JPS60254689A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS60254689A JPS60254689A JP11040484A JP11040484A JPS60254689A JP S60254689 A JPS60254689 A JP S60254689A JP 11040484 A JP11040484 A JP 11040484A JP 11040484 A JP11040484 A JP 11040484A JP S60254689 A JPS60254689 A JP S60254689A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- single crystal
- laminated
- semiconductor laser
- cladding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2211—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on II-VI materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2232—Buried stripe structure with inner confining structure between the active layer and the lower electrode
- H01S5/2234—Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2237—Buried stripe structure with a non-planar active layer
Landscapes
- Semiconductor Lasers (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体レーザに関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to semiconductor lasers.
(ロ)従来技、術
近年、半導体レーザにおいて低しきい値電流、単−横モ
ード発振を目指して多くのストライプ構造のレーザが開
発されている。(b) Prior Art In recent years, many stripe-structured lasers have been developed in semiconductor lasers aiming at low threshold current and single-transverse mode oscillation.
その−代表例としては特願昭57−60152号におい
て、本発明者等が提案したBCP型と称する半導体レー
ザがある。A typical example thereof is a semiconductor laser called a BCP type proposed by the present inventors in Japanese Patent Application No. 57-60152.
第1図は斯るBCP型半導体レーザを示し、(1)は−
主面が(100)面のn型GILAll基板であり、該
基板にはその一生面に紙面垂直方向に延在する溝が形成
されている。(2)は上記基板[11の一生面上に積層
された第1クラッド層であり、該層はn型Ga 1−x
A、gxAs (,0<x<1 )からなり(+7)表
面形状は溝上部で窪むように溝内部での厚みが他部分で
の厚みより厚く形成されている。(3)は上記第1クラ
ッド層(2)上に積層された活性層であり、該層u/y
ドープGat−yAj7yAs(0≦Y<X)からなり
その平面形状は第1クラッド層(2)のそれと略同−と
なる。(4)は活性層(3)上に積層された第2クラッ
ド層でろ力、該層はP型Ga1−xAl: x A s
からなりその表面形状は平坦となる。(5)はP型Ga
Asからなるキャップ層であり、該キャップ層は碑石上
の第2クラッド層(4)上に形成され紙面垂直方向に延
在するストライブ形状となる。FIG. 1 shows such a BCP type semiconductor laser, and (1) is -
The main surface is an n-type GILAll substrate having a (100) plane, and a groove extending in a direction perpendicular to the plane of the paper is formed on the entire surface of the substrate. (2) is a first cladding layer laminated on the whole surface of the substrate [11], and this layer is made of n-type Ga 1-x
A, gxAs (,0<x<1) (+7) The surface shape is formed so that the thickness inside the groove is thicker than the thickness in other parts so that the upper part of the groove is depressed. (3) is an active layer laminated on the first cladding layer (2), and the layer u/y
It is made of doped Gat-yAj7yAs (0≦Y<X), and its planar shape is approximately the same as that of the first cladding layer (2). (4) is a second cladding layer laminated on the active layer (3), and this layer is a P-type Ga1-xAl: x A s
The surface shape is flat. (5) is P-type Ga
The cap layer is made of As, and the cap layer is formed on the second cladding layer (4) on the monument and has a stripe shape extending in the direction perpendicular to the plane of the paper.
+61はノンドープZn5e単結晶からなる電流狭窄層
であり、該狭窄層は上記キャップ層(5)を埋込むよう
にその両側の第2クラッド層(4)上に形成される。(
7)は上記キャップ層(5)及び狭窄層(6)上に積層
された第1電極であり、該箱1電極はキャップ層(5)
とオーミック接触となる。(8)は基板(11の他主面
とオーミック接触をとる第2電極である。+61 is a current confinement layer made of non-doped Zn5e single crystal, and the constriction layer is formed on the second cladding layer (4) on both sides of the cap layer (5) so as to bury it. (
7) is a first electrode laminated on the cap layer (5) and the constriction layer (6), and the box 1 electrode is laminated on the cap layer (5).
This results in ohmic contact. (8) is a second electrode that makes ohmic contact with the other main surface of the substrate (11).
斯る半導体レーザでは第1、第2電極17)、(81間
に順方向バイアスを印加すると狭窄層[61が高抵抗で
あるため電流はキャップ層(5)に狭窄され、従ってキ
ャップ層(5)直下が主たる電流通路となり、この通路
に位置する活性層(3)内において低電流で単−横モー
ドのレーザ光が発振される。またこの半導体レーザの製
造においては拡散工程のような一旦成長した層を高温中
に晒らす工程がないので熱的劣化が生じなく、かつ半導
体レーザを構成する各層の格子状数及び熱膨張係数が略
等しいので結晶歪等が生じる危惧はない。更に狭窄層(
6)がZn5sという熱伝導度の高い材料からなるため
放熱効果が高まる。このようにこの半導体レーザは優れ
た特徴を有する。In such a semiconductor laser, when a forward bias is applied between the first and second electrodes 17) and (81), the current is constricted in the cap layer (5) because the constriction layer [61] has a high resistance. ) is the main current path, and in the active layer (3) located in this path, a single-transverse mode laser beam is oscillated at a low current.In addition, in the manufacturing of this semiconductor laser, once the growth process such as a diffusion process is Since there is no step of exposing the layer to high temperatures, thermal deterioration does not occur, and since the lattice number and thermal expansion coefficient of each layer constituting the semiconductor laser are approximately the same, there is no risk of crystal distortion etc. layer(
6) is made of Zn5s, a material with high thermal conductivity, which increases the heat dissipation effect. As described above, this semiconductor laser has excellent characteristics.
しかしながら、斯る半導体レーザにおいて、上記キャッ
プ層(5)及び電流狭窄層(6)を形成するためには、
(1)第2クラッド層(4)表面全面にP型GaAB6
形成する工程
(11)上記P型GaAsのうち碑石上部を除いてエツ
チング除去し、所望形状のキャップ層(5)を形成する
工程
(ill) 上記キャップ層(5)表面及び上記エツチ
ング工程により露出した第2クラッド層(4)上にノン
ドープZn5e単結晶を積層する工程
Gv) 上記キャップ層(5)上のZn5e単結晶をエ
ツチング除去し、所望の電流狭窄層(6)を形成する工
程
04つの工程が必要であり、このように工程数が多いと
単導体レーザの歩留シ向上が難しい。However, in such a semiconductor laser, in order to form the cap layer (5) and the current confinement layer (6), (1) P-type GaAB6 is coated on the entire surface of the second cladding layer (4).
Forming step (11) Step (ill) of etching away the P-type GaAs except for the upper part of the monument to form a cap layer (5) of a desired shape (ill) Step Gv of laminating a non-doped Zn5e single crystal on the second cladding layer (4)) Step Gv of etching and removing the Zn5e single crystal on the cap layer (5) to form a desired current confinement layer (6) 04 steps This large number of steps makes it difficult to improve the yield of single-conductor lasers.
(ハ)発明の目的
本発明は斯る点に鑑みてなσれたもので、第1図に示し
た半導体レーザの優れた特徴を有すると共にその製造工
程が減少可能な半導体レーザを提供せんとするものであ
る。(c) Purpose of the Invention The present invention has been developed in view of the above points, and an object thereof is to provide a semiconductor laser which has the excellent features of the semiconductor laser shown in FIG. 1 and which can reduce the number of manufacturing steps. It is something to do.
−に)発明の構成
従来、一旦空気に晒されたGaAl!As単結晶表面v
cはQaAs単結晶は成長しないと言われていた。然る
に本発明者らは上記GaAl!As単結晶上VcGaを
蒸着し、斯るGa中に上記GaA7As単結晶表面をメ
ルトバックした状態で分子線エピタキシャル成長法を用
いて上記Ga上rCGaAs単結晶を成−長させること
に成功した。これViGaVcよりメルトバックするこ
とによりGaAl!As単結晶表面の酸素分子が除去で
きるがらだと考えられる。-) Structure of the Invention Conventionally, GaAl was once exposed to air! As single crystal surface v
It was said that QaAs single crystals do not grow. However, the present inventors discovered the above GaAl! We succeeded in growing the rCGaAs single crystal on Ga by vapor depositing VcGa on the As single crystal and using molecular beam epitaxial growth with the surface of the GaA7As single crystal melted back into the Ga. By melting back from ViGaVc, GaAl! It is thought that this is because oxygen molecules on the surface of the As single crystal can be removed.
本発明は斯る知見に基づいてなされたもので、その横殴
的特徴は第1の導電型を有する半導体基板、レーザを発
振するための活性層、該活性層に較べてバンドギャップ
エネルギが犬でかつ光屈折率が小なる第1、第2クラッ
ド層を備え、上記基板上に上記第1クラッド層、活性層
、第2クラッド層が順次積層されると共に上記第2クラ
ッド層の最表部はGaAj7As単結晶でめる半導体レ
ーザにおいて上記第2クラッド層表面にはストライプ開
口を有し実質的に高抵抗となる電流狭窄層が積層され、
また該狭窄層及び上記開口により露出した第2クラッド
層の表面にはGaAs単結晶からなるキャップ層が積層
されていることにるる。The present invention has been made based on this knowledge, and its main features include a semiconductor substrate having a first conductivity type, an active layer for oscillating a laser, and a bandgap energy that is smaller than that of the active layer. The first cladding layer, the active layer, and the second cladding layer are sequentially laminated on the substrate, and the outermost part of the second cladding layer is provided. In the semiconductor laser made of GaAj7As single crystal, a current confinement layer having stripe openings and substantially high resistance is laminated on the surface of the second cladding layer,
Further, a cap layer made of GaAs single crystal is laminated on the constriction layer and the surface of the second cladding layer exposed through the opening.
(ホ)実 施 例
第2図は本発明の一実施例を示し、第1図の従来例との
構成的相違は単にキャップ層(5)全狭窄層(6)上に
も積層している点である。尚、第2図中第1図と同一箇
所には同一番号を付して説明を省略する。(E) Embodiment FIG. 2 shows an embodiment of the present invention, and the only structural difference from the conventional example shown in FIG. 1 is that the cap layer (5) and the entire constriction layer (6) are also laminated. It is a point. Note that the same parts in FIG. 2 as in FIG. 1 are given the same numbers and their explanations will be omitted.
次に本実施例におけるキャップ層(5)と狭窄層(6)
との形成を第3図A、Cを用いて説明する。Next, the cap layer (5) and the constriction layer (6) in this example
The formation of this will be explained using FIGS. 3A and 3C.
まず第6図Aに示す如く一生面上に第1クラッド層(2
)、活性層【3)、第2ククツド層【4)が順次積層さ
れた基板(1)を準備し、上記第2クラッド層+47上
全面にノンドープZn5e単結晶(6)を積層する。First, as shown in FIG. 6A, a first cladding layer (2
), an active layer (3), and a second coated layer (4) are prepared. A substrate (1) is prepared, and a non-doped Zn5e single crystal (6) is laminated on the entire surface of the second cladding layer +47.
斯るZn5e単結晶(6)の成長は分子線エピタキシャ
ル(MBE)成長を用い、その成長条件は1O−8To
rr以上の真空容器内において、基板温度350℃、Z
n7−x温度300℃、Se7一ス温度210℃とする
。The growth of such a Zn5e single crystal (6) uses molecular beam epitaxial (MBE) growth, and the growth conditions are 1O-8To.
In a vacuum chamber at rr or higher, the substrate temperature is 350°C, Z
The n7-x temperature is 300°C, and the Se7 temperature is 210°C.
次いで第6図Bに示す如く溝上部のZn5e単結晶のみ
除去し所望形状の電流狭窄層(6)を形成する。上記除
去はZn5e単結晶上に碑石上が開口したレジストから
なるマ、スクを形成した後N a OH:H20=1
: 1の混合液を用いてエツチングすることによシ行な
う。Next, as shown in FIG. 6B, only the Zn5e single crystal above the groove is removed to form a current confinement layer (6) having a desired shape. The above removal was performed after forming a mask made of a resist with an open top on the Zn5e single crystal, and then N a OH:H20=1
: Performed by etching using the mixture of 1.
その後、第6図CVc示す如く第2クラッド層【4)表
面及び電流狭窄層(63表面にP型GaAsからなろキ
ャップ層(5)を形成する。Thereafter, as shown in FIG. 6CVc, a cap layer (5) made of P-type GaAs is formed on the surface of the second cladding layer (4) and the current confinement layer (63).
斯るキャップ層(5)の形成は、MBE成長を用いて行
なう。まず、10−’Torr以下に真空排気された容
器内において基板を400℃に保持した状態で第2クラ
ッド層(4)及び狭窄層(6)の表面にGaを500〜
100CIA程度成長せしめる。このときのGaンソ一
温度は900℃である。この後温度平衡を保ちつつ上記
基板温度を550℃まで毎分3℃以下の速度で上昇せし
め、15分間保持する。これにより第2クラッド層(4
)表面がGa中にメルトバックし、従って上記電流狭窄
層(61形成後第2クラッド層(4)表面で発生したア
ルミ酸化膜も斯るGa中にメルトバックし、かつその酸
素分子は斯るメルト中より除去される。尚、上記G&の
層厚を1000λ以上とするとメルトバック量が大きく
なり好ましくない〇
その後、斯るGa上にGaンソ一温度900℃、Asン
ソ一温度250℃、Beソース温度800℃を条件にP
型GaAs単結晶からなるキャップ層(51&成長せし
める。The formation of the cap layer (5) is performed using MBE growth. First, while holding the substrate at 400°C in a container evacuated to 10-'Torr or less, 500 to
Let it grow to about 100 CIA. The Ga temperature at this time was 900°C. Thereafter, while maintaining temperature equilibrium, the substrate temperature was raised to 550° C. at a rate of 3° C. per minute or less, and maintained for 15 minutes. This results in the second cladding layer (4
) surface melts back into Ga, and therefore the aluminum oxide film generated on the surface of the second cladding layer (4) after forming the current confinement layer (61) also melts back into Ga, and its oxygen molecules melt back into Ga. It is removed from the melt.It should be noted that if the layer thickness of G& is set to 1000λ or more, the amount of meltback increases, which is not preferable.After that, Ga is coated with a temperature of 900°C, a temperature of 250°C, and a temperature of 250°C. P under the condition of source temperature 800℃
A cap layer (51) made of GaAs single crystal is grown.
上記キャップ層(5)形成後、第1、第2電極(7)f
81を形成することにより第2図に示した素子が得られ
る。After forming the cap layer (5), the first and second electrodes (7) f
By forming 81, the element shown in FIG. 2 is obtained.
以上のように本実施例の半導体レーザでは、電流狭窄層
(6)及びキャップ層(5)をほぼ3工程で形成できる
ので従来に較べて工程が減少でき歩留シが向上する。実
際VCH従来の構造では歩留りが70喚以下であったの
が本実施例の構造では80%以上となった。As described above, in the semiconductor laser of this embodiment, the current confinement layer (6) and the cap layer (5) can be formed in approximately three steps, so the number of steps is reduced and the yield is improved compared to the conventional method. In fact, in the conventional VCH structure, the yield was less than 70%, but in the structure of this embodiment, it increased to more than 80%.
尚、本実施例における動作及び特性は従来のそれと全く
同一であるので説明を省略する。It should be noted that the operation and characteristics of this embodiment are completely the same as those of the conventional one, so the explanation will be omitted.
(へ)発明の効果
本発明の半導体レーザでは低しきい電流にて程も従来に
較べて減少できるためその歩留シも向上する等多くの長
所を有している。(F) Effects of the Invention The semiconductor laser of the present invention has many advantages, such as a lower threshold current which can be reduced to a certain extent compared to the conventional one, and thus improved yield.
第1図は従来例を示す断面図、第2図は本発明の実施例
を示す断面図、第3図A、Cは本実施例の製造を示す工
程別断面図である。
(1)・・・基板、(2)・・・第1クラッド層、(3
)・・・活性層、(4)・・・第2クラッド層、(5)
・・・キャップ層、(6)・・・電流狭窄層。
出願人三洋電機株式会社
代理人弁理士 佐 野 静 夫FIG. 1 is a sectional view showing a conventional example, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIGS. 3A and 3C are sectional views showing the manufacturing process of this embodiment. (1)...Substrate, (2)...First cladding layer, (3
)...Active layer, (4)...Second cladding layer, (5)
... Cap layer, (6) ... Current confinement layer. Applicant Sanyo Electric Co., Ltd. Representative Patent Attorney Shizuo Sano
Claims (1)
発振するための活性層、該活性層に較べてバンドギャッ
プエネルギが大でかつ光屈折率が小なる第1、第2クラ
ッド層を備え、上記基板上に上記第1クラッド層、活性
層、第2クラッド層が順次積層されると共に上記第2ク
シツド層の最表部はGaAl!As単結晶である半導体
レーザにおいて、上記第2クラッド層表面にはストライ
プ開口を有し実質的に高抵抗となる電流狭窄層が積層さ
れ、また該狭窄層及び上記開口により露出した第2クラ
ッド層の表面[はGaAs単結晶からなるキャップ層が
積層されていることを特徴とする半導体レーザ。(11 A first semiconductor substrate having a conductivity type, 6 an active layer for oscillating a laser, and first and second cladding layers having a larger band gap energy and a smaller optical refractive index than the active layer). In the semiconductor laser, the first cladding layer, the active layer, and the second cladding layer are sequentially laminated on the substrate, and the outermost surface of the second cladding layer is made of GaAl!As single crystal. A current confinement layer having a stripe opening and having substantially high resistance is laminated on the layer surface, and a cap layer made of GaAs single crystal is laminated on the surface of the second cladding layer exposed by the constriction layer and the opening. A semiconductor laser characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11040484A JPS60254689A (en) | 1984-05-30 | 1984-05-30 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11040484A JPS60254689A (en) | 1984-05-30 | 1984-05-30 | Semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60254689A true JPS60254689A (en) | 1985-12-16 |
JPH0137865B2 JPH0137865B2 (en) | 1989-08-09 |
Family
ID=14534932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11040484A Granted JPS60254689A (en) | 1984-05-30 | 1984-05-30 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60254689A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749289A (en) * | 1980-09-08 | 1982-03-23 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS58176991A (en) * | 1982-04-09 | 1983-10-17 | Sanyo Electric Co Ltd | Semiconductor laser |
-
1984
- 1984-05-30 JP JP11040484A patent/JPS60254689A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5749289A (en) * | 1980-09-08 | 1982-03-23 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS58176991A (en) * | 1982-04-09 | 1983-10-17 | Sanyo Electric Co Ltd | Semiconductor laser |
Also Published As
Publication number | Publication date |
---|---|
JPH0137865B2 (en) | 1989-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4734385A (en) | Semiconductor laser element suitable for production by a MO-CVD method | |
JPS60254689A (en) | Semiconductor laser | |
JPS6079785A (en) | Semiconductor laser device | |
JPS6349396B2 (en) | ||
JPH09237933A (en) | Semiconductor laser and manufacturing method thereof | |
JPS58206184A (en) | Semiconductor laser element and manufacture thereof | |
JPH0815230B2 (en) | Method of making buried stripe type semiconductor laser and laser obtained by the method | |
JPS6381887A (en) | Semiconductor laser device and manufacture of the same | |
CA1163350A (en) | Semiconductor laser | |
JP3143105B2 (en) | Method for manufacturing semiconductor laser device | |
JPH01304793A (en) | Manufacture of semiconductor laser device | |
JP2911077B2 (en) | Method for manufacturing semiconductor device | |
JPH01286486A (en) | Manufacture of semiconductor laser | |
JPS63187A (en) | Semiconductor laser and manufacture thereof | |
JPS5834988A (en) | Manufacture of semiconductor laser | |
JPS5811760B2 (en) | Hand tie laser Oyobi Sonoseizouhouhou | |
JPS63164284A (en) | Semiconductor laser device and manufacture thereof | |
JPS6086889A (en) | Manufacture of semiconductor laser | |
JPH01168091A (en) | Semiconductor laser element | |
JPH0856047A (en) | Semiconductor device and its manufacture | |
JPS6111478B2 (en) | ||
JPS60262417A (en) | Manufacture of semiconductor crystal | |
JPH0195584A (en) | Manufacture of semiconductor laser | |
JPS59217326A (en) | Formation of semiconductor device | |
JPS6377185A (en) | Manufacture of semiconductor laser |