Nothing Special   »   [go: up one dir, main page]

JPS60242681A - Field-feeect transistor - Google Patents

Field-feeect transistor

Info

Publication number
JPS60242681A
JPS60242681A JP9930184A JP9930184A JPS60242681A JP S60242681 A JPS60242681 A JP S60242681A JP 9930184 A JP9930184 A JP 9930184A JP 9930184 A JP9930184 A JP 9930184A JP S60242681 A JPS60242681 A JP S60242681A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial layer
region
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9930184A
Other languages
Japanese (ja)
Inventor
Keiji Sato
啓二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP9930184A priority Critical patent/JPS60242681A/en
Publication of JPS60242681A publication Critical patent/JPS60242681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To operate a field-effect transistor at high speed by forming a second conduction type high impurity-concentration region where holding a buried layer in a surface region in an epitaxial layer in the FET and constituting a source and a drain. CONSTITUTION:A P<+> type buried layer 7 is shaped in a predetermined region in the surface of a P type silicon substrate 1, and an N<-> type epitaxial layer 8 is formed on the whole surface of the P type silicon substrate 1. A P type impurity is diffused in a prescribed region while penetrating the N<-> type epitaxial layer 8 to shape a gate electrode extracting port 9. An N type impurity is diffused at two positions holding said P<+> type buried layer 7 in the surface of the N<-> type epitaxial layer 8 to form N<+> type regions 2 and 3. When a bias is applied gradually while gate voltage is brought to a negative value, a channel is narrowed, and disappears at some bias, and drain currents do not flow. Since the channel is formed in the epitaxial layer in the FET, the high speed of carriers is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は接合型電界効果トランジスタに関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a junction field effect transistor.

〔発明の背景〕[Background of the invention]

従来、電界効果トランジスタ(以下本明細書においては
F E T (Field Effect Trans
istor )と略記する。)には、第7図に示j M
 OS (MetalOxide Sem1condu
ctor ) mと第8図に示す接合型がある。図中、
lはp型シリコン基板、2および3はそれぞれソースお
よびドレインの役χするn型領域、4は5iQ2層、5
はn型拡散領域、6はp型拡散領域、S、G、およびD
はA7!で形成されたそれぞれソース電極、ゲート電極
、およびドレイン寛&ン示す。
Conventionally, a field effect transistor (hereinafter referred to as FET (Field Effect Transistor) in this specification) has been used.
istor). ) is shown in Figure 7.
OS (MetalOxide Sem1condu
There are two types of junctions: ctor) m and the junction type shown in Fig. 8. In the figure,
1 is a p-type silicon substrate, 2 and 3 are n-type regions serving as a source and a drain, respectively, 4 is a 5iQ2 layer, and 5
is an n-type diffusion region, 6 is a p-type diffusion region, S, G, and D
is A7! The source electrode, gate electrode, and drain electrode formed respectively are shown.

MOS−FETでは担体のチャネルがS 102−8j
界面に形成されるから、5i02−8i界面の結晶の乱
れに伴う界面散乱が生じ、それが担体の速度ン小さくし
ている。また、接合型FETでは、チャネルが拡散層中
に形成されるから、高濃度のイオン化した不純物による
散乱が生じ、担体の速度ン小す(シている。したがって
、いずれの型のFETにおいても高速化に限界があった
In MOS-FET, the carrier channel is S102-8j
Since it is formed at the interface, interface scattering occurs due to crystal disorder at the 5i02-8i interface, which reduces the velocity of the carrier. Also, in junction FETs, since the channel is formed in a diffusion layer, scattering due to high concentrations of ionized impurities occurs, reducing the carrier velocity. There were limits to the

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は高速動作のFETン提供す
ることである。
Accordingly, it is an object of the present invention to provide a fast operating FET.

〔発明の概要〕[Summary of the invention]

上記目的ン達成するために、本発明によるFETは牛4
#一基板の表面の所定の領域に設けられた第1導th型
の埋込み層と、上記基板および上記埋込み層の上に設け
られた、上記第1埠亀型とは反対の第2導電型のエピタ
キシャル層と、該エピタキシャル11の表面領域の上記
埋込み層を挾む位置に設けられた第2専軍型の高不純物
濃度領域とン含み、上記高不純物濃度領域がソースおよ
びドレインの役ンし、上記埋込み1−がゲートの役ンす
ることン要旨とする。
In order to achieve the above object, the FET according to the present invention
#1 A buried layer of a first conductivity type provided in a predetermined region on the surface of the substrate; and a second conductivity type opposite to the first Noguchi type provided on the substrate and the buried layer. and a second exclusive type high impurity concentration region provided at a position sandwiching the buried layer in the surface region of the epitaxial layer 11, and the high impurity concentration region serves as a source and a drain. , the gist is that the embedding 1- serves as a gate.

以下に、図面馨参照しながら、実施例〉用いて本発明を
一層詳細に説明するが、それらは例示に過き゛ず、本発
明の枠を越えることなしにいろいろな変形や改良があり
得ることは勿鵬である。
The present invention will be described in more detail below using examples with reference to the drawings, but these are merely illustrative and it is understood that various modifications and improvements may be made without going beyond the scope of the present invention. It's Mu Peng.

〔発明の実施例〕[Embodiments of the invention]

第1脂は本発明にょるF E T (7)構造を示す断
面図で、図中第7図と共通する引用番号は対応する部分
ン表わす。p型シリコン基板工の表面の所定の領域にp
m埋込み層7馨設ける。ついで、p+m埋込み層7ン含
むp型シリコン基叛1の全表面にn−5エピタキシヤル
鳩8ン形成する。その後、所定の領域にn1工ピタキシ
ヤル層8’tXmしてp型不純物ン孤散し、ゲートt!
L極取出しロリン設ける。n″″mエピタキシャル層8
0層面0表面p型埋込み層7g挾む二つの位置にn型不
純物ン拡散し、+ n型領域2および3を作る。全体をS ioz層4で被
榎した後、ゲート奄&G、ソースII他S、およびドレ
イン′#L極Di形成する。1oはp−n接合空乏層ン
表わし、11は5i02− Si界面及転層馨意味し、
12カ埋込ha 7 、!: SiO2/ii 4 ノ
l’jlK形g 8 tLるチャネルである。
Figure 1 is a cross-sectional view showing the FET (7) structure according to the present invention, and reference numbers common to those in Figure 7 represent corresponding parts. P is applied to a predetermined area on the surface of the p-type silicon substrate.
7 m buried layers are provided. Next, an N-5 epitaxial layer 8 is formed on the entire surface of the p-type silicon substrate 1, including the p+m buried layer 7. Thereafter, an n1 pitaxial layer 8'tXm is formed in a predetermined region to scatter p-type impurities, and the gate t!
Provide L-pole extraction roller. n″″m epitaxial layer 8
An n-type impurity is diffused into two positions sandwiching the p-type buried layer 7g on the 0-layer surface 0-surface to form +n-type regions 2 and 3. After covering the entire structure with Sioz layer 4, gate layer &G, source II and S, and drain '#L pole Di are formed. 1o represents the p-n junction depletion layer, 11 represents the 5i02-Si interface and inversion layer,
12 cards embedded ha 7,! : SiO2/ii 4 nol'jlK type g 8 tL channel.

第1図にFETはっき゛のように動作する。ゲート電極
Gに印加されるバイアスル圧によってゲート電極Gと等
電位の埋込み層7とエピタキシャル層8のp −n接合
に生じるを乏層1oの淳さt制御し、ソース−ドレイン
間に流れるドレイン電流を制御する。
The FET operates as shown in FIG. The bias voltage applied to the gate electrode G controls the drain current flowing between the source and the drain by controlling the drain current generated at the p-n junction between the buried layer 7 and the epitaxial layer 8, which are at the same potential as the gate electrode G, in the depletion layer 1o. control.

r o)F E Tの動作を図解すると第2図(alお
よび(blのようになる。ゲート電圧Va = 0で第
2図(a)のようにチャネルが形成されるテグレッショ
ン型であり、Va k負にバイアス馨かけてぃ(と、チ
ャネルは狭くなり、あるバイアスでチャネルは消失し、
ドレイン電流は流れな(なる。本発明にょるFETでは
、チャネルがエピタキシャル層に形成されるから、高い
担体速度が得られる。
The operation of r o) FET is illustrated in Figure 2 (al and (bl). It is a regression type in which a channel is formed as shown in Figure 2 (a) when the gate voltage Va = 0, If you apply a negative bias, the channel will become narrower, and at a certain bias the channel will disappear,
No drain current flows. In the FET according to the present invention, a high carrier velocity can be obtained because the channel is formed in the epitaxial layer.

本発明によるFETは、第3囚に示すゲート端子取出し
乞行なえは、n型半導体基板の上にも形成することかで
きる。第4図は第3図のIV−N腺に沿って切った断面
図馨示す。図中1′はn型シリコン基8!ン表わす。
The FET according to the present invention can also be formed on an n-type semiconductor substrate, except for the gate terminal shown in the third example. FIG. 4 shows a cross-sectional view taken along the IV-N gland in FIG. In the figure, 1' is an n-type silicon group 8! to represent.

本発明によるFETは第5図およびあ6図に示すように
いろいろの汲形ン考えることができる。
The FET according to the present invention can be designed in various shapes as shown in FIGS. 5 and 6.

第5図は、n−型エピタキシャルfW18のチャネル領
域12にSiO2層4に接して薄いp型層13を設けた
構造χ示し、この構造では5i02 Si界面Q結晶の
乱れに伴う不都合が避けられる。第6−は従来のM O
S −FB Tと本発明によるFETの組み合わせたS
造ン示し、この構造では大きな電流音制御することがで
さるという利点が得られる。第5図および第6図に示″
fta造においても、前と同様に、シリコン基数lはn
型であることもp型であることもできる。
FIG. 5 shows a structure χ in which a thin p-type layer 13 is provided in the channel region 12 of the n-type epitaxial fW 18 in contact with the SiO2 layer 4, and this structure avoids the disadvantages associated with disorder of the 5i02 Si interface Q crystal. No. 6- is the conventional M.O.
S-FBT combined with FET according to the present invention
This structure has the advantage of being able to control large current noises. As shown in Figures 5 and 6.
In the fta structure, as before, the silicon base number l is n
It can be either type or p-type.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、高速動作のFET
Y得ることができる。
As explained above, according to the present invention, a high-speed operation FET
You can get Y.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるFETの断面図、第2図(alお
よび(blは本発明によるFETの動作ン説明するため
のチャネル部のエネルギ・バンド図、第3図は本発明の
他の一つの態様にlるFETの上面図、第4図は第3図
のFETンバー1v線に沿って切った断面図、第5図お
よび第6図は本発明のさらに他の二つの異った実施の態
様によるFETの断面図、第7図はM OS −F E
 Tの断面図、第8図は従来の接合型FETの断面図で
ある。 1.1′・・・シリコン基板、2・・・ソース、3・−
・ドレイン、4・・・SiO2層、5・・・n型−散層
、6・・・p型拡散層、7・・・p型埋込み層、8・・
・n型エピタキシャル層、9・・・ケート′fM極取出
し口、1o・・・p−n接合空乏層、1j・・・5i0
2 Si界面及転層、]2・・・チャネル、13・・・
薄り・p型層、S・・・ソース電極、D・・・ドレイン
III極、G・・・ゲート電極。 特許出願人 タラリオン株式会宅 代理人 升埋士 水 1)武 三 R 第1図 (a) (b) 第3図 第5図 第4図
FIG. 1 is a sectional view of the FET according to the present invention, FIG. 2 (al and (bl) are energy band diagrams of the channel portion for explaining the operation of the FET according to the present invention, and FIG. FIG. 4 is a cross-sectional view taken along line 1v of the FET shown in FIG. 3, and FIGS. FIG. 7 is a cross-sectional view of the FET according to the embodiment of
8 is a cross-sectional view of a conventional junction FET. 1.1'...Silicon substrate, 2...Source, 3.-
- Drain, 4... SiO2 layer, 5... n-type diffused layer, 6... p-type diffused layer, 7... p-type buried layer, 8...
・N-type epitaxial layer, 9...Kate'fM pole outlet, 1o...pn junction depletion layer, 1j...5i0
2 Si interface and transfer layer,] 2...channel, 13...
Thin p-type layer, S...source electrode, D...drain III pole, G...gate electrode. Patent Applicant Tararion Co., Ltd. Real Estate Agent Masuji Mizu 1) Takezo R Figure 1 (a) (b) Figure 3 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面の所定の領域に設けられた第14を型
の埋込み層と、上記基板および上記埋込み層の上に設け
られた、上記第1導電、型とは反対の第24亀型のエピ
タキシャル層と、該エピタキシャル層の表面領域の上記
埋込み層ン挾む位置に設けられた第24霜、型の高不純
物濃度領域と馨含み、上記高不純物濃度領域がソースお
よびドレインの役ンし、上記埋込み層がゲートの役ンす
ることン特徴とする電界効果トランジスタ。
a 14th tortoise-shaped buried layer provided in a predetermined region on a surface of a semiconductor substrate; and a 24th tortoise-shaped epitaxial layer opposite to the first conductive type and provided on the substrate and the buried layer. the epitaxial layer, and a high impurity concentration region of a 24th type provided at a position sandwiching the buried layer in the surface region of the epitaxial layer, the high impurity concentration region serving as a source and a drain; A field effect transistor characterized by a buried layer serving as a gate.
JP9930184A 1984-05-16 1984-05-16 Field-feeect transistor Pending JPS60242681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9930184A JPS60242681A (en) 1984-05-16 1984-05-16 Field-feeect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9930184A JPS60242681A (en) 1984-05-16 1984-05-16 Field-feeect transistor

Publications (1)

Publication Number Publication Date
JPS60242681A true JPS60242681A (en) 1985-12-02

Family

ID=14243801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9930184A Pending JPS60242681A (en) 1984-05-16 1984-05-16 Field-feeect transistor

Country Status (1)

Country Link
JP (1) JPS60242681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137309A1 (en) * 2007-05-03 2008-11-13 Dsm Solutions, Inc. Inverted junction field effect transistor and method of forming thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008137309A1 (en) * 2007-05-03 2008-11-13 Dsm Solutions, Inc. Inverted junction field effect transistor and method of forming thereof

Similar Documents

Publication Publication Date Title
GB1497626A (en) Field effect transistor
JPS59193066A (en) Mos semiconductor device
US4316203A (en) Insulated gate field effect transistor
GB1246208A (en) Pn junction gated field effect transistor having buried layer
US4131907A (en) Short-channel V-groove complementary MOS device
EP0071335A2 (en) Field effect transistor
US4816880A (en) Junction field effect transistor
JPH0770717B2 (en) Semiconductor device
JPS55151363A (en) Mos semiconductor device and fabricating method of the same
JPS60242681A (en) Field-feeect transistor
GB1168219A (en) Bistable Semiconductor Integrated Device
JPH03203377A (en) Semiconductor device
JPS6123669B2 (en)
JPS61142774A (en) Mos transistor
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPS57192083A (en) Semiconductor device
JPH0191462A (en) Semiconductor switching element
JPH0314273A (en) Electrostatic induction transistor
JPH039573A (en) Electrostatic induction transistor
JPH1041402A (en) Overcurrent protecting dmos fet
JPS6024593B2 (en) semiconductor equipment
JPH038374A (en) Electrostatic induction transistor
JP2002076279A (en) Semiconductor device
JPS5814574A (en) Mos field effect transistor
JPH01251663A (en) Field effect transistor