Nothing Special   »   [go: up one dir, main page]

JPS60203914A - Variable wavelength filter - Google Patents

Variable wavelength filter

Info

Publication number
JPS60203914A
JPS60203914A JP6020884A JP6020884A JPS60203914A JP S60203914 A JPS60203914 A JP S60203914A JP 6020884 A JP6020884 A JP 6020884A JP 6020884 A JP6020884 A JP 6020884A JP S60203914 A JPS60203914 A JP S60203914A
Authority
JP
Japan
Prior art keywords
light
wavelength
polarizer
magnetic field
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6020884A
Other languages
Japanese (ja)
Inventor
Shinichi Imai
信一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6020884A priority Critical patent/JPS60203914A/en
Publication of JPS60203914A publication Critical patent/JPS60203914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To eliminate the need for mechanical operation and to attain speedy wavelength tuning with high precision by applying a magnetic field which has optional intensity to a material which is arranged between polarizers and exhibits magnetic birefringent operation, and selecting the wavelength of passing light. CONSTITUTION:Assuming that the polarizers 2 and 3 are equal in angle of polarization, light L2 incident on the material which provides magnetic birefringent operation is equal in intensity to light L4 projected from the polarizer 3 when the phase difference /2pi is an integer. In other cases, the intensity of the light L4 decreases according to the curve of the square of the cosine. Therefore, when the material 4 has constant thickness, the wavelength of the light L3 transmitted through the material 4 is set optionally by controlling the intensity of the magnetic field applied to the material 4 and the temperature. Then, the light L3 with desired wavelength is passed through the polarizer L3 to obtain the light L4 having a prescribed plane of polarization.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は所望する波長の光を得るための波長可変フィ
ルタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a wavelength tunable filter for obtaining light of a desired wavelength.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

たとえばレーザ発振器において所望する波長のレーザ光
を得る場合などには上記波長可変フィルタが必要となる
。このような波長可変フィルタとして特公昭53−99
58号に示されるものが知られている、つまシ、この公
知例は、色素レーザのよう外光学的発振器の波長をせま
くする又は光学的発振器の出力を共振させるためにフィ
ルタが用いられている。このフィルタとして常屈折率と
異常屈折率とを有する複屈折板が利用され、この複屈折
板を光学的発振器將すュースタ角で傾斜させて設け、こ
れを回転させて所望の出力波長を選択して得るようにし
ている。
For example, when obtaining laser light of a desired wavelength in a laser oscillator, the variable wavelength filter is required. As such a wavelength tunable filter, the Japanese Patent Publication No. 53-99
In this known example, a filter is used to narrow the wavelength of an external optical oscillator such as a dye laser or to make the output of an optical oscillator resonate. . A birefringent plate having an ordinary refractive index and an extraordinary refractive index is used as this filter, and this birefringent plate is provided so as to be tilted at an optical oscillator angle, and is rotated to select a desired output wavelength. I try to get it.

しかしながら、このような複屈折板を利用したフィルタ
によると、この複屈折板を機械的な手段によって回転さ
せなければな□らないから、回転精度が十分に得ないと
、出力波長が安定しないという欠点が生じる。しかも、
波長同調が機械的に行なわれるため、それを高速歌で行
なうことが困難であるという欠点も生じる。
However, with filters that use such birefringent plates, the birefringent plate must be rotated by mechanical means, so unless sufficient rotational precision is achieved, the output wavelength will not be stable. A drawback arises. Moreover,
Since the wavelength tuning is done mechanically, there is also the drawback that it is difficult to do it at high speeds.

〔発明の目的〕[Purpose of the invention]

この発明は電気的な手段によって波長間IMを行なえる
ようにして、その波長1ml調を安定した状態でしかも
高速度で行なえるようにした波長可変フィルタを提供す
ることにある。
The object of the present invention is to provide a wavelength tunable filter that can perform inter-wavelength IM using electrical means and can perform wavelength tuning of 1 ml in a stable state and at high speed.

〔発明の概要〕[Summary of the invention]

この発明は、一対の偏光子を離間対向させて配置し、こ
れら偏光子間に磁気複屈折作用を呈する物質を配置(2
、この物質に任意の強さの磁場を与えることができるよ
うにして、上記物質を通過する光の波長を選択するよう
にしたものである。
This invention involves arranging a pair of polarizers facing each other and disposing a substance exhibiting magnetic birefringence between these polarizers (2
, it is possible to apply a magnetic field of arbitrary strength to this material, and to select the wavelength of light that passes through the material.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図f参照して説明する
。給1図に示す波長β■変フィルタ1は第1の偏光子2
と、この第1の偏光子2と平行に離間対向した第2の偏
光子3とを有する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. 1f. The wavelength β-variable filter 1 shown in Figure 1 is a first polarizer 2.
and a second polarizer 3 which is spaced apart and opposed to the first polarizer 2 in parallel.

これら一対の偏光子2.3 の間には磁気複屈折作用を
呈する物質4が配置6°されている。この物質4は、た
とえば透明容器に収容されたニトロベンゼンなどで、こ
れに加える磁場Hと温度Tとを制御することによって後
述するごとく透過する光の波長λを選択制御できる。
Between these pair of polarizers 2.3, a substance 4 exhibiting magnetic birefringence is arranged at 6°. This substance 4 is, for example, nitrobenzene contained in a transparent container, and by controlling the magnetic field H and temperature T applied thereto, the wavelength λ of the transmitted light can be selectively controlled as described later.

つぎに、上記波長可変フィルタ10作用について説明す
る。第1の偏光子2を通過する光L8は、この第1の偏
光子2によって偏光面が定められた光り、となって物a
4に入射する。
Next, the operation of the wavelength tunable filter 10 will be explained. The light L8 passing through the first polarizer 2 becomes light whose polarization plane is determined by the first polarizer 2, and becomes an object a.
4.

この物質4は磁場Hを光り、の進光方向に垂直に加えた
場合、磁場Hに平行な偏光に対する屈折率n、と、直角
方向の偏光に対する屈折率n、とが異な凱磁場l(の方
向が光軸となるような人工的光学的異方性が生じる。こ
の2つの成分の屈折率の差は磁場Hの強さに依存し、次
式で表わされる。つまり、 n 、−n 、= KH’ ・・・・・・・・・・・・
・(1)式ここで、Kは比例定数で、このKは常磁性体
の場合次式で近似させることができる。つま怜、K−C
/T11 ・・・・・・・・・・・・・・・・・・(2
1式ここで、Cは物質“4による定数、Tは絶対温間、
λは波長である。
When a magnetic field H is applied perpendicularly to the direction of propagation of light, this material 4 has a magnetic field l() with a different refractive index n for polarized light parallel to the magnetic field H and a refractive index n for polarized light perpendicular to the magnetic field H. Artificial optical anisotropy occurs such that the direction is the optical axis.The difference in the refractive index of these two components depends on the strength of the magnetic field H, and is expressed by the following equation: n, -n, = KH' ・・・・・・・・・・・・
- Equation (1) Here, K is a proportionality constant, and in the case of a paramagnetic material, this K can be approximated by the following equation. Rei Tsuma, K-C
/T11 ・・・・・・・・・・・・・・・・・・(2
1 where C is a constant due to the substance "4, T is an absolute warm temperature,
λ is the wavelength.

また、2つの偏光に対する位相差Δは、Δ= C’l/
T I H” ・・・・・・・・・・・・・・・・・(
3)式で表わすことができる。ここで、lは物質4の光
路長、つまり厚さである。
Also, the phase difference Δ between the two polarized lights is Δ= C'l/
T I H”・・・・・・・・・・・・・・・・・・(
3) It can be expressed by the following equation. Here, l is the optical path length of the substance 4, that is, the thickness.

上記波長可変フィルタ1において、第1の偏光子2と第
2の偏光子3の偏光角を等しくとれば、′/2□が弊政
となるとき物質4へ入射する光L!と第2の偏光子3か
ら出射する光L4の強■が等しくなり、それ以外では)
tt’4の強度は近似的に余弦の平方の曲線にしたがっ
て小さくなる。したがって、上i1+31式よりlが一
定の時、磁場Hの強さと温度Tとを制御すれば、土配物
′貢4を通過する光L3の波長λを任意に設定すること
ができる。そして、所望する波長λの光L3は第2の偏
光子3を通過することによって偏光面が定められた光L
4となる。
In the wavelength tunable filter 1, if the polarization angles of the first polarizer 2 and the second polarizer 3 are made equal, then the light L! which is incident on the substance 4 when '/2□ is the negative value! and the intensity of the light L4 emitted from the second polarizer 3 are equal; otherwise)
The intensity of tt'4 decreases approximately according to a squared cosine curve. Therefore, from the above equation i1+31, when l is constant, by controlling the strength of the magnetic field H and the temperature T, it is possible to arbitrarily set the wavelength λ of the light L3 passing through the earthenware 4. Then, the light L3 with the desired wavelength λ passes through the second polarizer 3, and becomes the light L3 whose plane of polarization is determined.
It becomes 4.

なお、所噂する波長λの光り、を得る場合。In addition, when obtaining the rumored light of wavelength λ.

磁場Hと温度Tとのいずれを制御してもよいが、温度T
は時間的な遅れが生じるから、磁場Hによって行なう、
つまり電気的に制御した方が効果的である。また%第1
の偏光子2と第2の偏光子3との偏光角が同一でなくと
も、磁場Hと温度Tとによって位相差Δを適当な値にし
、光L3の偏光角を第2の偏光子3の偏光面に一致させ
れば、この第2の偏光子3から光L4を効率よく出射さ
せることができる。
Although either the magnetic field H or the temperature T may be controlled, the temperature T
Since there is a time delay, it is performed using the magnetic field H.
In other words, electrical control is more effective. Also %1st
Even if the polarization angles of the polarizer 2 and the second polarizer 3 are not the same, the phase difference Δ is set to an appropriate value by the magnetic field H and the temperature T, and the polarization angle of the light L3 is changed to the polarization angle of the second polarizer 3. By matching the plane of polarization, the light L4 can be efficiently emitted from the second polarizer 3.

上述した波長可変フィルタ1は、第2図に示すようにレ
ーザ発振器11に利用することができる。つまり、図中
12は共振器を形成する反射イ則ミラー、13は同じく
出力側ミラーである。
The wavelength tunable filter 1 described above can be used in a laser oscillator 11 as shown in FIG. That is, in the figure, 12 is a reflection law mirror forming a resonator, and 13 is also an output side mirror.

これらのミラー12.13間には励起光Pによって光励
i1eされるレーザ媒体14と、上記波長可変フィルタ
1とが光学的に直列の状態で配置されている。
Between these mirrors 12 and 13, a laser medium 14 that is optically excited i1e by excitation light P and the wavelength variable filter 1 are arranged optically in series.

このような溝造のレーザ発振器11によると、レーザ媒
体14が光励起享れることによって発生する光が一対の
ミラー12.13間で増幅されるときに、上記波長可変
フィルタ1の物質4に加える磁場Hの強さによってこの
物質4を通過する光の波長λが定まる。したがって、一
対ミラー12.13間では所望する波長λの光だけが増
幅されて出力側ミラー13から出射することになる。つ
まシ、出力側ミラー13から所望する波長λのレーザ光
りを出射させることができる。
According to the laser oscillator 11 of this type, when the light generated by the laser medium 14 being optically excited is amplified between the pair of mirrors 12 and 13, the magnetic field applied to the substance 4 of the wavelength tunable filter 1 is The wavelength λ of light passing through this substance 4 is determined by the intensity of H. Therefore, only the light of the desired wavelength λ is amplified between the pair of mirrors 12 and 13 and is emitted from the output mirror 13. Laser light with a desired wavelength λ can be emitted from the output side mirror 13.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明は、一対の偏光子を離間対向
させて配置し、これら伽光子聞に磁気複屈折作用を呈す
る物質を配置し、この物質に任意の強さの磁場を与える
ことによって物質を通過する先の波長を選択するように
した。したがって、所望する波長の光を上記物質に加え
る磁場の強さ、つまシ山:気的手段によって得2ことが
できるから、機械的操作は不要であり氾長の同調を精度
よく靜速度で行なえる。
As described above, the present invention is achieved by arranging a pair of polarizers facing each other at a distance, arranging a substance exhibiting magnetic birefringence between these light particles, and applying a magnetic field of arbitrary strength to this substance. The wavelength that passes through the material can now be selected. Therefore, since the strength of the magnetic field that applies light of the desired wavelength to the material can be obtained by mechanical means, no mechanical operation is required, and the synchronization of the flood length can be carried out with precision and speed. Ru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す波長可変フィルタの
構成図、第2図は上記波長可変フィルタを利用したレー
ザ発振器の構成図である。 2・・・第1の偏光子、 3・・・第2の(fi+I光
子4・・・磁気複屈折作用を呈する物質 第1図 第2図
FIG. 1 is a block diagram of a wavelength tunable filter showing an embodiment of the present invention, and FIG. 2 is a block diagram of a laser oscillator using the wavelength tunable filter. 2...First polarizer, 3...Second (fi+I photon)4...Substance exhibiting magnetic birefringence action Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 離間対向して配置された・一対の偏光子と、これら一対
の偏光子間に配置された磁気複屈折作用を呈する物質と
、この物質を通過する光の波長を選択するために上記物
看に所望の強さの磁場を与える手段とを具備したことを
特徴とする波長可変フィルタ。
A pair of polarizers are placed facing each other, a substance exhibiting a magnetic birefringence effect is placed between the pair of polarizers, and the above object is used to select the wavelength of light that passes through this substance. A wavelength tunable filter characterized by comprising: means for applying a magnetic field of desired strength.
JP6020884A 1984-03-28 1984-03-28 Variable wavelength filter Pending JPS60203914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020884A JPS60203914A (en) 1984-03-28 1984-03-28 Variable wavelength filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020884A JPS60203914A (en) 1984-03-28 1984-03-28 Variable wavelength filter

Publications (1)

Publication Number Publication Date
JPS60203914A true JPS60203914A (en) 1985-10-15

Family

ID=13135495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020884A Pending JPS60203914A (en) 1984-03-28 1984-03-28 Variable wavelength filter

Country Status (1)

Country Link
JP (1) JPS60203914A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus
US5579420A (en) * 1995-08-23 1996-11-26 Fujitsu Limited Optical filter
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
US6496300B2 (en) 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
WO2004057413A1 (en) * 2002-12-20 2004-07-08 Chun Ye Device and method for an optical tunable polarization interference filter
KR100926633B1 (en) 2003-06-25 2009-11-11 주식회사 케이티 Bidirectional reciprocal and non-reciprocal interleaver filter using polarization maintaining fiber

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101959A (en) * 1987-10-16 1989-04-19 Kowa Co Scanning type laser imaging apparatus
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US6018412A (en) * 1992-07-31 2000-01-25 Fujitsu Limited Optical attenuator
US6275323B1 (en) 1992-07-31 2001-08-14 Fujitsu Limited Optical attenuator
US5579420A (en) * 1995-08-23 1996-11-26 Fujitsu Limited Optical filter
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US6570699B2 (en) 1996-03-01 2003-05-27 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5973821A (en) * 1996-03-01 1999-10-26 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of light signal
US6333806B1 (en) 1996-03-01 2001-12-25 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US6717713B2 (en) 1996-03-01 2004-04-06 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6496300B2 (en) 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
WO2004057413A1 (en) * 2002-12-20 2004-07-08 Chun Ye Device and method for an optical tunable polarization interference filter
KR100926633B1 (en) 2003-06-25 2009-11-11 주식회사 케이티 Bidirectional reciprocal and non-reciprocal interleaver filter using polarization maintaining fiber

Similar Documents

Publication Publication Date Title
US5052786A (en) Broadband faraday isolator
US4973120A (en) Optical isolator with resonant cavity having gyrotropic material
US20110261456A1 (en) Polarization coupler
Bain Crystal optics: properties and applications
US3564450A (en) Electro-optic q-switch using brewstek angle cut pockels cell
US4189652A (en) Beam splitter coupled CDSE optical parametric oscillator
JPS60203914A (en) Variable wavelength filter
US5142548A (en) Broadband tuning and laser line narrowing utilizing birefringent laser hosts
US5381427A (en) Single mode laser
US3346319A (en) Electro-optic valve with polarizing beam splittr and reinforcement
US3356438A (en) Light modulator employing multiplereflective light path
US3666349A (en) Optical resonator having acousto-optic output coupling means
US3435370A (en) High speed laser frequency selector
Abdullaev et al. Difference frequency generation in a GaSe crystal with continuous tuning in the 560–1050 cm–1 range
US3373376A (en) Kerr cell laser modulator corrected for induced changes of index of refraction effects
US20060045148A1 (en) Low noise, intra-cavity frequency-doubling micro chip laser with wide temperature range
US3471802A (en) Modulated laser using a solid fabry-perot etalon having a birefringent center core
JPH05235457A (en) Ld excited shg laser apparatus
US3471799A (en) Longitudinal mode controlled laser
CN113140947B (en) Single-frequency continuous wave tunable titanium sapphire laser based on double-refraction etalon locking
JPH0836157A (en) Variable wavelength filter
Dong et al. Acousto-optic tunable filter for spectral imaging
JP3570656B2 (en) Continuous wavelength variable laser device
JPH05243659A (en) Laser equipment
SU486615A1 (en) Dual frequency laser