Nothing Special   »   [go: up one dir, main page]

JPS61153396A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61153396A
JPS61153396A JP27892384A JP27892384A JPS61153396A JP S61153396 A JPS61153396 A JP S61153396A JP 27892384 A JP27892384 A JP 27892384A JP 27892384 A JP27892384 A JP 27892384A JP S61153396 A JPS61153396 A JP S61153396A
Authority
JP
Japan
Prior art keywords
heat exchanger
ribs
plates
plate
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27892384A
Other languages
Japanese (ja)
Other versions
JPH0610588B2 (en
Inventor
▲吉▼野 昌孝
Masataka Yoshino
Tadatsugu Fujii
忠承 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59278923A priority Critical patent/JPH0610588B2/en
Publication of JPS61153396A publication Critical patent/JPS61153396A/en
Publication of JPH0610588B2 publication Critical patent/JPH0610588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To form a heat exchanger of which manufacture is easy and the constructive stability is high, by a method wherein each rib as a fin is connected in trussed girder form each other as well as the breadth of an attaching surface with a plate of a rib at the most outside part is made wide. CONSTITUTION:The heat exchanger 1 is obtained by interposing passage lattices 4 which are mainly composed of rectangular ribs 3 as fins arranging at equal spaces in the prescribed direction, so as the direction of ribs 3 slips 90 deg. on every one layer between plural number of plates. Ribs 3 are connected at the connecting structures 5 which adhere to the one side of the plates with synthetic resin. Because of this, the mechanical strength of the plates 2 can be supplemented by ribs 3, and the width of the plates 2 can be made thin. The structural stability of the whole heat exchanger is high, the connection being strong by the above-mentioned connecting structures 5, especially about two ribs most outside, the upper surface 6 of the attaching surface with the plates are widely formed, and the adhesiveness with the plates 2 is improved, so even if the plate 2 is made of flexible materials such as Japanese paper, the adhesiveness with the passage element 4 is good and a heat exchanger which is stable and easy for arrangement can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層構造をなすプレート・フィン型の熱交
換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plate-fin type heat exchanger having a laminated structure.

〔従来の技術〕[Conventional technology]

プレート・フィン型の熱交換器は、単位体積当りの伝熱
面積が大きく、比較的小型で高効率の熱交換器として広
く使用されており、熱交換すべき2つの流体の流れ方の
違いから向流型、対向流型、直交(斜交)原型の三種類
に分ける−ことができる。空調装置に対しては対向流型
や直交流型が多く採用されているが、これまでその基本
的な構成は、第6図に示すように熱交換すべき2つの流
体を仕切るプレー) (101)を、複列の平行流路を
構成する波形板状のフィン(102)を挾んで積層した
ものとなっている。第6図の空調用のものにおいてその
プレー)(101)は伝熱性と通湿性とを合わせもった
和紙をベースとする紙材で形成され、フィン(102)
もプレート(101)と同じような紙材を波形板に加工
することで得られている。
Plate-fin type heat exchangers have a large heat transfer area per unit volume, and are widely used as relatively small and highly efficient heat exchangers. It can be divided into three types: countercurrent type, countercurrent type, and orthogonal (oblique) type. Counter-flow type and cross-flow type are often used for air conditioners, but until now their basic configuration has been as shown in Fig. ) are laminated with corrugated plate-shaped fins (102) sandwiching them between them to form double rows of parallel flow channels. In the air conditioner shown in Fig. 6, the fin (101) is made of paper material based on Japanese paper that has both heat conductivity and moisture permeability, and the fin (102)
It is also obtained by processing the same paper material as the plate (101) into a corrugated plate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の熱交換器にあっては、波形板状のフ
ィン(102)の製造が良好な端面な得るための切断も
含めかなりむつかしいものである。
In the conventional heat exchanger as described above, manufacturing the corrugated plate-shaped fins (102) is quite difficult, including cutting to obtain a good end surface.

本発明はかかる問題点を解決するためになされたもので
、製造が容易で構造的安定性の高い熱交換器を得ること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to obtain a heat exchanger that is easy to manufacture and has high structural stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明[こ係る熱交換器は平板状のプレートの間に通路
素子を挾み込んだもので、通路素子を、列状ンこ並ぶ複
数のリブをそれらの両端において連結構造で橋絡状に結
合したはしご形の合成樹脂の一体成形物とするとともに
、リブの最外側部のもののプレートとの当り面を他のも
のより幅広にしたものである。
The present invention [Such a heat exchanger has a passage element sandwiched between flat plates, and the passage element is constructed by connecting a plurality of ribs arranged in a row at both ends in a bridge-like structure. It is an integrally molded piece of synthetic resin in the form of a joined ladder, and the outermost part of the rib has a wider contact surface with the plate than the other parts.

〔作用〕[Effect]

この発明においては、通路素子が合成樹脂の一体成形物
であるので、ばらつきが少なく、シかも最外側部のリブ
のプレートとの当り面が広いためプレートとのなじみが
良いうえ、プレートと最外側部のリブとに隙間が生じに
くいので構造的安定性が良く、製造も容易である。
In this invention, since the passage element is integrally molded of synthetic resin, there is little variation, and the outermost rib has a wide contact surface with the plate, so it fits well with the plate. It is difficult to form gaps between the ribs of the parts, so it has good structural stability and is easy to manufacture.

〔実施例〕 図面に示す実施例としての熱交換器は、空調分野で採用
される空気対空気の熱交換器で、第1図のものは、熱交
換すべき2つの流体がおおむね直角に交叉して流れる直
交流型であり、第4図のものは熱交換すべき2つの流体
が対向して流れる対向流型である。
[Example] The heat exchanger as an example shown in the drawing is an air-to-air heat exchanger employed in the air conditioning field. The one in FIG. 4 is a counter-flow type in which two fluids to be heat exchanged flow oppositely.

初めに2つの流体が角度をなして流れる熱交換器の一例
としての直交流型の熱・交換器(1)について説明する
。この熱交換器(1)は、複数枚のプレート(2)のそ
れぞれの間に、一定の方向に等しい間隔をもって並ぶフ
ィンとしての直線状の端面形状が矩形のリブ(3)を主
体とする通路素子(4)を、それらのリブ(3)の方向
が一層ごとにおおむね90°ずれるように挾みつけて得
られる。プレー)(2)は伝熱性と通湿性とを合わせも
つ和紙などよりなる0、05〜0.2MM程度の肉厚の
方形の平板で、熱交換すべき2つの流体を仕切る部材で
ある。通路素子(4)は第2図に示すようンこプレート
(2)に対応する平面積内に複列のリブ(3)を直線状
に形成した合成樹脂の一体成形物で、そのリブ(3)の
高さくプレート(2)同志の間隔を規定し、0.5〜5
、OWM程度である)及びピッチ(間隔)は、熱交換す
べき流体を通す復列の平行流路をプレート(2)の対向
する間隙に構成する要素である。従ってピッチが大き過
ぎると空気流の平行流路における整流効果が小さく、小
さωぎると平行流路での静圧損失が大きくなるので2.
0〜70.011fl程度の範囲で決定される。リブ(
3)及びプレートク2)の肉厚は、薄ければ薄いほど熱
交換のうえからは良い結果が得られるが、実際にはそれ
らの機械的強度を保つという要請を受け、極端な薄肉に
けできない。しかし、9ブ(3)が合成樹脂で形成され
、かつリブ(3)相互が両端に箒いて連結構造(5)に
よって橋絡状に結合された通路素子(4)とプレート(
2)との積層により構成される本例の熱交換器(1)で
は、リブ(3)が合成樹脂であり、しかもプレートC2
)の片面に密着する連結構造(5)で相互?こ結合して
いるため、プレート(2)の機械的強度をリブ(3)で
補足させうるので、その分プレート(2)の機械的強度
を下げ薄肉?こすることもできるのである。各リブ(3
)&よ両端以外は独立した形態でプレート(2)に当接
しているが、連結構造(5) < o、i 〜1.Ow
m厚) Ic J: ッ”c 7’ L/ −)(2)
との結合は強いため熱交換器全体の構造的安定性は高い
。特にリブ(3)のうら最外1111部の二つ神こつい
てはプレート(2)との当り面となる上面(6)が他の
リブ(3)のそれより広く形成され、プレート(2)と
の密着性の向上が計られている。従って、プレート(2
)が和紙のような柔軟な材料のものであってもプレート
(2)と通路素子(4)との接着性は良く安定した構造
の熱交換器(1)となる。
First, a cross-flow type heat exchanger (1) will be described as an example of a heat exchanger in which two fluids flow at an angle. This heat exchanger (1) consists of a passage mainly consisting of linear ribs (3) having rectangular end surfaces as fins arranged at equal intervals in a certain direction between each of a plurality of plates (2). It is obtained by sandwiching elements (4) such that the directions of their ribs (3) are shifted by approximately 90° from layer to layer. Plate) (2) is a rectangular flat plate with a wall thickness of about 0.05 to 0.2 mm made of Japanese paper or the like that has both heat conductivity and moisture permeability, and is a member that partitions two fluids to be heat exchanged. The passage element (4) is an integrally molded synthetic resin product in which double rows of ribs (3) are linearly formed in a plane area corresponding to the inlet plate (2) shown in FIG. ) height plate (2) defines the distance between them, 0.5 to 5
, on the order of OWM) and the pitch (spacing) are elements that constitute a return series of parallel channels through which the fluid to be heat exchanged passes in opposite gaps of the plates (2). Therefore, if the pitch is too large, the rectifying effect of the air flow in the parallel flow path will be small, and if the pitch is too small, the static pressure loss in the parallel flow path will be large.
It is determined in a range of about 0 to 70.011 fl. rib(
The thinner the wall thickness of plate 3) and plate 2), the better the results in terms of heat exchange, but in reality, due to the requirement to maintain their mechanical strength, extremely thin walls are required. Can not. However, the passage element (4) and the plate (9) are formed of synthetic resin, and the ribs (3) are connected to each other in a bridging manner by the connecting structure (5) at both ends.
In the heat exchanger (1) of this example configured by laminating the ribs (3) and the plate C2, the ribs (3) are made of synthetic resin.
) with a connecting structure (5) in close contact with one side? Because of this connection, the mechanical strength of the plate (2) can be supplemented by the ribs (3), which reduces the mechanical strength of the plate (2) and makes it thinner. It can also be rubbed. Each rib (3
) & y, the parts other than both ends are in contact with the plate (2) in an independent form, but the connecting structure (5) < o, i ~1. Ow
m thickness) Ic J: 7' L/-) (2)
Since the bond between the heat exchanger and the heat exchanger is strong, the structural stability of the entire heat exchanger is high. In particular, in the case of the outermost 1111 part of the back of the rib (3), the upper surface (6) which is the contact surface with the plate (2) is formed wider than that of the other ribs (3), and the plate (2) The aim is to improve the adhesion of the Therefore, the plate (2
) is made of a flexible material such as Japanese paper, the adhesiveness between the plate (2) and the passage element (4) is good and the heat exchanger (1) has a stable structure.

しかして通路素子(4)を、一層ごとにリブ(3)の方
向が90°ずれるようにプレート(2)間に挾んで積層
し、接着すれば第1図に示すような構造的安定性が高く
組立性もよい直交流型の熱交換Rg(1)が得られる。
Therefore, if the passage elements (4) are sandwiched and laminated between the plates (2) so that the direction of the ribs (3) in each layer is shifted by 90 degrees, and then bonded, the structural stability as shown in Fig. 1 can be achieved. A cross-flow type heat exchanger Rg(1) with high assemblability is obtained.

そして、同じ方向の一つの系統の平行流路に一次空気を
、他の一つの系統の平行流路に二次空気を通せば、これ
までのこの種のものと同様に、−次空気と二次空気との
間での全熱交換が可能である。
Then, if primary air is passed through the parallel flow path of one system in the same direction, and secondary air is passed through the parallel flow path of the other system, the -primary air and secondary air can be passed through the parallel flow path of the other system in the same direction. Total heat exchange with the next air is possible.

次に第3図に示す対向流型の熱交換器(IA)ンこつい
て説明する。この熱交換器(IA)も各プレート(2)
の1;lに合成樹脂の相−lrに両端で拮りしたリブ(
3)を1列等しい間隔をおいて直線状に一体成形した;
山路素子(4A)を挾み込み済膚にして得られる点で、
前例の熱交換器(1)と同様の構成である。この熱交換
RB(LA)と前例のものの違いは、通路素子(4A)
のリブ(3)がプレート(2)の片面の平面積における
ほぼ半分に対応する長さに形成されていることと、通路
素子(4A)を、プレート(2)の間に千鳥に、各リブ
(3)の方向を平行にして債響したことである。すなわ
ち、この熱交換器(IA)の1m1洛素子(4A)は第
4図に示すようンこプレート(2)の平面積のほぼ半分
に対応する大きさで、これンこよって形成される平行流
路はプレート(2)の半分に対して存在し、他の半分シ
よ平行流路の欠如した構成となる。そして、第3図に示
すように通路素子(4A)を千鳥?こ積層するとともに
、対向する端面゛に現われるプレート(2)とプレート
(2)との各間のうち、リブ(3)による平行流路が端
部にあられれない部分を制御部材や閉塞板で閉塞し、対
向する端部に臨んでいる各嘔行流11′3にべt面方向
から一次空気と二次空気を通せば、−次空気と二次空気
との間での対向流方式?こよる熱交換が可]止となるの
である。
Next, the counterflow type heat exchanger (IA) shown in FIG. 3 will be explained. This heat exchanger (IA) also has each plate (2)
1; l is a synthetic resin phase - lr has ribs (
3) were integrally molded in a straight line at equal intervals;
In terms of the points obtained by using Motoko Yamaji (4A) as a sandwiched skin,
It has the same configuration as the heat exchanger (1) in the previous example. The difference between this heat exchanger RB (LA) and the previous one is that the passage element (4A)
The ribs (3) are formed to have a length corresponding to approximately half of the planar area of one side of the plate (2), and the passage elements (4A) are arranged in a staggered manner between the plates (2), with each rib This is because the direction of (3) was parallel to the sound. That is, the 1m1 loop element (4A) of this heat exchanger (IA) has a size corresponding to approximately half of the planar area of the loop plate (2) shown in Fig. 4, and the parallel Channels are present for one half of the plate (2), resulting in a configuration lacking parallel channels compared to the other half. Then, as shown in FIG. 3, the passage elements (4A) are arranged in a staggered manner. At the same time, between the plates (2) that appear on the opposing end faces, the portions where the parallel flow paths formed by the ribs (3) cannot be formed at the ends are covered with control members or blocking plates. If primary air and secondary air are passed from the bottom direction to each obstructed vomiting flow 11'3 facing the opposite end, counterflow system between the -primary air and secondary air can be achieved. This prevents heat exchange from occurring.

L達したいずれの熱交換器(1)、(IA)も伝熱性と
通湿性とを兼備する材料でプレート(2)が形成されて
いるため顕熱と潜熱の双゛方の熱交換が可能であるが、
プレート(2)を伝熱性をもつ材料により形成しglj
i熱に関する熱交換器を1苛成することも全く同トpの
仕方で可能である。なお、最外側部のリブ(3)に関し
ては、前記2例のように他のリブ(3)より肉厚を大き
くして上面(6)を広くしてもよいが、第5図に示すよ
うにその形状をアングル形にするなどして、肉厚を大ぎ
くせずに上面(6)だけを広くすることも可能である。
In both heat exchangers (1) and (IA), the plate (2) is made of a material that has both heat conductivity and moisture permeability, so it is possible to exchange both sensible heat and latent heat. In Although,
The plate (2) is made of a heat conductive material and
It is also possible to build a heat exchanger for heat in exactly the same way. Regarding the outermost rib (3), the wall thickness may be made larger than the other ribs (3) and the upper surface (6) may be made wider as in the above two examples, but as shown in FIG. It is also possible to widen only the top surface (6) without increasing the wall thickness by making the shape angular.

〔発明の効果〕〔Effect of the invention〕

以上、実施例Pこよる説明からも明らかなようrこ本発
明の熱交換器は、伝熱性のあるプレート間に、所定の間
隔をおいて列状に並ぶ合成樹脂よりなるリブ相互を端部
において連結構造で橋絡状ンこ結分するとともに、最外
側部のリブのプレートとの当り1苗を1也のリブより幅
広に構成した通1洛素fを挾みA構造としたものである
から、西;洛−お子の製、告が容易で、プレートとリブ
のなじみが良く容易に両者を密着させうるので組立性も
良い。また、リブがその端部でa結構造で結分している
うえ、耐外側部のものの当り面が広いのでリブとプレー
トとの密着が良く全体の構造的安定性も高いという利点
がある。
As is clear from the above description of Embodiment P, the heat exchanger of the present invention has ribs made of synthetic resin arranged in rows at predetermined intervals between heat-conducting plates at their ends. In addition to connecting the ribs in a bridging structure, the ribs on the outermost part of the seedlings are made to be wider than the ribs, making the seedlings wider than the ribs in the A structure. Because of this, it is easy to make and install, and the plate and ribs fit well and can be easily attached to each other, making it easy to assemble. Further, since the ribs are connected at their ends in an a-tie structure and the contact surface of the outer side part is wide, the ribs and the plate are in close contact with each other, and the overall structural stability is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1!図は本発明の適用例としての直交流型の熱交換器
を示す斜視図、第2図は、その通洛素そを単独に示す斜
視図、第3図は本発明の曲の実施例を示す熱交換器の斜
視図、第4図番よ、同じくその通路素子を単独で示す説
明図、第5図は、通路素子の池の態様を示す端面図、第
6図は従来例としての直交流型の熱交換器を示す斜視図
である。図において、(1)、(LA)は熱交換器、(
2)はプレート、(3)はリブ、(4)、(4A)は通
路素子、(5)は連結構造、(6)は上面である。なお
、図中同−符号番よ同−又は相当部分を示す。 代理人 大 岩 増 雄(ほか2名) 第1図          ”°°熱交換DJ− 第5図
1st! The figure is a perspective view showing a cross-flow type heat exchanger as an application example of the present invention, FIG. 2 is a perspective view showing its operation alone, and FIG. FIG. 4 is an explanatory diagram showing the passage element alone, FIG. 5 is an end view showing the form of a pond in the passage element, and FIG. FIG. 2 is a perspective view showing an AC heat exchanger. In the figure, (1) and (LA) are heat exchangers, (
2) is a plate, (3) is a rib, (4) and (4A) are passage elements, (5) is a connecting structure, and (6) is an upper surface. In addition, the same reference numerals in the drawings indicate the same or equivalent parts. Agent Masuo Oiwa (and 2 others) Figure 1 ``°°Heat Exchange DJ- Figure 5

Claims (1)

【特許請求の範囲】[Claims]  伝熱性を有する平板状の複数枚のプレートの各間に通
路素子を挾み、プレート同志の対向する間隙に通路素子
による複列の平行流路を多段に構成してなる熱交換器で
あって、前記各通路素子が、所定の間隔をおいて列状に
並ぶリブをそれらの両端部において連結構造によって橋
絡状に結合したはしご形の合成樹脂よりなる一体成形物
であり、かつそのリブのうちの最外側部のもののプレー
トとの当り面は他のものより幅広に形成されていること
を特徴とする熱交換器。
A heat exchanger comprising a plurality of flat plates having heat conductivity, with passage elements interposed between each plate, and double rows of parallel flow passages formed by the passage elements arranged in multiple stages in opposing gaps between the plates. , each of the passage elements is an integrally molded ladder-shaped synthetic resin article in which ribs arranged in a row at a predetermined interval are connected in a bridge-like manner at both ends thereof by a connecting structure, and A heat exchanger characterized in that the outermost part of the heat exchanger has a contact surface with a plate that is wider than the other parts.
JP59278923A 1984-12-26 1984-12-26 Heat exchanger Expired - Lifetime JPH0610588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278923A JPH0610588B2 (en) 1984-12-26 1984-12-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278923A JPH0610588B2 (en) 1984-12-26 1984-12-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS61153396A true JPS61153396A (en) 1986-07-12
JPH0610588B2 JPH0610588B2 (en) 1994-02-09

Family

ID=17603964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278923A Expired - Lifetime JPH0610588B2 (en) 1984-12-26 1984-12-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0610588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874042A (en) * 1988-05-27 1989-10-17 William Becker Corrugated cardboard heat exchanger
US6851171B2 (en) * 2002-11-27 2005-02-08 Battelle Memorial Institute Method of fabricating multi-channel devices and multi-channel devices therefrom
JPWO2011033624A1 (en) * 2009-09-16 2013-02-07 三菱電機株式会社 Total heat exchange element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527186A (en) * 1975-07-07 1977-01-20 Iwao Hori Entire body masseur

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527186A (en) * 1975-07-07 1977-01-20 Iwao Hori Entire body masseur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874042A (en) * 1988-05-27 1989-10-17 William Becker Corrugated cardboard heat exchanger
US6851171B2 (en) * 2002-11-27 2005-02-08 Battelle Memorial Institute Method of fabricating multi-channel devices and multi-channel devices therefrom
JPWO2011033624A1 (en) * 2009-09-16 2013-02-07 三菱電機株式会社 Total heat exchange element

Also Published As

Publication number Publication date
JPH0610588B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
KR890003897B1 (en) Heat exchanger
US3912004A (en) Heat exchanger apparatus with spacer projections between plates
JPS6152594A (en) Heat exchanger
JPH0129431Y2 (en)
JPH035511B2 (en)
JPS61153396A (en) Heat exchanger
JPS61161397A (en) Heat exchanger
JPH0534089A (en) Heat exchanging element
JPH1047884A (en) Heat exchanger
JPH073170Y2 (en) Heat exchanger
JP2005282907A (en) Heat exchanger
JPS6152593A (en) Heat exchanger
JPS61175487A (en) Heat exchanger
JPS61153394A (en) Heat exchanger
JPH02634B2 (en)
JPH0318872Y2 (en)
JPS61153395A (en) Heat exchanger
JPH0373796B2 (en)
JPS61186795A (en) Heat exchanger
JPH0697157B2 (en) Heat exchanger
JPH05157480A (en) Heat exchanging element
JPS6141895A (en) Heat exchanger
JPS6152596A (en) Counter flow type heat exchanger
JPH0534087A (en) Heat exchanging element
JPS6229898A (en) Heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term