5KVAの変圧器が55.0万円で製造可能
であるとすれば、従来の給電回路では270x2+44
.8x14=1167.2万円となるのに対し、この発
明に係る給電回路では55.0X14=770万円とな
るのでその差397.2万円安価となる。
In the conventional power supply circuit shown in Fig. 3, as mentioned above,
The first isolation transformer 14 is one 1080KVAX unit - (44
0V/440V) r, the second isolation transformer 22 is 15
If it is 0KVA x 14 units (440V/220V), the total will be 4260KVA, but since the power supply circuit according to this invention shown in Fig. 1 will only require 187.5KVA x 14 units (440V/440V/220V), the total will be 2625KVA. becomes. Comparing the costs, a normal transformer with a capacity of 1080KVA17) costs 2.7 million yen, and a transformer with a capacity of 15
If a 0KVA transformer can be manufactured for 448,000 yen and a 187.5KVA transformer shown in Figure 2 (a) can be manufactured for 550,000 yen, the conventional power supply circuit will cost 270x2+44
.. 8x14 = 11,672,000 yen, whereas the power supply circuit according to the present invention costs 55.0x14 = 7,700,000 yen, making the difference 3,972,000 yen cheaper.

したがって、上記のように構成した冷凍コンテナ用給電
回路は、1個の絶縁変圧器で異種電圧を冷凍コンテナの
各レセプタクルに給電することができるので、発振の恐
れがなく回路構成が簡易なものとなり、また従来のよう
に大容量の絶縁変圧器を使用せずに済むので効率が向上
するものである。
Therefore, the refrigerated container power supply circuit configured as described above can feed different voltages to each receptacle of the refrigerated container using one isolation transformer, so there is no fear of oscillation and the circuit configuration is simple. Furthermore, efficiency is improved because there is no need to use a large-capacity isolation transformer as in the conventional method.

尚、上記実施例の絶縁変圧器31は、22OV系冷凍コ
ンテナが40フイートの場合には最大4個を1組、20
フイートの場合には最大8個を1組として分電器23の
遮断器25に接続し、また440V系が40フイートの
場合には最大15台、20フイートの場合には最大30
台を1組として絶縁変圧器31の2次側に接続すること
ができる。また、この発明は上記実施例に限定されるも
のではなく、定格出力が他の2種類であるある場合でも
同様に実施可能である。
Incidentally, when the 22OV system refrigerated container is 40 feet long, the insulating transformer 31 of the above embodiment is divided into a set of 4 at most, and a set of 20
If the 440V system is 40 feet, connect up to 8 units as a set to the circuit breaker 25 of the distribution device 23, and if the 440V system is 40 feet, then up to 15 units, and if the 440V system is 20 feet, connect up to 30 units.
A set of units can be connected to the secondary side of the isolation transformer 31. Further, the present invention is not limited to the above-mentioned embodiments, and can be implemented in the same manner even in cases where the rated outputs are of the other two types.

[発明の効果〕 以上詳述したようにこの発明によれば、第1または第2
の3相電圧で駆動可能な冷凍コンテナが複数個接続され
前記第1の3相電圧系及び第2の3相電圧系の各冷凍コ
ンテナレセプタフルに電源電圧を変圧して給電するもの
において、単相変圧器3台の各1次側をデルタ結線し各
2次側をスター結線してなり前記第1の3相電圧に等し
い電源電圧を入力して前記第1及び第2の3相電圧をそ
れぞれ出力する絶縁変圧器を用いて前記第1の3相電圧
系及び第2の3相電圧系の各冷凍コンテナレセプタブル
に給電するようにしたことにより、複数の系に対して絶
縁変圧器を兼用するので、発熱の恐れがなく簡易な回路
構成でかつ高効率な冷凍コンテナ用給電回路を提供する
ことができる。
[Effect of the invention] As detailed above, according to the present invention, the first or second
A plurality of refrigerated containers that can be driven with a three-phase voltage of The primary sides of each of the three phase transformers are connected in delta, and the secondary sides are connected in star, and a power supply voltage equal to the first three-phase voltage is input to obtain the first and second three-phase voltages. By supplying power to each refrigerated container receptacle of the first three-phase voltage system and the second three-phase voltage system using isolation transformers that output respectively, it is possible to use isolation transformers for multiple systems. Since it is used for both purposes, it is possible to provide a power supply circuit for a refrigerated container that is free from heat generation, has a simple circuit configuration, and is highly efficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る冷凍コンテナ用給電回路の一実
施例を示す回路構成図、第2図(a)。 (b)はそれぞれ同実施例に用いられる二重給電用3相
絶縁変圧器の構成及び作用を説明するための回路図、第
3図は従来の冷凍コンテナ用給電回路の構成を示す回路
図である。 11・・・主配電盤、12・・・3相主母線、13・・
・気中遮断器、14・・・第1の絶縁変圧器15・・・
補助給電盤、16・・・3相母線、17・・・遮断器群
、18〜21・・・440V系ボツクス18〜21.2
2・・・第2の3相絶縁変圧器、23・・・220■分
電箱、24・・・3相母線、25・・・遮断器群、26
〜29・・・220V系ボツクス、30.32.33・
・・3相給電線、31・・を二重給電用3相絶縁変圧器
FIG. 1 is a circuit configuration diagram showing one embodiment of a power supply circuit for a refrigerated container according to the present invention, and FIG. 2(a). (b) is a circuit diagram for explaining the configuration and operation of the three-phase isolation transformer for dual power supply used in the same embodiment, and FIG. 3 is a circuit diagram showing the configuration of a conventional power supply circuit for refrigerated containers. be. 11... Main switchboard, 12... 3-phase main bus, 13...
- Air circuit breaker, 14... first isolation transformer 15...
Auxiliary power supply board, 16... 3-phase bus, 17... Breaker group, 18-21... 440V system box 18-21.2
2... Second 3-phase isolation transformer, 23... 220 ■ Distribution box, 24... 3-phase bus bar, 25... Breaker group, 26
~29...220V box, 30.32.33.
...3-phase power supply line, 31... is a 3-phase isolation transformer for double power feeding.

Claims (1)

【特許請求の範囲】[Claims] 第1または第2の3相電圧で駆動可能な冷凍コンテナが
複数個接続され前記第1の3相電圧系及び第2の3相電
圧系の各冷凍コンテナレセプタブルに電源電圧を変圧し
て給電する冷凍コンテナ用給電回路において、単相変圧
器3台の各1次側をデルタ結線し各2次側をスター結線
してなり前記第1の3相電圧に等しい電源電圧を入力し
て前記第1及び第2の3相電圧をそれぞれ出力する絶縁
変圧器を用いて前記第1の3相電圧系及び第2の3相電
圧系の各冷凍コンテナレセプタブルに給電するようにし
たことを特徴とする冷凍コンテナ用給電回路。
A plurality of refrigerated containers that can be driven by a first or second three-phase voltage are connected, and power is supplied by transforming the power supply voltage to each refrigerated container receptacle of the first three-phase voltage system and the second three-phase voltage system. In a power supply circuit for a refrigerated container, the primary sides of three single-phase transformers are connected in delta, and the secondary sides are connected in star, and a power supply voltage equal to the first three-phase voltage is input to Power is supplied to each refrigerated container receptable of the first three-phase voltage system and the second three-phase voltage system using isolation transformers that output the first and second three-phase voltages, respectively. Power supply circuit for refrigerated containers.
JP60016803A 1985-01-31 1985-01-31 Feeder circuit for refrigerating container Pending JPS61177123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016803A JPS61177123A (en) 1985-01-31 1985-01-31 Feeder circuit for refrigerating container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016803A JPS61177123A (en) 1985-01-31 1985-01-31 Feeder circuit for refrigerating container

Publications (1)

Publication Number Publication Date
JPS61177123A true JPS61177123A (en) 1986-08-08

Family

ID=11926314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016803A Pending JPS61177123A (en) 1985-01-31 1985-01-31 Feeder circuit for refrigerating container

Country Status (1)

Country Link
JP (1) JPS61177123A (en)

Similar Documents

Publication Publication Date Title
EP1922794B1 (en) System and method for limiting ac inrush current
US20220348096A1 (en) Systems, apparatus and methods for electric vehicle charging via a power conversion system
DE112016004548T5 (en) Power management using synchronous shared coupling
EP1078434B1 (en) Power inverter apparatus using the load transformer of an ac power line to insert series compensation
CN213585598U (en) Multi-port power electronic transformer topological structure and alternating current-direct current micro-grid system thereof
JPH0782402B2 (en) Phase shifter
MXPA05010785A (en) Power converter.
US20230256853A1 (en) Systems, apparatus and methods for electric vehicle charging via a power conversion system
CN112383229A (en) Multi-port power electronic transformer topological structure and alternating current-direct current micro-grid system thereof
RU2007143590A (en) PANEL CONVERTER BUILT INTO THE DISTRIBUTION BOARD
JPH07288902A (en) Electric power supply system for long stator driving
KR100933841B1 (en) High Voltage Mono-Voltage Transformer For High Voltage Electrical Transmission Networks
JP4267826B2 (en) Voltage switching device
US20190028023A1 (en) Distribution transformer interface apparatus and methods
CN109450265A (en) A kind of multimode redundancy structure of cascaded H-bridges Three-phase electronic power transformer
JPS61177123A (en) Feeder circuit for refrigerating container
JPH0574294B2 (en)
JP2000037078A (en) Multilevel power converter
WO2021243425A1 (en) Start-up system for cascaded modular power converters
CA2250112A1 (en) Transformer arrangement
JP4317980B2 (en) Transformer equipment and power distribution equipment
JP2682241B2 (en) Power failure countermeasure device
SU1030909A1 (en) Power supply system
US1815823A (en) System of electrical distribution
JPH0246217Y2 (en)