JPS6032937A - Supercharger - Google Patents
SuperchargerInfo
- Publication number
- JPS6032937A JPS6032937A JP14107183A JP14107183A JPS6032937A JP S6032937 A JPS6032937 A JP S6032937A JP 14107183 A JP14107183 A JP 14107183A JP 14107183 A JP14107183 A JP 14107183A JP S6032937 A JPS6032937 A JP S6032937A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- bearing housing
- turbine
- temperature
- lubricating oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/005—Cooling of pump drives
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、軸受ハウシング内の軸受部の冷却構造全改良
した過給機に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a supercharger having a completely improved cooling structure for a bearing portion in a bearing housing.
特開昭57−2(1518号公報にあるような従来の過
給機を第1図により説明する。第1図は断面図を示し、
1は内燃機関の排気マニホールド(図示せず)K:接続
されたタービンケース、2はタービンケース1内に設け
られ排気ガスを導入するスクロール通路、3は排気ガス
によって回転駆動されるタービン羽根車でタービン軸4
に固定されている。5はタービン軸4に固定された圧縮
機羽根車である。6はタービン’1Iift 4を回転
目在にラジアル方向に支持するラジアルメタル、7はラ
ジアルメタル6を支持する軸受部を有する軸受ノ・つ7
ングでタービンケースlに同定されている。8は機関の
オイルボング(図示せず)より吐出される潤滑油をラジ
アルメタル6に供給する欄滑油通路、9は潤滑油がスク
ロール通路2へ漏れることを防止する軸封装置、IIH
機関のオイル溜0(図示せす)と連通している供給され
た潤滑油を如上させる潤滑油出口、25は熱迎」「壁で
ある。A conventional supercharger as disclosed in Japanese Unexamined Patent Publication No. 57-2 (1518) will be explained with reference to FIG. 1. FIG. 1 shows a sectional view,
1 is an exhaust manifold (not shown) of an internal combustion engine; K is a connected turbine case; 2 is a scroll passage provided in the turbine case 1 and introduces exhaust gas; 3 is a turbine impeller rotationally driven by the exhaust gas; turbine shaft 4
is fixed. 5 is a compressor impeller fixed to the turbine shaft 4. 6 is a radial metal that supports the turbine '1 Iift 4 in the radial direction in rotational alignment, and 7 is a bearing no. 7 having a bearing portion that supports the radial metal 6.
It has been identified in the turbine case l in the simulation. Reference numeral 8 denotes a column oil passage that supplies lubricating oil discharged from the engine's oil bong (not shown) to the radial metal 6; 9 denotes a shaft sealing device that prevents lubricating oil from leaking into the scroll passage 2; IIH
A lubricating oil outlet for discharging the supplied lubricating oil, which communicates with the oil sump 0 (shown) of the engine, is a heat receiving wall.
上記の構造において、機関が運転時に1.6 (10C
〜c+oocとgつだ高温の排気ガスがスクロール通路
2に導入されてタービン羽根車3が回転駆動されるため
、タービンケース1、タービン羽4r+ 申−3も同様
に500C〜800Cの高温となる。従って、タービン
ケース1に隣接する軸受ハウジング7も伝4ろるいは輻
射によって高温になる。しかし、潤滑抽油11138よ
り潤滑油が連続して供給されるため、ラジアルメタル6
はほぼ潤滑油温朋(約sor〜120tZ’)に、また
、軸封装置9も150C〜230C程度に冷却されてい
る。In the above structure, when the engine is operating, 1.6 (10C
Since the exhaust gas having a high temperature of ~c+ooc and g is introduced into the scroll passage 2 and the turbine impeller 3 is driven to rotate, the turbine case 1 and the turbine blades 4r+ and -3 also reach a high temperature of 500C to 800C. Therefore, the bearing housing 7 adjacent to the turbine case 1 also becomes high in temperature due to transmission or radiation. However, since lubricating oil is continuously supplied from lubricating oil extract 11138, radial metal 6
The lubricating oil temperature is approximately 120tZ', and the shaft sealing device 9 is also cooled to approximately 150C to 230C.
そして、急に伸開が停止した場合には、機関の停止と共
に排気ガス及び潤滑油の流入が停止する。If the extension/opening suddenly stops, the engine stops and the inflow of exhaust gas and lubricating oil stops.
このため、潤滑油による冷却が行われないので、高温の
タービンケース1からの伝導あるいは輻射により伝わる
熱によって軸受ハウジング7、ラジアルメタル6及び軸
封装置9の温度が上昇する。Therefore, since cooling by lubricating oil is not performed, the temperatures of the bearing housing 7, radial metal 6, and shaft sealing device 9 increase due to heat transmitted by conduction or radiation from the high-temperature turbine case 1.
この各部の温度上昇は、横軸に時間をとり縦軸に温度を
とって示した第2図の軸封製置部温度曲線A1 ラジア
ルメタル部温度曲線Bのように、3〜5分後にピークと
なりその後低下する状態となる。The temperature rise in each part peaks after 3 to 5 minutes, as shown in the shaft seal placement part temperature curve A1 and radial metal part temperature curve B in Figure 2, where the horizontal axis represents time and the vertical axis represents temperature. and then declines.
この際の温度上昇により、ラジアルメタル6の摩耗、潤
滑油の焼付き、軸封装置9のいわゆるへた!1ll(ピ
ストンリングの張力が減衰する)等の悪影響を受ける。The temperature rise at this time causes wear of the radial metal 6, seizure of the lubricating oil, and so-called failure of the shaft sealing device 9! 1ll (the tension of the piston ring is attenuated), etc.
この機関の急停止時における+11+受部温度の上昇を
防ぐため、水冷式の軸受ノ・ウンングが実用化されてお
り、これを第3図により説明する。In order to prevent the temperature of the bearing part from increasing when the engine suddenly stops, a water-cooled bearing has been put into practical use, and this will be explained with reference to FIG.
第3図は過給機の断面図を示し、軸受ハウジング7内の
タービンケース1側に冷却水通路12が設けられ、冷却
水通路12の冷却水人口13及び冷却水出口14は、第
4図に示すようにラジェータ15に連通されている。第
4図において、16はウォータポンプ、17はラジェー
タ15のアッパータンク、19は排気マニホールド、2
0は稗関、21はオイルポンプ、22はオイル溜りであ
る。FIG. 3 shows a sectional view of the supercharger, in which a cooling water passage 12 is provided on the turbine case 1 side in the bearing housing 7, and the cooling water population 13 and cooling water outlet 14 of the cooling water passage 12 are as shown in FIG. 4. It is communicated with the radiator 15 as shown in FIG. In FIG. 4, 16 is a water pump, 17 is an upper tank of the radiator 15, 19 is an exhaust manifold, 2
0 is a checkerboard, 21 is an oil pump, and 22 is an oil reservoir.
第4図において、ウォータポンプ16の吐出口から冷却
水人口13を経由し冷却水通路12に案内され軸受ハウ
ジング7を冷却した後の冷却水は冷却水出口14よりラ
ジェータ15に戻σれ、タービンケース1の内部温度は
l (1(l U〜230Cに効率よく冷却される。従
って、この(74造によれば上記したラジアルメタル6
の摩耗、潤滑油の焼付き、軸封装置9のへたり等の問題
は解決する。In FIG. 4, the cooling water that is guided from the discharge port of the water pump 16 to the cooling water passage 12 via the cooling water port 13 and cools the bearing housing 7 is returned to the radiator 15 from the cooling water outlet 14, and then flows into the turbine. The internal temperature of case 1 is efficiently cooled to l (1 (l U~230C).
This solves problems such as wear of the shaft, seizure of lubricating oil, and wear of the shaft sealing device 9.
しかし、第3図の軸受ハウジング7の冷却水通路12の
タービンケース1側の壁24付近は外部と内部との温度
差が大きくなり、冷却水通wJ12内の冷却水が沸騰し
配管に亀裂が入ったり、また、軸受ハウジング7に亀裂
を生じる等の不具合があった。そして、亀裂により潤滑
油中に水が混入すると潤滑能力が極端に劣化し過給機だ
けでなく機関も破損してしまう欠点があった。However, near the wall 24 on the turbine case 1 side of the cooling water passage 12 of the bearing housing 7 in Fig. 3, the temperature difference between the outside and the inside becomes large, and the cooling water in the cooling water passage wJ12 boils, causing cracks in the piping. In addition, there were problems such as cracks in the bearing housing 7. Furthermore, if water gets mixed into the lubricating oil due to cracks, the lubricating ability will be extremely degraded, resulting in damage to not only the supercharger but also the engine.
本発明は上記の状況に鑑みなされたものであり、冷却水
配管や!WIl受ハウジングの冷却水通路を形成する壁
の亀裂の発生を防止しラジアルメタルの摩耗、潤滑油の
焼付き劣化及び軸側装置のへたりを阻止できる過給機を
提供することを目的としたものでhる。The present invention was made in view of the above situation, and is designed to provide cooling water piping and! The object of the present invention is to provide a supercharger that can prevent the occurrence of cracks in the wall forming the cooling water passage of the WIl receiver housing, and prevent wear of the radial metal, seizing deterioration of the lubricating oil, and fatigue of the shaft side device. Hang out with things.
本発明の過給機は、タービンケース内に装着され内燃機
関の排気ガスによって駆動きれるタービン羽根車と、該
タービン羽根車のタービン軸に固定され上記機関へ空気
を圧送する圧縮空気羽根車と、上記タービン軸の軸受+
?B全内蔵し潤滑油通路を有し内部の上記ターヒン側に
冷却水仙FiSを備えた軸受ハウジングとを設けてなり
、上記軸受ハウジング内に上記冷却水通路より上記ター
ビンケース側に断熱用全気室を設けたものである。The supercharger of the present invention includes: a turbine impeller installed in a turbine case and driven by exhaust gas of an internal combustion engine; a compressed air impeller fixed to a turbine shaft of the turbine impeller for pumping air to the engine; Bearing of the above turbine shaft +
? B is completely built-in, has a lubricating oil passage, and is provided with a bearing housing equipped with a cooling Narcissus FiS on the inside side of the turbine, and a complete air chamber for insulation is provided in the bearing housing from the cooling water passage to the turbine case side. It has been established.
以下本発明の過給@を、実施例を用い従来と同部品(r
i同符号で示し同部分の構造の説明は省略し第5図によ
り説明する。18は空気室で、軸受/・ウジング7の内
部に冷却水j+1+路12よりタービンケース1側に断
熱用に設Vfられている。Hereinafter, the supercharging of the present invention will be explained using examples and the same parts as the conventional parts (r
i The same reference numerals indicate the same parts, and the explanation of the structure of the same parts will be omitted and will be explained with reference to FIG. Reference numeral 18 denotes an air chamber, which is provided inside the bearing housing 7 and closer to the turbine case 1 than the cooling water j+1+ path 12 for heat insulation.
機関20の運転時には、第4図において、排気マニホー
ルド19からの600C〜900Cの高温の排気カスが
タービンケースlに送られタービン羽根車3を回転駆動
し、従って、圧縮磯羽根東5が駆動されて空気を機関2
0内に圧送する。そして、このとき、□タービンケース
lの温度も500C〜800Cと高温になっている。一
方、機関20のオイルポンプ21より吐出された潤滑油
は潤滑油通路8へ供給され、ラジアルメタル6を潤滑及
び冷却した後潤滑油出口11より機関2oのオイル溜り
22へ戻る。また、ラジェータ15に2いて冷却された
冷却水はウォータポンプ16により加圧され機関20へ
多く供給されるが、その一部は軸受ハウジング7の冷却
水人口13より軸受ハウジング7内に導入され、冷却水
通路12を通りながら軸受ハウシング7内を冷却した後
、冷却水出口14から機関20よりの戻りの冷却水と共
にラジェータ15のアッパータンク17へ戻る。When the engine 20 is in operation, as shown in FIG. 4, high-temperature exhaust gas of 600 to 900 C from the exhaust manifold 19 is sent to the turbine case l and rotationally drives the turbine impeller 3, thereby driving the compression rock blade east 5. engine 2
Pressure feed within 0. At this time, the temperature of the turbine case l is also as high as 500C to 800C. On the other hand, the lubricating oil discharged from the oil pump 21 of the engine 20 is supplied to the lubricating oil passage 8, lubricates and cools the radial metal 6, and then returns to the oil reservoir 22 of the engine 2o through the lubricating oil outlet 11. Further, the cooling water that has been cooled in the radiator 15 is pressurized by the water pump 16 and is supplied to the engine 20 in large quantities, but a part of it is introduced into the bearing housing 7 from the cooling water port 13 of the bearing housing 7. After cooling the inside of the bearing housing 7 while passing through the cooling water passage 12, the cooling water returns from the cooling water outlet 14 to the upper tank 17 of the radiator 15 together with the cooling water returned from the engine 20.
このとき、高温のタービンケースlより輻射、伝熱によ
り熱伝達され軸受ハウジング7のタービンケースl側端
部は300C〜500Cとなっているが、空気室18を
介しているため、冷却水通路12と空気室18との間の
壁の温度は150c〜250Cに下がっている。従って
、温度差が大きすきて軸受ハウジング7の壁24部分に
亀裂を生じたり、冷却水通路12中の冷却水が沸騰する
と言った不具合を解消できる。また、ラジアルメタル6
の摩耗、軸封装置9のへたり、潤滑油の劣化等が防止さ
れ、これらの防止効果はきらに、機関20の停止後は冷
却水が伝熱により高温となることにより生じる自然対流
により促進きれる。At this time, heat is transferred from the high-temperature turbine case l by radiation and heat transfer, and the end of the bearing housing 7 on the turbine case l side has a temperature of 300C to 500C. The temperature of the wall between the air chamber 18 and the air chamber 18 has dropped to 150C to 250C. Therefore, problems such as cracks occurring in the wall 24 portion of the bearing housing 7 or boiling of the cooling water in the cooling water passage 12 due to a large temperature difference can be eliminated. Also, radial metal 6
wear, wear of the shaft seal device 9, deterioration of the lubricating oil, etc. are prevented, and these preventive effects are further promoted by natural convection that occurs when the cooling water becomes high temperature due to heat transfer after the engine 20 is stopped. I can do it.
このように本実施例の過給機は、軸受ハウジングを冷却
水通路だけを設けて冷却すれば冷却は効率的に行われる
が、上2したようにタービンケース側の壁部で内外側の
温度差が大きいために、冷却水が沸騰し配管を破損した
り、軸受・・ウジングの壁に亀裂を生じるので、従来か
ら行われている断熱用空気室を併用配設し、冷却水のみ
で冷却しないで冷却水通路の壁に大きな温度差が生じな
いようにして軸受ハウジングの冷却を材買に無理がかか
らぬようにしたので軸受ハウジングや配管の亀裂の発生
を防止でき、ラジアルメタルの摩耗、軸封装置のへたり
及び潤滑油の劣化が阻止できる。In this way, in the turbocharger of this embodiment, if the bearing housing is cooled by providing only the cooling water passage, cooling can be performed efficiently, but as mentioned in Part 2 above, the temperature inside and outside of the turbine case wall increases. Because of the large difference, the cooling water could boil and damage the piping, or cause cracks in the walls of the bearings and housings, so we installed an insulating air chamber in conjunction with the conventional method, and cooled using only the cooling water. This prevents large temperature differences from occurring on the walls of the cooling water passages, thereby reducing the need for straining the materials used to cool the bearing housing, thereby preventing cracks in the bearing housing and piping, and reducing wear on the radial metal. This can prevent the shaft seal from becoming worn out and the lubricating oil from deteriorating.
以上記述した如く本発明の過給機は、冷却水配管や軸受
ハウジングの冷却水通路全形成する壁の亀裂の発生を防
止しくラジアルメタルのM粍、潤滑油の焼付き劣化及び
軸封装置のへたりを阻止できる効果を有するものである
。As described above, the supercharger of the present invention prevents the occurrence of cracks in the cooling water piping and the wall that forms the entire cooling water passage of the bearing housing, prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages of the bearing housing, prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages of the bearing housing, prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages of the bearing housing, prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages of the bearing housing, prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages in the bearing housing, and prevents the occurrence of cracks in the walls that form the cooling water pipes and the cooling water passages in the bearing housing. This has the effect of preventing sagging.
第1図は従来の過給機の断面図、第2図は第1図の過#
機の機関停止後の軸封部の@度上昇説明図、第3図は第
1図の機関の軸封部の温度上昇防止対策を施こした従来
の過給機の断面図、第4図は第3図の過給機の配管図、
第5図は本発明の過給機の実施例の断面図である。Figure 1 is a cross-sectional view of a conventional turbocharger, and Figure 2 is a cross-sectional view of a conventional turbocharger.
Fig. 3 is a cross-sectional view of a conventional turbocharger with measures taken to prevent temperature rise in the shaft seal of the engine shown in Fig. 1, and Fig. 4 is the turbocharger piping diagram in Figure 3,
FIG. 5 is a sectional view of an embodiment of the supercharger of the present invention.
Claims (1)
によって駆動されるタービン羽根車と、該タービン羽根
車のタービン軸に固定され上記機関へ空気を圧送する圧
縮機羽根車と、上記タービン軸のM受部を内蔵し潤滑油
通路を有し、内部の上記タービンケース側に冷却水通路
を備えた軸受ハウシングとを設けたものにおいて、上記
軸受ハウシング内に上記冷却水通路より上記タービンケ
ース側に断熱用空気室を設けたことを特徴とする過給機
。1. A turbine impeller installed in a turbine case and driven by the exhaust gas of the internal combustion engine, a compressor impeller fixed to the turbine shaft of the turbine impeller and pressurizing air to the engine, and an M of the turbine shaft. A bearing housing having a built-in receiving portion, a lubricating oil passage, and a cooling water passage inside on the turbine case side, wherein the bearing housing is provided with heat insulation from the cooling water passage to the turbine case side. A supercharger characterized by having an air chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14107183A JPS6032937A (en) | 1983-08-03 | 1983-08-03 | Supercharger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14107183A JPS6032937A (en) | 1983-08-03 | 1983-08-03 | Supercharger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6032937A true JPS6032937A (en) | 1985-02-20 |
Family
ID=15283554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14107183A Pending JPS6032937A (en) | 1983-08-03 | 1983-08-03 | Supercharger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032937A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0237621A (en) * | 1988-07-27 | 1990-02-07 | Furukawa Electric Co Ltd:The | Manufacture of multi-core parallel flat angular enamel wire |
US4950457A (en) * | 1986-11-28 | 1990-08-21 | Weick Heinz Hermann | Device for the evaporation of an active substance for the treatment of the ambient air |
JPH02242749A (en) * | 1989-02-24 | 1990-09-27 | Oscar Mayer Foods Corp | Flexible package to be sealed again for disclosing mischief |
US5049215A (en) * | 1990-09-19 | 1991-09-17 | Thomas & Betts Corporation | Method of forming a high impedance electrical cable |
US5091610A (en) * | 1990-09-19 | 1992-02-25 | Thomas & Betts Corporation | High impedance electrical cable |
JP2021060315A (en) * | 2019-10-08 | 2021-04-15 | 日鉄テックスエンジ株式会社 | Pressure test machine |
-
1983
- 1983-08-03 JP JP14107183A patent/JPS6032937A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950457A (en) * | 1986-11-28 | 1990-08-21 | Weick Heinz Hermann | Device for the evaporation of an active substance for the treatment of the ambient air |
JPH0237621A (en) * | 1988-07-27 | 1990-02-07 | Furukawa Electric Co Ltd:The | Manufacture of multi-core parallel flat angular enamel wire |
JPH02242749A (en) * | 1989-02-24 | 1990-09-27 | Oscar Mayer Foods Corp | Flexible package to be sealed again for disclosing mischief |
US5049215A (en) * | 1990-09-19 | 1991-09-17 | Thomas & Betts Corporation | Method of forming a high impedance electrical cable |
US5091610A (en) * | 1990-09-19 | 1992-02-25 | Thomas & Betts Corporation | High impedance electrical cable |
JP2021060315A (en) * | 2019-10-08 | 2021-04-15 | 日鉄テックスエンジ株式会社 | Pressure test machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1071881A (en) | Ebullient cooled turbocharger bearing housing | |
JP4692820B2 (en) | Supercharger with electric motor | |
EP0231952A2 (en) | Method and apparatus for controlling temperatures of turbine casing and turbine rotor | |
EP1500804A2 (en) | Gas turbine power plant | |
US20160273551A1 (en) | Turbocharger | |
US11326622B2 (en) | Oil cooled centrifugal compressor and turbocharger including the same | |
JPH07150961A (en) | Exhaust gas turbocharger for supercharging internal combustion engine | |
JPH0575887B2 (en) | ||
US9746002B2 (en) | Turbocharger having a bearing housing | |
DK180716B1 (en) | Compressor unit and method of stopping compressor unit | |
JPS5939930A (en) | Turbocharger | |
CN201874822U (en) | Screw type vacuum pump | |
JPS6032937A (en) | Supercharger | |
US4979881A (en) | Turbocharger with water cooled center housing | |
USRE30333E (en) | Ebullient cooled turbocharger bearing housing | |
KR20020041438A (en) | Method and device for the indirect cooling of a flow regime in radial slits formed between rotors and stators of turbomachines | |
CN100504039C (en) | Thermally insulated mounting flange in a turbocharger | |
JPH09310620A (en) | Center housing of turbocharger | |
EP0074156A2 (en) | Piston in an internal combustion engine | |
JPWO2017111120A1 (en) | Gas compressor | |
KR101353840B1 (en) | Cooling method and device in single-flow turbine | |
CN108488071A (en) | A kind of full package thermostatically-controlled equipment for Roots vaccum pump and roots blower | |
JP2002129967A (en) | Rotation supporting device for turbocharger | |
CN113464282A (en) | Structure for preventing lubricating oil at casing position between turbines from coking, leaking and exploding | |
RU2252315C1 (en) | Steam turbine cylinder end seal |