Nothing Special   »   [go: up one dir, main page]

JPS643065B2 - - Google Patents

Info

Publication number
JPS643065B2
JPS643065B2 JP6544979A JP6544979A JPS643065B2 JP S643065 B2 JPS643065 B2 JP S643065B2 JP 6544979 A JP6544979 A JP 6544979A JP 6544979 A JP6544979 A JP 6544979A JP S643065 B2 JPS643065 B2 JP S643065B2
Authority
JP
Japan
Prior art keywords
forming
region
conductivity type
gate
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6544979A
Other languages
Japanese (ja)
Other versions
JPS55157257A (en
Inventor
Keimei Mikoshiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6544979A priority Critical patent/JPS55157257A/en
Publication of JPS55157257A publication Critical patent/JPS55157257A/en
Publication of JPS643065B2 publication Critical patent/JPS643065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明はMOS集積回路の製造方法にかかり、
とくにゲート電極に多結晶シリコンを用いた、い
わゆるシリコンゲートMOS集積回路に、他の種
類の能動素子であるバイポーラトランジスタ
(Bip−T)や接合型FET(JFET)を共存させる
ための製造方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a MOS integrated circuit,
In particular, it relates to a manufacturing method that allows other types of active elements such as bipolar transistors ( Bip -T) and junction FETs (JFET) to coexist in so-called silicon gate MOS integrated circuits that use polycrystalline silicon for the gate electrode. It is something.

この様な混合デバイスによる集積回路では、製
法の簡素化が必要条件である。本発明の趣旨は第
一にこの点に置かれている。第二には、各種の素
子の電気的特性が、それぞれを単体として構成さ
れた物と比較して、実用性を損う程劣るものであ
つてはならないという点である。第三に、MOS
トランジスタ(MOST)は言うに及ばず、Bip
TやJFETは各々電気的に絶縁分離され、従来の
アナログ集積回路やTTL、CMLといつたデイジ
タル回路が、容易に実現できるものであるという
点にある。
For integrated circuits using such mixed devices, it is necessary to simplify the manufacturing process. The gist of the present invention is primarily placed on this point. The second point is that the electrical characteristics of the various elements must not be so inferior that they impair their practicality compared to those constructed as individual elements. Thirdly, M.O.S.
Not to mention the transistor (MOST), B ip
The T and JFET are each electrically isolated and can be easily implemented as conventional analog integrated circuits or digital circuits such as TTL and CML.

従来より、MOS集積回路の中にBip−Tを作り
込み、単一のチツプでより高い機能と特性を実現
させようとする試みは多くなされている。しか
し、そのために製造方法が複雑になり、歩留の低
下とチツプ価格の上昇を招く結果、MOSTとBip
−Tを別チツプで構成する場合と比較して、メリ
ツトが得られなかつた。所で、最近の集積回路
は、素子寸法の微細化技術の進歩により、より一
層の高集積化と高速化の方向に進みつつある。こ
の結果、従来多チツプで構成されていた機能を単
一チツプで実現できる様になつてきた。そうなる
と、一つのチツプ内で様々な信号処理を行う必要
性が生じてくる。例えば、今まで別々のチツプで
行つていたアナログ信号処理、A−D変換或はD
−A変換、デイジタル信号処理それに周辺回路と
の接続に必要な入出力回路等を一つのチツプ上に
構成しなければならない。
Conventionally, many attempts have been made to incorporate Bip -T into a MOS integrated circuit and to achieve higher functionality and characteristics with a single chip. However, this complicates the manufacturing method, lowering yield and increasing chip price .
-No advantage was obtained compared to the case where the T was constructed with a separate chip. Incidentally, recent integrated circuits are moving toward higher integration and higher speed due to advances in technology for miniaturizing element dimensions. As a result, it has become possible to implement functions that were conventionally configured with multiple chips on a single chip. In this case, it becomes necessary to perform various types of signal processing within one chip. For example, analog signal processing, A-D conversion, or D
-A conversion, digital signal processing, input/output circuits necessary for connection with peripheral circuits, etc. must be constructed on a single chip.

この問題を解決する一つの方法は、アナログ信
号処理、A−D或はA−A変換をMOSTで行う
ための回路技術を確立することである。しかし、
表面デバイスであることによるMOSTの固有の
欠点である、低周波雑音や長期安定性の問題は依
然として残されるであろうし、大きな駆動力を持
たせるためには、素子面積が増大したり速度が低
下したりするといつた欠点は克服しがたい様に思
われる。
One way to solve this problem is to establish circuit technology for performing analog signal processing, AD or AA conversion in MOST. but,
Low-frequency noise and long-term stability problems, which are inherent disadvantages of MOST due to being a surface device, will still remain, and in order to provide a large driving force, the device area will increase and the speed will decrease. If you do that, the deficiencies you develop will seem difficult to overcome.

他の方法は、内部の複雑な処号処理をMOST
に受け持たせ、入出力信号、アナログ回路、変換
回路それに大きな駆動回路をBip−T又はJFETに
受け持たせ、各々のデバイスの特性を十分発揮さ
せてすつきりした回路構成にする行き方である。
この方式の利点は明らかであるが、MOSTとBip
−T又はJFETを共存させるための実用的な製造
方法の確立が鍵である。
Other methods MOST involve complicated internal processing.
In this way, the input/output signals, analog circuits, conversion circuits, and large drive circuits can be handled by Bip -T or JFET, and the characteristics of each device can be fully utilized to create a streamlined circuit configuration. be.
Although the advantages of this method are obvious, MOST and B ip
The key is to establish a practical manufacturing method for the coexistence of -T or JFET.

本発明は、このための一方法を提供する。 The present invention provides one method for this purpose.

本発明によれば、従来より広く実用化されてい
る多結晶シリコンゲートを用いた相補型MOS(シ
リコンゲートCMOS)とほとんど同程度の手数
で、しかも類似した製造技術を用いることによ
り、MOSTとBip−Tの共存が可能になる。
According to the present invention, MOST and B Coexistence of ip -T becomes possible.

本発明におけるMOSTの製法は、従来の多結
晶シリコンゲートnチヤネルMOSTのものと全
く同一である。又、Bip−T或はJFETの製法は、
従来より三重拡散法として知られている方法を用
いている。三重拡散法の利点は、エピタキシヤル
成長を必要としないために、低価格かつ高歩留が
得られることにある。ただし、コレクタ直列抵抗
が、エピタキシヤル型と比べて数倍大きくなると
いうことと、寄生pnpn効果が起り易いという欠
点があるため、実現できる回路に多少の制約が加
わる。しかし、これは大電流を必要とする場合を
除けば大部分の回路では致命的な欠点ではない。
工程数を一つでも低減させるために、MOSTと
Bip−Tの拡散層を共通にできるのは、ソース及
びドレインとエミツタだけである。ここで最も重
要なことは、Bip−Tの電流増幅率とMOSTの特
性を、再現性よく各々最適化できなければならな
いということである。
The manufacturing method of the MOST according to the present invention is exactly the same as that of a conventional polycrystalline silicon gate n-channel MOST. Also, the manufacturing method of Bip -T or JFET is
A method conventionally known as the triple diffusion method is used. The advantage of the triple diffusion method is that it does not require epitaxial growth, resulting in low cost and high yield. However, the drawbacks are that the collector series resistance is several times larger than that of the epitaxial type, and that parasitic pnpn effects are more likely to occur, which puts some restrictions on the circuits that can be realized. However, this is not a fatal drawback for most circuits unless large currents are required.
In order to reduce the number of processes even by one, MOST and
Only the source, drain, and emitter can share the same diffusion layer of B ip -T. The most important thing here is that the current amplification factor of Bip -T and the characteristics of MOST must be optimized with high reproducibility.

本発明では、工程数の低減と特性の両立を同時
に実現する方法として、多結晶シリコンゲート
MOSTのダイレクトコンタクト(ソース又はド
レイン拡散層と多結晶シリコン層を直接接続する
方法)工程で、Bip−Tのエミツタ領域を同時に
形成する。従つて、エミツタ拡散層は多結晶シリ
コンからの不純物拡散により形成される。この方
法だと、Bip−Tのエミツタは常に電極としての
多結晶シリコン層と接続されているため、電流増
幅率或は耐圧のチエツクが、ゲートを構成する微
少寸法のトランジスタに対して拡散層形成時に行
える。この様に、電流増幅率の制御が精密に行え
るということは、Bip−Tの量産にとつて効果が
大きい。又、この方法によれば、高密度リン又は
ヒ素ドープにより多結晶シリコン層の低抵抗比が
容易に実現できるから、MOS回路のスピード改
善に役立つばかりでなくバイポーラ回路の配線に
多結晶シリコン層を用いることが可能になる。こ
れは、バイポーラ回路の配線領域の面積を縮少さ
せて集積密度を向上させる効果が大きい。
In the present invention, as a method to simultaneously reduce the number of steps and achieve good characteristics, we have developed a polycrystalline silicon gate.
The Bip -T emitter region is simultaneously formed in the MOST direct contact (method of directly connecting the source or drain diffusion layer and the polycrystalline silicon layer) process. Therefore, the emitter diffusion layer is formed by impurity diffusion from polycrystalline silicon. With this method, the emitter of Bip -T is always connected to the polycrystalline silicon layer as an electrode, so checking the current amplification factor or withstand voltage can be done by checking the diffusion layer for the tiny transistor that makes up the gate. This can be done during formation. The fact that the current amplification factor can be precisely controlled in this way is highly effective for mass production of Bip -T. Furthermore, according to this method, a low resistance ratio of the polycrystalline silicon layer can be easily realized by high-density phosphorus or arsenic doping, which not only helps improve the speed of MOS circuits, but also makes it possible to use polycrystalline silicon layers for wiring in bipolar circuits. It becomes possible to use it. This has a great effect of reducing the area of the wiring region of the bipolar circuit and improving the integration density.

本発明をより詳しく記述させるために、第一の
実施例について説明する。第1図に第一の実施例
を示す。第1図aにおいて1はP型シリコン基板
である。先ずシリコン基板のBip−Tが作られる
べき部分に対し、選択的にn型拡散領域2(nウ
エルと呼ぶ)が、通常のイオン注入と熱拡散を併
用して形成される。nウエル2の層抵抗は、Bip
−Tのコレクタ直列抵抗を下げるためには低い程
良いが、この中にP型ベース領域が形成されるた
め表面不純物濃度は1017cm-3程度が適当である。
又nウエル2の深さは、横方向への広がりがある
ため、必要な集積度から決定される。通常5〜
10μm程度に選ばれる。従つてnウエルの層抵抗
は100〜300Ω/□程度になり、コレクタ直列抵抗
の値を、実用上問題のない所まで下げることがで
きる。次にシリコン窒化膜4をマスクにして選択
酸化を行い、トランジスタが作られるべき領域を
除いて、1μm程度の厚い酸化膜3を形成する
(第1図b)。そして、Bip−Tの部分のシリコン
窒化膜だけをエツチングにより除去する。次に、
nウエル2の中にイオン注入又は熱拡散によりボ
ロンがデポジツトされ、Bip−Tのベース領域5
が形成される(第1図c)。そして、熱酸化によ
り0.3〜0.5μm厚のシリコン酸化膜6をnウエル
上に形成する。引き続き、MOSTが作られるべ
き領域の表面を被つているシリコン窒化膜4が除
去され、MOSTのゲート酸化膜7が形成される。
次がダイレクトコンタクト工程である(第1図
d)。この工程で、MOSTのダイレクトコンタク
ト8及びBip−Tのエミツタ9そしてコレクタ取
り出し口10が開孔される。続いて多結晶シリコ
ンが気相成長により被着され、通常のパターニン
グにより、ゲート11、ソース(ドレイン)1
2、エミツタ13そしてコレクタ14が形成され
る。次にリンが熱拡散される(第1図e)。この
時、ゲート酸化膜7は、通常0.1μm前後或はそれ
以下と薄いため、リン拡散中に完全にリンガラス
に変化し、ここからシリコン中にリンが拡散し
て、ソース15及びドレイン16が形成される。
又、Bip−Tの部分は、リンが多結晶シリコンを
通してシリコン中へ拡散して行き、エミツタ17
及びコレクタ取出口18が形成される。多結晶シ
リコン中のリンの拡散係数は大きいから、
MOSTのソース及びドレインとBip−Tのエミツ
タ及びコレクタを同時に形成することが可能にな
る。拡散時間のコントロールは、MOSTのソー
ス及びドレインに関しては、接合深さに対する条
件はそれ程厳しくないからBip−Tの電流増幅率
が最適値になる様に行うことができる。ここでは
ソース、ドレイン及びエミツタ形成のためのリン
拡散の代りに、ヒ素のイオン注入を用いても良
い。又、MOSTのゲート酸化膜を、第1図eの
工程でエツチングしてからリン拡散或はヒ素イオ
ン注入することも可能である。次にCVDSiO2
或はPSG膜19を被着した後、コンタクト窓2
0,21,22を開ける(第1図f)。ここに、
20はMOSTのソース又はドレインへの、21
はBip−Tのベースへの、22は多結晶シリコン
層へのコンタクト窓である。引き続いてアルミ蒸
着を行い、選択エツチングによつて配線層23が
形成される。この様に、Bip−Tの部分は、
MOSTと同様に、多結晶シリコンとアルミによ
る二層配線構造になつているため、高集積化にと
つて極めて有利である。
In order to describe the present invention in more detail, a first embodiment will be described. FIG. 1 shows a first embodiment. In FIG. 1a, 1 is a P-type silicon substrate. First, an n-type diffusion region 2 (referred to as an n-well) is selectively formed in a portion of the silicon substrate where B ip -T is to be formed using a combination of normal ion implantation and thermal diffusion. The layer resistance of n-well 2 is B ip
In order to lower the collector series resistance of -T, the lower the better, but since a P-type base region is formed in this region, a surface impurity concentration of about 10 17 cm -3 is appropriate.
Further, the depth of the n-well 2 is determined based on the required degree of integration since it extends in the lateral direction. Usually 5~
The thickness is selected to be about 10 μm. Therefore, the layer resistance of the n-well is about 100 to 300 Ω/□, and the value of the collector series resistance can be lowered to a point where there is no problem in practical use. Next, selective oxidation is performed using the silicon nitride film 4 as a mask to form a thick oxide film 3 of about 1 μm except for the region where a transistor is to be formed (FIG. 1b). Then, only the silicon nitride film at the B ip -T portion is removed by etching. next,
Boron is deposited into the n-well 2 by ion implantation or thermal diffusion to form the base region 5 of B ip -T.
is formed (Fig. 1c). Then, a silicon oxide film 6 having a thickness of 0.3 to 0.5 μm is formed on the n-well by thermal oxidation. Subsequently, the silicon nitride film 4 covering the surface of the region where the MOST is to be formed is removed, and the gate oxide film 7 of the MOST is formed.
Next is the direct contact process (Fig. 1d). In this step, the direct contact 8 of the MOST, the emitter 9 of the Bip -T, and the collector outlet 10 are opened. Polycrystalline silicon is then deposited by vapor phase growth and conventional patterning forms gate 11 and source (drain) 1.
2, an emitter 13 and a collector 14 are formed. The phosphorus is then thermally diffused (Figure 1e). At this time, since the gate oxide film 7 is usually thin, around 0.1 μm or less, it completely changes to phosphorus glass during phosphorus diffusion, and from there, phosphorus diffuses into the silicon, forming the source 15 and drain 16. It is formed.
In addition, in the B ip -T part, phosphorus diffuses into the silicon through the polycrystalline silicon, and the emitter 17
and a collector outlet 18 are formed. Since the diffusion coefficient of phosphorus in polycrystalline silicon is large,
It becomes possible to simultaneously form the source and drain of the MOST and the emitter and collector of the Bip -T. The diffusion time can be controlled so that the current amplification factor of Bip -T reaches an optimum value since the junction depth conditions for the source and drain of the MOST are not so strict. Here, arsenic ion implantation may be used instead of phosphorus diffusion for forming the source, drain, and emitter. It is also possible to perform phosphorus diffusion or arsenic ion implantation after etching the gate oxide film of the MOST in the step shown in FIG. 1e. Next, after depositing CVDSiO 2 film or PSG film 19, contact window 2
0, 21, 22 (Fig. 1 f). Here,
20 is to the source or drain of MOST, 21
is a contact window to the base of B ip -T, and 22 is a contact window to the polycrystalline silicon layer. Subsequently, aluminum evaporation is performed, and a wiring layer 23 is formed by selective etching. In this way, the part of B ip −T is
Like MOST, it has a two-layer wiring structure made of polycrystalline silicon and aluminum, which is extremely advantageous for high integration.

今までの説明から明らかな様に、本方法は、標
準的な多結晶シリコンゲートMOS集積回路の製
造方法に、nウエル成分の工程とベース拡散層形
成の工程が二つ付け加わるだけである。これは、
CMOSと同程度の工程数であると言えるから、
従来のMOSLSIに比べても、価格性能比で優れ
たMOSバイポーラ集積回路が実現できることに
なる。
As is clear from the above description, this method only adds two steps, one for forming the n-well component and the other for forming the base diffusion layer, to the standard method for manufacturing a polycrystalline silicon gate MOS integrated circuit. this is,
It can be said that the number of steps is about the same as CMOS.
This means that a MOS bipolar integrated circuit with an excellent price/performance ratio can be realized compared to conventional MOSLSI.

本発明による製造方法を用いると、新たに工程
を付け加えることなく、JFETを作ることができ
る。JFETは入力インピーダンスが高いことと、
1/f雑音が存在しないことなどから、アナログ
回路における初段の増幅素子として優れている。
By using the manufacturing method according to the present invention, a JFET can be manufactured without adding any new steps. JFET has high input impedance and
Since there is no 1/f noise, it is excellent as a first-stage amplification element in analog circuits.

第2の実施例としてJFETの製造方法を説明す
る。第2図aはJFETのチヤンネルに沿つた断面
を、第2図bはチヤンネル巾方向の断面を示す。
製法は第1の実施と全く同一であるので省略し、
最終的な構造だけを示す。第2図aにおいてnウ
エル102と117でゲートを構成し113がゲ
ート電極となる。24がチヤンネル領域で、25
と26がソース及びドレイン電極である。第2図
bにおいて、ゲート117がnウエル102とチ
ヤンネル24の端部で接続されている。本発明に
より製造可能なJFETの特長は、ダイレクトコン
タクトにおける最小寸法までゲート長を短かくで
きることにある。従つて、Bip−TとJFETを同時
に作る場合しばしば問題になる。JFETのチヤン
ネルコンダクタンスの低下を、短チヤンネル化に
よつて防ぐことが可能である。代表的なBip−T
の能動ベース領域(ピンチ抵抗)の層抵抗は約
5KΩ/□である。本発明によればチヤンネル長
を5μmにすることは容易であるから、例えば実
用的な値として、零ソースゲート間電圧における
飽和領域の順伝達アドミタンスを5mVにするた
めには、チヤンネル長は125μmで良いことにな
る。ゲート膜厚が0.1μmのMOSTでは、ドレイ
ン電流が0.5mAでgm=1mVを得るためのチヤン
ネル巾は、チヤンネル長の約25倍必要であるか
ら、チヤンネル長を5μmとするとチヤンネル巾
は125μmになる。従つて、同程度のDC特性を得
るのに必要な平面寸法は、JFETとMOSTで大き
な差はないと言える。
A method for manufacturing a JFET will be described as a second example. FIG. 2a shows a cross section along the channel of the JFET, and FIG. 2b shows a cross section in the channel width direction.
The manufacturing method is exactly the same as the first implementation, so it is omitted.
Only the final structure is shown. In FIG. 2a, n-wells 102 and 117 constitute a gate, and 113 serves as a gate electrode. 24 is the channel area, 25
and 26 are source and drain electrodes. In FIG. 2b, gate 117 is connected to n-well 102 at the end of channel 24. In FIG. A feature of the JFET that can be manufactured according to the present invention is that the gate length can be shortened to the minimum dimension in direct contact. Therefore, it often becomes a problem when making Bip -T and JFET at the same time. It is possible to prevent a decrease in the channel conductance of the JFET by shortening the channel. Typical B ip −T
The layer resistance of the active base region (pinch resistance) of is approximately
It is 5KΩ/□. According to the present invention, it is easy to make the channel length 5 μm, so for example, as a practical value, in order to make the forward transfer admittance in the saturation region 5 mV at zero source-gate voltage, the channel length should be 125 μm. It's going to be a good thing. In a MOST with a gate film thickness of 0.1 μm, the channel width to obtain gm = 1 mV at a drain current of 0.5 mA is approximately 25 times the channel length, so if the channel length is 5 μm, the channel width will be 125 μm. . Therefore, it can be said that there is no big difference in the planar dimensions required to obtain the same level of DC characteristics between JFET and MOST.

次に第3の実施例として、コレクタ直列抵抗を
下げるのに有利な製造方法について述べる。第3
図において、ダイレクトコンタクト工程、すなわ
ちエミツタ領域形成のための開孔9及びコレクタ
取出口のための開孔10までの工程は第1図に示
した第1の実施例と同一である。次に多結晶シリ
コンが成長され、パターニングによつてMOST
のゲート電極とBip−Tのエミツタ電極13だけ
が残され、第1図dに示されているコレクタ電極
14はエツチングされる。この様にしてから、ソ
ース及びドレイン或はエミツタ領域形成のための
不純物拡散を行うと、コレクタ開孔部10の部分
はシリコンが露出しているため深くまで不純物が
拡散され、深いn+領域118が形成される。こ
の場合には、コレクタ電極はアルミ配線によつて
行なわれる。従つて、深いn+領域にアルミ配線
が直接結ばれるから、コレクタ抵抗を下げるのに
効果的である。
Next, as a third embodiment, a manufacturing method advantageous for lowering the collector series resistance will be described. Third
In the figure, the direct contact process, that is, the process up to the opening 9 for forming the emitter region and the opening 10 for the collector outlet, is the same as in the first embodiment shown in FIG. Polycrystalline silicon is then grown and patterned to form the MOST
Only the gate electrode of Bip - T and the emitter electrode 13 of Bip-T are left, and the collector electrode 14 shown in FIG. 1d is etched. After doing this, when impurity diffusion is performed to form the source and drain or emitter regions, since silicon is exposed in the collector opening 10, the impurity is diffused deep into the deep n + region 118. is formed. In this case, the collector electrode is formed by aluminum wiring. Therefore, since the aluminum wiring is directly connected to the deep n + region, it is effective in lowering the collector resistance.

以上の説明から明らかな様に、本発明を実施す
ることにより、従来のCMOSプロセスと同程度
の工程数で、MOS集積回路内にBip−TやJFET
を共存させることができる。Bip−TやJFETはn
ウエルによつて絶縁分離されているから、従来の
バイポーラ集積回路をMOS集積回路内に含める
ことが可能である。従つて、極めて多機能な回路
が単一チツプ上に構成できる。又、今までの
MOSLSIに対する応用を考えても、入出力部分
をBip−Tで置き換えることによるメリツトは大
きい。素子寸法の微細化に伴つて、内部ゲートの
信号電流及び信号振幅はますます小さくなり、外
部回路とのインターフエイスが大きな問題となつ
てくる。この問題も、低電圧動作が可能で、高
gm、高駆動能力さらに高速性をそなえたBip−T
を使うならば容易に解決されるであろう。
As is clear from the above description, by implementing the present invention, Bip -T and JFET can be integrated into a MOS integrated circuit with the same number of steps as the conventional CMOS process.
can coexist. B ip −T and JFET are n
Because of the isolation provided by the wells, it is possible to include conventional bipolar integrated circuits within MOS integrated circuits. Therefore, extremely versatile circuits can be constructed on a single chip. Also, until now
When considering the application to MOSLSI, there are great advantages in replacing the input/output part with Bip -T. As device dimensions become smaller, the signal current and signal amplitude of internal gates become smaller and smaller, and the interface with external circuits becomes a major problem. This problem is also solved by the fact that low voltage operation is possible and
GM, B ip -T with high driving ability and high speed
This can be easily solved by using .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至第1図fは本発明の第1の実施例
を工程順に示した断面図であり、第2図aおよび
第2図bは本発明の第2の実施例を工程順に示し
た断面図であり、第3図は本発明の第3の実施例
を示す断面図である。 尚、図において、1はP型シリコン基板、2は
nウエル、3は厚いフイールド酸化膜、4はシリ
コン窒化膜、5はP型ベース領域、6はBip−T
領域を被う厚い酸化膜、7はMOSTゲート酸化
膜、8はダイレクトコンタクト、9はエミツタ開
孔、10はコレクタ取出し開孔、11は多結晶シ
リコンゲート、12はMOSTシリコン電極、1
3はエミツタ電極、14はコレクタ電極、15,
16はソース又はドレイン、17はエミツタ、1
8はコレクタ取出し、19はCVD酸化膜又は
PSG膜、20はMOSTコンタクト、21はベー
スコンタクト、22は多結晶シリコンアルミ接
続、23はベースアルミ電極、24はJFETチヤ
ンネル、25,26はソース又はドレイン電極、
102はJFET裏面ゲート、105はP型ソース
又はドレイン領域、113はゲート電極、117
はn+型ゲート領域、118は深いn+領域である。
FIGS. 1a to 1f are cross-sectional views showing a first embodiment of the present invention in the order of steps, and FIGS. 2a and 2b are sectional views showing the second embodiment of the present invention in the order of steps. FIG. 3 is a cross-sectional view showing a third embodiment of the present invention. In the figure, 1 is a P-type silicon substrate, 2 is an n-well, 3 is a thick field oxide film, 4 is a silicon nitride film, 5 is a P-type base region, and 6 is a B ip -T.
A thick oxide film covering the region, 7 is a MOST gate oxide film, 8 is a direct contact, 9 is an emitter hole, 10 is a collector extraction hole, 11 is a polycrystalline silicon gate, 12 is a MOST silicon electrode, 1
3 is an emitter electrode, 14 is a collector electrode, 15,
16 is the source or drain, 17 is the emitter, 1
8 is collector extraction, 19 is CVD oxide film or
PSG film, 20 is a MOST contact, 21 is a base contact, 22 is a polycrystalline silicon aluminum connection, 23 is a base aluminum electrode, 24 is a JFET channel, 25 and 26 are source or drain electrodes,
102 is the JFET back gate, 105 is a P-type source or drain region, 113 is a gate electrode, 117
is an n + type gate region, and 118 is a deep n + region.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板の一主面に他の導電型
の第一の不純物拡散領域を形成する工程と、前記
第一の不純物拡散領域内に前記一導電型の第二の
不純物拡散領域を形成する工程と、前軌一主面に
前記第一の不純物拡散領域とは離間してゲート絶
縁膜を形成する工程と、前記第一及び第二の不純
物拡散領域の表面に絶縁膜を形成する工程と、前
記第一の不純物領域上の前記絶縁膜の所定領域に
第一の開口部を、前記第二の不純物領域上の前記
絶縁膜の所定領域に第二の開口部をそれぞれ形成
する工程と、前記ゲート絶縁膜上及び前記第二の
開口部に選択的に多結晶シリコン層を形成し、ゲ
ート電極及び取り出し電極をそれぞれ形成する工
程と、前記他の導電型の不純物を導入して、前記
ゲート電極及び前記取り出し電極に前記他の導電
型の不純物を導入するとともに、前記半導体基板
の前記一主面で前記ゲート電極に隣接する部分に
ソースおよびドレイン領域を、前記第二の開口部
直下には前記他の導電型の第三の不純物拡散領域
を形成する工程とを有することを特徴とする
MOS集積回路の製造方法。
1. Forming a first impurity diffusion region of another conductivity type on one main surface of a semiconductor substrate of one conductivity type, and forming a second impurity diffusion region of one conductivity type in the first impurity diffusion region. a step of forming a gate insulating film on the front rail main surface apart from the first impurity diffusion region; and forming an insulating film on the surfaces of the first and second impurity diffusion regions. a step of forming a first opening in a predetermined region of the insulating film over the first impurity region, and a step of forming a second opening in a predetermined region of the insulating film over the second impurity region. and selectively forming a polycrystalline silicon layer on the gate insulating film and in the second opening to form a gate electrode and an extraction electrode, respectively, and introducing impurities of the other conductivity type, The impurity of the other conductivity type is introduced into the gate electrode and the extraction electrode, and source and drain regions are formed in a portion of the one main surface of the semiconductor substrate adjacent to the gate electrode, directly below the second opening. and forming a third impurity diffusion region of the other conductivity type.
Method of manufacturing MOS integrated circuits.
JP6544979A 1979-05-25 1979-05-25 Manufacture of mos integrated circuit Granted JPS55157257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6544979A JPS55157257A (en) 1979-05-25 1979-05-25 Manufacture of mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6544979A JPS55157257A (en) 1979-05-25 1979-05-25 Manufacture of mos integrated circuit

Publications (2)

Publication Number Publication Date
JPS55157257A JPS55157257A (en) 1980-12-06
JPS643065B2 true JPS643065B2 (en) 1989-01-19

Family

ID=13287452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6544979A Granted JPS55157257A (en) 1979-05-25 1979-05-25 Manufacture of mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS55157257A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222556A (en) * 1982-06-21 1983-12-24 Hitachi Ltd Semiconductor device
JPS6185855A (en) * 1984-10-04 1986-05-01 Nec Corp Semiconductor integrated circuit
JPS6231151A (en) * 1985-08-02 1987-02-10 Nec Corp Semiconductor integrated circuit device
JP2631673B2 (en) * 1987-12-18 1997-07-16 富士通株式会社 Semiconductor device and manufacturing method thereof
JPH03256332A (en) * 1990-03-06 1991-11-15 Sharp Corp Vertical bipolar transistor element and bi-cmos inverter using the same element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915495B2 (en) * 1974-10-04 1984-04-10 日本電気株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JPS55157257A (en) 1980-12-06

Similar Documents

Publication Publication Date Title
US4637125A (en) Method for making a semiconductor integrated device including bipolar transistor and CMOS transistor
US4484388A (en) Method for manufacturing semiconductor Bi-CMOS device
US4914048A (en) Method of making Bicmos devices
US4484211A (en) Oxide walled emitter
JPS6080267A (en) Semiconductor ic device and manufacture thereof
US4178605A (en) Complementary MOS inverter structure
JPS62277745A (en) Semiconductor integrated circuit
US5061645A (en) Method of manufacturing a bipolar transistor
EP0239216A2 (en) CMOS compatible bipolar transistor
US4407059A (en) Method of producing semiconductor device
JPH0557741B2 (en)
US5430317A (en) Semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
JPS643065B2 (en)
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
US4449284A (en) Method of manufacturing an integrated circuit device having vertical field effect transistors
JPH06232351A (en) Bicmos semiconductor device and manufacture thereof
KR930008022B1 (en) Semiconductor device
JP3212598B2 (en) Method of manufacturing circuit including bipolar transistor and CMOS transistor
JPH0481336B2 (en)
JP3309995B2 (en) Semiconductor device
JPS63246862A (en) Semiconductor device
JPH0517701B2 (en)
JPH11307544A (en) Bipolar transistor and semiconductor integrated circuit device
JPS63244666A (en) Manufacture of semiconductor device