JPS60187648A - High-temperature memory alloy - Google Patents
High-temperature memory alloyInfo
- Publication number
- JPS60187648A JPS60187648A JP4124584A JP4124584A JPS60187648A JP S60187648 A JPS60187648 A JP S60187648A JP 4124584 A JP4124584 A JP 4124584A JP 4124584 A JP4124584 A JP 4124584A JP S60187648 A JPS60187648 A JP S60187648A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- temperature
- temp
- sintered
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は熱 性型マルテンサイト変態特性を有する合金
に係り、特に室温から35(ltl:の温度域で一上記
特性を有し、かつ粉末冶金法によりC1製造することに
より結晶粒を微細化し、靭性全増大させた鋼−アルミニ
ウム−ニッケルの高温用記憶合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an alloy having thermal martensitic transformation characteristics, and in particular, an alloy having the above-mentioned characteristics in the temperature range from room temperature to 35 ltl. This invention relates to a steel-aluminum-nickel high-temperature memory alloy whose crystal grains are refined and its toughness is completely increased by manufacturing C1 using a metallurgical method.
近年、金属間化合物が魅力的な特性を秘めた材料とし〔
登場−してきCいるが、この樵の材料のうちで形状記憶
、超弾性(ゴム弾性)と呼ばれる特異な機械的性質を示
す合金があり、現状では、表1に示すとと(10種類程
度発見さvL Cいる。この種の特性を示す温度の上限
は、いずれもたかだか〜100℃程度までであり、しか
もコスト、加工性の観点をふくめると、実用化が期待で
きる材料は、Nl −Ti (商品名:ニチノール1.
cu−Zn k1合金金2種類程度である。このため、
使用温度域が拡く、かつ、低コスト、加工性良好な記憶
合金の開発が切望されCいた。In recent years, intermetallic compounds have been recognized as materials with attractive properties.
Among these materials, there are alloys that exhibit unique mechanical properties called shape memory and superelasticity (rubber elasticity).Currently, about 10 types have been discovered, as shown in Table 1 The upper limit of the temperature that exhibits this type of property is about 100℃ at most, and considering cost and processability, the material that can be expected to be put into practical use is Nl-Ti. (Product name: Nitinol 1.
There are about two types of cu-Zn k1 alloy gold. For this reason,
There has been a strong desire to develop a memory alloy that can be used in a wider temperature range, is low cost, and has good workability.
本発明は、以上の点に濫みCなされたもので、熱弾性型
マルテンサイト変態特性を有する温度の上限が従来の1
00Cよりも高く、しかも、低コストで加工性良好な高
温用記憶合金金提供しようとするものである。The present invention has been made in consideration of the above points, and the upper limit of the temperature at which the thermoelastic martensitic transformation characteristics can be obtained is higher than that of the conventional one.
The present invention aims to provide a high temperature memory alloy gold which is higher than 00C, is low cost and has good workability.
本発明は、低価格なアルミニウム12〜14 t it
91; 。The present invention uses low-cost aluminum 12 to 14 tit
91; .
ニッケル1〜5重itに、残部主成分が銅から成る母合
金を鋳造し、さらに、粉砕、混合、焼結、熱間塑性加工
を施した合金を製造し、焼結時に生ずるアルミニウムの
酸化物によつ〔結晶粒の粗大化を抑制しC冷間加工性を
増大させ、しかもアルミニウム歇全従来よりも低減させ
た高温用記憶合金である、
〔発明の効果〕
本発明は、熱弾性型マルテンサイト変態特性を有する温
度のF成金〜350℃と増大したことを特徴とするもの
で、非磁性、耐食性に富み、かつ抗りリープ性、高温で
の熱的安定性に優れるなどの!特性をもあわせC有する
ものである。A master alloy consisting of nickel 1 to 5-weight IT with the remaining main component copper is cast, and the alloy is then crushed, mixed, sintered, and hot plastic worked to produce an alloy that produces aluminum oxides during sintering. [Effects of the Invention] The present invention is a high-temperature memory alloy that suppresses coarsening of crystal grains, increases cold workability, and reduces the amount of aluminum used compared to conventional materials. It is characterized by an increased temperature of F-forming with martensitic transformation characteristics to 350°C, and is non-magnetic, highly corrosion resistant, and has excellent resistance to leaping and thermal stability at high temperatures. It also has the characteristics C.
この点ff:第1図によっCさらに詳細に説明すると、
本発明に係る上記組成の合金は、通常の溶解、Uれに続
く熱間塑性加工で製造した場合、結晶粒がO8l■以上
に容易に粗大成長し、この合金を外力がかかっていない
ときの変態温度Ttr、以上の温度で、しかも引張応力
Fで変形させた場合は延性を生せず、弾性域で容易に壁
界破哄する。ただし。This point ff:C is explained in more detail in Figure 1.
When the alloy of the above composition according to the present invention is produced by normal melting and rolling followed by hot plastic working, the crystal grains easily grow coarsely to O8l or more, and when no external force is applied to the alloy, the crystal grains easily grow coarsely. When deformed at a temperature higher than the transformation temperature Ttr and under a tensile stress F, no ductility occurs and wall fracture occurs easily in the elastic region. however.
圧縮応力下、ならびに外力がかかつていないときの変態
温度Ttr、以下の温度域では引張、ないしは圧縮の応
力下でいくらか延性が存在する。また外力がかかつCい
ないときの変態温度Ttr、はアルミニウム量の低下に
ともない上昇し、最高200〜250℃の温度まで上昇
する。一方、本発明になる組成を有し、しかも粉末冶金
的手法によつC製造した合金は、焼結時に、アルミニウ
ムの酸化物が生成され、この酸化物が結晶粒の粗大化を
抑制し、結晶粒径は数10ミクロンと微細でありこの合
金を、外力がかかつてい々いときの変態温度Ttr。Some ductility exists under compressive stress and under tensile or compressive stress in the temperature range below the transformation temperature Ttr when no external force is applied. Further, the transformation temperature Ttr when an external force is applied and no carbon is applied increases as the amount of aluminum decreases, and reaches a maximum temperature of 200 to 250°C. On the other hand, in the alloy having the composition according to the present invention and produced by powder metallurgy, an oxide of aluminum is generated during sintering, and this oxide suppresses coarsening of crystal grains. The crystal grain size is as fine as several tens of microns, and when an external force is applied to this alloy, the transformation temperature is Ttr.
よりも高い温度域で引張応力下で変形させた場合にも延
性と生ずる。したかつC適量のアルミニウム量によりC
外力がかかっていないときの変態温度Ttr、を最高2
00〜2500程度にし、しかも引張応力下でしかも、
溶解法で製造した合金のように、使用する際、引張応力
を避けるための特別な 、配慮を必要とすることがなく
、シかも、粒界割れを避けるため単結晶にする必要もな
く、簡便に製造できる材料であり、かつ容易に高温用デ
バイス。Ductility also occurs when deformed under tensile stress at temperatures higher than . C
The maximum transformation temperature Ttr when no external force is applied is 2.
00 to about 2500, and under tensile stress,
Unlike alloys manufactured by the melting method, they do not require special consideration to avoid tensile stress when used, nor do they need to be made into single crystals to avoid grain boundary cracking, making them easy to use. It is a material that can be manufactured into high-temperature devices easily.
高温機器用部品形状に加工が可能なきわめて有用な合金
である。It is an extremely useful alloy that can be processed into parts for high-temperature equipment.
以下に本発明を実施例によっC説明する。 The present invention will be explained below using examples.
アルミニウム12.8重量イ、ニッケル4.0重敬に。Aluminum weighs 12.8 and nickel weighs 4.0.
残部銅からなる合金全真空溶解し、鋳型に鋳込んでイン
ボラトラ作成した。かくして作成したインゴット’を室
温で粉砕し、粒径10ミクロン程度の粉末を作成しつい
で混合、冷開成型し、大気中900℃で2時間焼結を行
なった1、ついで900℃でスヱージング加工を行ない
棒状インゴットを作成した。ついで切削によりスライス
しCテストピース全作成し、アルゴン雰囲気中900℃
で1時間溶体化処理を行なった後室温のなたね油中に焼
入れだ。この時点での合金の結晶粒径は〜30ミクロン
程IJtであった。ついでインストロン型の引張試験機
によっC300℃、200℃で引張り変形させ適当な変
形tt与えたのち除荷したところ第2図、第3図に示す
ごとく300℃では超弾性特性を、200℃では変形:
除荷後ひずみが残留したが300℃へ再加熱することに
よっ〔形状が変形前の形状に回復しいわゆる形状記憶特
性を示した。このように、本発明の記憶合金は高温域で
しかも引張応力下でも形状記憶、超弾性特性金石するこ
とが示され、これを高温用デバイス、高温機器用部品に
応用すればきわめて有効であろうThe alloy, the remainder of which was copper, was melted in a vacuum and cast into a mold to create an involatra. The ingot thus produced was crushed at room temperature to create a powder with a particle size of about 10 microns, which was then mixed, cooled and molded, and sintered in the air at 900°C for 2 hours1, followed by swaging processing at 900°C. A rod-shaped ingot was created. Then, slice it by cutting to make a complete C test piece, and heat it at 900℃ in an argon atmosphere.
After solution treatment for 1 hour, it was quenched in rapeseed oil at room temperature. The grain size of the alloy at this point was about 30 microns IJt. Then, using an Instron type tensile tester, tensile deformation was performed at C300℃ and 200℃ to give an appropriate deformation tt, and then the load was unloaded. Now transform:
After unloading, some strain remained, but by reheating to 300°C, the shape recovered to the shape before deformation, exhibiting so-called shape memory properties. As described above, the memory alloy of the present invention has been shown to exhibit shape memory and superelastic properties even at high temperatures and under tensile stress, and it would be extremely effective to apply this to high-temperature devices and parts for high-temperature equipment.
第1図は、溶解材、焼結材の引張、圧縮変形時の変形挙
動を外力がかかっていないときの変態温度Ttr、より
も低い温度ならびに高い温度でそれぞれ示した特性図。
第2図は、本発明に係る銅−12,8i196’アルミ
ニウムー4.0重量%ニッケル粉末焼結合金の300℃
での引張変形の特性図。
第3図は、本発明に係る銅−12,8ii(,141イ
アルミニウム−4,0重量にニッケル粉末焼結合金の2
00℃での引張変形特性及び除荷後300℃1で再加熱
したときの温度−ひずみ特性會示す特性図である。以下
り白
一ζ
±fヒ柱」二計士−
表1. 超弾性および形状記憶材料
第 l 因
(Ttr 、’ lh\i1t*q□rN+ t;y剖
1vυひずケ→
第2
ひずケ−
第3FIG. 1 is a characteristic diagram showing the deformation behavior of molten material and sintered material during tensile and compressive deformation at transformation temperature Ttr when no external force is applied, at temperatures lower than Ttr, and at temperatures higher than that. Figure 2 shows the copper-12,8i196' aluminum-4.0% by weight nickel powder sintered alloy at 300°C according to the present invention.
Characteristic diagram of tensile deformation at . Figure 3 shows the amount of nickel powder sintered alloy added to copper-12,8ii (,141 aluminum-4,0 weight) according to the present invention.
It is a characteristic diagram showing tensile deformation characteristics at 00°C and temperature-strain characteristics when reheated at 300°C after unloading. Table 1. Superelasticity and shape memory materials 1st factor (Ttr, 'lh\i1t*q□rN+ t;
Claims (1)
96’、残部主成分が銅の組成からなり、10〜100
ミクロンの結晶粒径組織を有することを特徴とする高温
用記憶合金。Aluminum 12-14 weight, nickel 1-5 weight 11
96', the remaining main component is copper, 10-100
A high-temperature memory alloy characterized by having a micron grain size structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124584A JPS60187648A (en) | 1984-03-06 | 1984-03-06 | High-temperature memory alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124584A JPS60187648A (en) | 1984-03-06 | 1984-03-06 | High-temperature memory alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60187648A true JPS60187648A (en) | 1985-09-25 |
Family
ID=12603050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4124584A Pending JPS60187648A (en) | 1984-03-06 | 1984-03-06 | High-temperature memory alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187648A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2686410A1 (en) * | 1992-01-22 | 1993-07-23 | France Etat Armement | Device which unconfines a charge containing an explosive by employing a deformable element made of shape-memory material |
CN103352190A (en) * | 2013-03-29 | 2013-10-16 | 合肥工业大学 | Multi-stage quenching process for preparing cooper base memory alloy |
US20200025254A1 (en) * | 2016-10-21 | 2020-01-23 | General Electric Company | Method and system for elastic bearing support |
-
1984
- 1984-03-06 JP JP4124584A patent/JPS60187648A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2686410A1 (en) * | 1992-01-22 | 1993-07-23 | France Etat Armement | Device which unconfines a charge containing an explosive by employing a deformable element made of shape-memory material |
CN103352190A (en) * | 2013-03-29 | 2013-10-16 | 合肥工业大学 | Multi-stage quenching process for preparing cooper base memory alloy |
US20200025254A1 (en) * | 2016-10-21 | 2020-01-23 | General Electric Company | Method and system for elastic bearing support |
US10823228B2 (en) * | 2016-10-21 | 2020-11-03 | General Electric Company | Method and system for elastic bearing support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0361524B1 (en) | Ni-base superalloy and method for producing the same | |
US4505767A (en) | Nickel/titanium/vanadium shape memory alloy | |
US4110131A (en) | Method for powder-metallurgic production of a workpiece from a high temperature alloy | |
KR102273787B1 (en) | Complex copper alloy comprising high entropy alloy and method for manufacturing the same | |
JP2012041627A (en) | Co-BASED ALLOY | |
CN108950303B (en) | Tough titanium alloy and preparation method thereof | |
JP7233659B2 (en) | Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body | |
EP3844314B1 (en) | Creep resistant titanium alloys | |
CA1038205A (en) | Low expansion iron-nickel based alloys | |
JPH0457734B2 (en) | ||
JP3894987B2 (en) | Heat-resistant platinum material | |
JPS60187648A (en) | High-temperature memory alloy | |
JPS5920440A (en) | Shape memory copper alloy | |
JP4288821B2 (en) | Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength | |
KR910008004B1 (en) | Memorial alloy with high strength & the making method | |
JP2669004B2 (en) | Β-type titanium alloy with excellent cold workability | |
JP2932914B2 (en) | Method for producing (α + β) type Ti alloy forged material | |
JPS6046345A (en) | Molybdenum plate and preparation thereof | |
JPS59215448A (en) | Functional alloy | |
JP2580682B2 (en) | Method for producing α + β type Ti alloy member having high strength and high toughness | |
JPH01188645A (en) | Oxide dispersion strengthened undirectional solidified ni-based alloy and its manufacture | |
JP2697242B2 (en) | Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same | |
JP2001152208A (en) | OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR | |
JP2713307B2 (en) | Heat treatment method of aluminum powder alloy | |
CN113621891B (en) | Polycrystalline FeNiCoAlNbV hyperelastic alloy and preparation method thereof |